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Line Integral of Electric Field (Work Done by Electric Field):

Negative Line Integral of Electric Field represents the work done by the electric 
field on a unit positive charge in moving it from one point to another in the 
electric field.
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Let q 0 be the test charge in place of the unit 
positive charge.

The force F = +q0E acts on the test  charge 
due to the source charge +q.

It is radially outward and tends to accelerate 
the test charge.  To prevent this 
acceleration, equal and opposite force –q0E
has to be applied on the test charge.

Total work done by the electric field on the test charge in moving it from A to B 
in the electric field is
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1. The equation shows that the work done in moving a test charge q 0 from 
point A to another point B along any path AB in an electric field due to +q 
charge depends only on the positions of these points and is independent of 
the actual path followed between A and B.

2. That is, the line integral of electric field is path independent.

3. Therefore, electric field is ‘ conservative field ’.

4. Line integral of electric field over a closed path is zero.  This is another 
condition satisfied by conservative field .

Note: 

Line integral of only static electric field is independent of the path followed.  
However, line integral of the field due to a moving charge is not independent 
of the path because the field varies with time.
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Electric potential is a physical quantity which determines the flow of charges 
from one body to another.

It is a physical quantity that determines the degree of electrification of a body.

Electric Potential at a point in the electric field is defined as the work done in 
moving (without any acceleration) a unit positive charge from infinity to that 
point against the electrostatic force irrespective of the path followed.

Electric Potential:
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According to definition, rA = ∞ and r B = r   

(where r is the distance from the source charge  
and the point of consideration)
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SI unit of electric potential is volt (V)  or J C -1 or Nm C -1.

Electric potential at a point is one volt if one joule of work is done in moving 
one coulomb charge from infinity to that point in the electric field.

or



Electric Potential Difference between any two points in the electric field is 
defined as the work done in moving (without any acceleration) a unit positive 
charge from one point to the other against the electrostatic force irrespective 
of the path followed.

Electric Potential Difference:
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1. Electric potential and potential difference are scalar quantities.

2. Electric potential at infinity is zero.

3. Electric potential near an isolated positive charge (q > 0) is positive and that 
near an isolated negative charge (q < 0) is negative.

4. cgs unit of electric potential is stat volt.     1 stat volt = 1 erg / stat coulomb
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Electric Potential due to a Single Point Charge:
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Let +q 0 be the test charge 
placed at P at a distance x 
from the source charge +q.

To prevent this acceleration, equal and opposite force –q 0E has to be applied 
on the test charge.

The force F = +q 0E  is 
radially outward and tends 
to accelerate the test charge.

Work done to move q 0 from P to Q through ‘dx’ against q 0E is

dW = F . dx = q 0E . dx dW = q0E dx cos 180° =  - q 0E dx
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Total work done to move q 0 from A to B (from ∞ to r ) is
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Electric Potential due to a Group of Point Charges:

+1 C
q2

qn

q4

P

q1

r1

r2

r3r4

rnVP = V1 + V2 + V3 + V4 + …………+ Vn

│ │

1

4πε0

V = ∑
i=1

n q i

r - r i

( in terms of 
position vector )

The net electrostatic potential at a point in the 
electric field due to a group of charges is the 
algebraic sum of their individual potentials at that 
point.

1. Electric potential at a point due to a charge is not affected by the presence 
of other charges.

2. Potential, V α 1 / r whereas Coulomb’s force F α 1 / r2.

3. Potential is a scalar whereas Force is a vector.

4. Although V is called the potential at a point, it is actually equal to the 
potential difference between the points r and ∞.
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Electric Potential due to an Electric Dipole:
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i) At a point on the axial line:
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ii) At a point on the equatorial line:
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The net electrostatic potential at a point in the electric field due to an electric 
dipole at any point on the equatorial line is zero.
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Equipotential Surfaces:

A surface at every point of which the potential due to charge distribution is 
the same is called equipotential surface.

i) For a uniform electric field:
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ii) For an isolated charge:

E

Plane Equipotential Surfaces

Spherical Equipotential Surfaces
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Properties of Equipotential Surfaces:

2.  The electric field is always perpendicular to the element dl of the 
equipotential surface.

1. No work is done in moving a test charge from one point to another on an 
equipotential surface. 
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If A and B are two points on the equipotential surface, then V B = VA . 
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Since no work is done on equipotential surface,

i.e. E  dl cos θ = 0

As E ≠ 0 and dl ≠ 0,            cos θ = 0 or θ = 90°



4. Two equipotential surfaces can not intersect.

If two equipotential surfaces intersect, then at the points of intersection, 
there will be two values of the electric potential which is not possible.

(Refer to properties of electric lines of force)

3.  Equipotential surfaces indicate regions of strong or weak electric fields.
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Electric field is defined as the negative potential gradient.

or
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Since dV is constant on equipotential surface, so

E
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If E is strong (large), dr will be small,   i.e. the separation of equipotential
surfaces will be smaller (i.e. equipotential surfaces are crowded) and vice 
versa.

Note:

Electric potential is a scalar quantity whereas potential gradient is a vector 
quantity.  

The negative sign of potential gradient shows that the rate of change of 
potential with distance is always against the electric field intensity.



Electrostatic Potential Energy:

The work done in moving a charge q from infinity to a point in the field 
against the electric force is called electrostatic potential energy.

W = q V

i)  Electrostatic Potential Energy 
of a Two Charges System:
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ii)  Electrostatic Potential Energy 
of a Three Charges System:
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iii) Electrostatic Potential Energy   of an  n - Charges System:
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Area Vector:

Small area of a surface can be represented by a vector.
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Electric Flux:
Electric flux linked with any surface is defined as the total number of electric 
lines of force that normally pass through that surface.
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Electric flux d Φ through a small area 
element dS due to an electric field E at an 
angle θ with dS is

= E  dS cos θE . dSdΦ = 

Total electric flux Φ over the whole 
surface S due to an electric field E  is

Φ = E . dS
S

= E  S cos θ = E . S

dS = dS n

Electric flux is a scalar quantity.  But it is a 
property of vector field.

SI unit of electric flux is N m 2 C-1  or J m C -1.
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Solid Angle:

Solid angle is the three-dimensional equivalent of an ordinary two-
dimensional plane angle.

SI unit of solid angle is steradian.

Solid angle subtended by area element dS at the                                                         
centre O of a sphere of radius r is 

dΩ =
dS cos θ

r2

= 4π steradianΩ =  dΩ =
dS cos θ

r2

S S

1. For  0°< θ <  90°, Φ is positive.

2. For  θ =  90°, Φ is zero.

3. For  90°< θ < 180°, Φ is negative.

Special Cases:
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Gauss’s Theorem:
The surface integral of the electric field intensity over any closed hypothetical 
surface (called Gaussian surface) in free space is equal to 1 / ε0 times the net 
charge enclosed within the surface.
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Proof of Gauss’s Theorem for Spherically Symmetric Surfaces:
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Proof of Gauss’s Theorem for a Closed Surface of any Shape:
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Deduction of Coulomb’s Law from Gauss’s Theorem:
From Gauss’s law,
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If a charge q 0 is placed at a point where E 
is calculated, then

Since E and dS are in the same direction,

which is Coulomb’s Law.
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Applications of Gauss’s Theorem:
1.  Electric Field Intensity due to an Infinitely Long Straight Charged 

Wire:

Gaussian surface is a 
closed surface, 
around a charge 
distribution, such 
that the electric field 
intensity has a single 
fixed value at every 
point on the surface.

From Gauss’s law,
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(where λ is the liner charge density)
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The direction of the electric field intensity is radially outward from the positive 
line charge.  For negative line charge, it will be radially inward.

Note:
The electric field intensity is independent of the size of the Gaussian surface 
constructed.  It depends only on the distance of point of consideration.  i.e. the 
Gaussian surface should contain the point of consideration.
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2.  Electric Field Intensity due to an Infinitely Long, Thin  Plane Sheet of 
Charge:

From Gauss’s law,
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TIP:

The field lines remain 
straight, parallel and 
uniformly spaced.



(where σ is the surface charge density)

or E =
2 ε0

σ
In vector form, E (l) =
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The direction of the electric field intensity is normal to the plane and away 
from the positive charge distribution.  For negative charge distribution, it will 
be towards the plane.

Note:
The electric field intensity is independent of the size of the Gaussian surface 
constructed.  It neither depends on the distance of point of consideration nor 
the radius of the cylindrical surface.
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If the plane sheet is thick, then the charge distribution will be available on 
both the sides.  So, the charge enclosed within the Gaussian surface will be 
twice as before.  Therefore, the field will be twice.
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3.  Electric Field Intensity due to Two Parallel, Infinitely Long, Thin  
Plane Sheet of Charge:
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Case 2:
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Case 3:
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4.  Electric Field Intensity due to a Uniformed Charged This Spherical 
Shell:
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Since E and dS are in the same direction,
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i) At a point P outside the shell:

Since q = σ x 4π R2,
E =

ε0 r2  

σ R2  

Electric field due to a uniformly 
charged thin spherical shell at 
a point outside the shell is 
such as if the whole charge 
were  concentrated at the 
centre of the shell.
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Since E and dS are in the same direction,
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ii) At a point A on the surface of the shell:

Electric field due to a uniformly 
charged thin spherical shell at 
a point on the surface of the 
shell is maximum.

Since q = σ x 4π R2,
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From Gauss’s law,
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Since E and dS are in the same direction,
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iii) At a point B inside the shell:

This property E = 0 inside a cavity is 
used for electrostatic shielding.

(since q = 0 inside the Gaussian surface)
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