Class 12th Relations & Functions

Q.1) Let A and B are any two-empty sets. Show that $f: A \times B \to B \times A$ such that f(a, b) = (b, a) is a bijective function.

Sol.1) (Rough diagram)

One-One function let (a, b) and $(c, d) \in A \times B$ (domain) and f(a, b = f(c, d) $\Rightarrow (b, a) = (d, c)$ $\Rightarrow b = d$ and a = c $\Rightarrow (a, b) = (c, d)$ $\therefore f$ is one-one function On-To (.) since $n(A \times B) = n(B \times A)$ (.) f is one-one (just proved above) (.) \square Range = co-domain \therefore f must be on o \therefore f is a bijective function ans.

- Q.2) Show that $f: N \to N$ given by $f(x) = \{x + 1 ; if x is odd\}$ $= \{x - 1 ; if x is even\}$ f is a bijective function.
- Sol.2) (Rough diagram)

One-One function :-

(.) Case 1: let x_1 , and x_2 on both odd

$$x_1, x_2 \in N \text{ (domain)}$$

and $f(x_1) = f(x_2)$
 $\Rightarrow x_1 + 1 = x_2 + 1$
 $\Rightarrow x_1 = x_2$
(.) Case 2: let x_1 , and x_2 both even
 $x_1, x_2 \in N \text{ (domain)}$

and $f(x_1) = f(x_2)$ $\Rightarrow x_1 - 1 = x_2 - 1$ $\Rightarrow x_1 = x_2$ (.) Case 3 : let x_1 is odd and x_2 is even and $f(x_1) = f(x_2)$ $\Rightarrow \quad x_1 + 1 = x_2 - 1$ $\Rightarrow x_2 - x_1 = 2$ {not possible \therefore even no – odd no $\neq 2$ } ... thus case is rejected (.) Case 4 : let x_1 is even and x_2 is odd $f(x_1) = f(x_2)$ $\Rightarrow \quad x_1 - 1 = x_2 + 1$ $\Rightarrow x_1 - x_2 = 2$ (not possible : even no – odd no \neq 2) ... thus case is also rejected Hence, overall f is one-one function On-To: For every odd number $(2n - 1) \in N$ (co-domain) there exists an even number (2n) in domain (N)and for every even number $(2p) \in N$ (co-domain) there exists an odd number $(2p-1) \in N(\text{domain})$ \Rightarrow co-domain = Range $\therefore f$ is on-to \therefore f is bijective function Given examples of two functions $f: N \rightarrow Z$ and $g: Z \rightarrow Z$ such that gof is injective but g is not injective. Given : $f : N \rightarrow Z$ Sol.2) and $g: Z \rightarrow Z$ then domain of 'gof ' is same as domain of 'f ' and co-domain of 'gof ' is as same as co-domain of 'g' \therefore gof : N \rightarrow Z let f(x) = x and g(x) = |x|gof = g(f(x))= g(x)gof = |x|one-one (for gof) let x_1 , $x_2 \in N$ (domain of gof) and $(g0f)(x1) = (gof)(x_2)$ $\Rightarrow g(f(x_1)) = g(f(x_2))$ \Rightarrow $|x_1| = |x_2|$ $\Rightarrow x_1 = \pm x_2$ but $x_1 \neq x_2$ {. $x_1, x_2 \in N$ } $\therefore x_1 = x_2$... gof is one-one function Now g(-1) = |-1| = 1g(1) = |-1| = 1since two different elements in domain (z) of g has same image in co-domain (z) ... g is not one-one

Q.2)

$$f(x) = x \text{ and } g(x) = |x| \text{ ans.}$$
(0.3) (i) $f(x) = (3 - x^3)^{\frac{1}{3}}$. Find fof(x)
Sol.3) (i) $f0f = f(f(x))$
 $= f[(3 - x^3)^{\frac{1}{3}}]^{\frac{1}{3}}$
 $= [3 - ((3 - x^3)^{\frac{1}{3}}]^{\frac{1}{3}}$
 $= [3 - (3 - x^3)^{\frac{1}{3}}]^{\frac{1}{3}}$
 $= [3 - 3 + x^3]^{\frac{1}{3}}$
 $= (x^3)^{\frac{1}{3}}$
 $= x$
 $\therefore f0f = x$ ans.
(ii) $f(x) = |x|$
 $g(x) = |5x - 2|$
Is fog e gof for all $x \in R$?
 $fog = f(g(x))$
 $= f[(5x - 2]]$
 $= |5x - 2|$ {... $||x|| = |x|$ }
 $gof = g(f(x))$
 $= g(|x|)$
 $= |5|x| - 2|$
clearly $fog \neq gof$ ans.
e.g when $x = -1$
 $fog = |5(-1) - 2| = |-5 - 2| = |-7| = 7$
 $gof = |5| - 1| - 2| = |5 - 2| = 3$
(iii) If $f(x) = 2x$; $g(y) = 3y + 4$ and $h(z) = sin Z$
Show that ho(gof) = (hog)of
LHS = ho (gof)
 $= ho [g(2x)]$
 $= ho [g(2x)] = sin (6x + 4)$
RHS (hog)of
 $= [hog]of$
 $= [hog]of$
 $= [hog]of$
 $= [h(g(y))]of$
 $= [xin(3y + 4)]of$
 $= sin(3(2x) + 4) = sin (6x + 4)$
 \therefore LHS = RHS

Q.4) Let $f : R \rightarrow R$ be defined as f(x) = 10x + 7. Find function g(x) such that fog = gof = I_R

(where $I_R = x$ identity function : $R \rightarrow$ real no's)

Sol.4) We have
$$f(x) = 10x + 7$$

given $f \circ g = g \circ f = I_R$ where $x \in R$
To find: $g(x)$:
Consider $f \circ g = x$
 $\Rightarrow f(g(x)) = x$
 $\Rightarrow 10 g(x) + 7 = x$
 $\Rightarrow g(x) = \frac{x-7}{10}$
Now $g \circ f = g(f(x))$
 $= g(10x + 7)$
 $= \frac{10x + 7 - 7}{10}$ ans.
Q.5) Let $f = R \rightarrow R$ be the sign un function defined as
 $f(x) = \{-1; x < 0\}$
 $\{0; x = 0\}$
 $\{1; x > 0\}$
 $and g(x) = [x]$ be the greatest integer function. Then does fog and gof coincide (equal) in $(0, 1)$?
Sol.5) When $x \in (0, 1)$
value of $g(x)$
 $= f(2x)$
 $= g(1)$
 $= g(1)$

- Q.7) Let A = $\{1,2,3\}$ and B = $\{4,5,6,7\}$ and f = $\{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. State whether f is one-one or on-to.
- Given f(1) = 4 f(2) = 5Sol.7) f(3) = 6R

Clearly f is one-one, as every element in domain (A) has a unique image in co-domain (B) Since $7 \in$ co-domain (B), but this is not the image of any element in domain (A) ... f is not on-to ans.

- Consider the function $f: \left[0, \frac{\pi}{2}\right] \to R$ given by $f(x) = \sin x$ and $g: \left[0, \frac{\pi}{2}\right] \to R$ given by $g(x) = \cos x$. Q.8) Show that f and g are one-one but f + g is not one-one.
- Sol.8) We know that for any two different elements x_1 and $x_2 \in \left[0, \frac{\pi}{2}\right]$

 $\sin x_1 \neq \sin x_2$ and $\cos x_1 \neq \cos x_2$ \mathbb{P} $f(x_1) \neq (f)x_2$ and $g(x_1) \neq g(x_2)$ for all x_1 , x_2 \square [0, 7] and $x_1 \neq x_2$... f and g are one-one Now $f + g = \sin x + \cos x$ $(f+g)(0) = f(0) + g(0) = \sin(0) + \cos(0) = 0 + 1 = 1$ $(f+g)\left(\frac{\pi}{2}\right) = f\left(\frac{\pi}{2}\right) + g\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) + \cos\frac{\pi}{2} = 1 + 0 = 1$ clearly $(f + g)(0) = (f + g)(\frac{\pi}{2})$ but $0 \neq \frac{\pi}{2}$ i.e two different elements in domain $\left[o, \frac{\pi}{2}\right]$ has same image in co-domain (R) $\therefore f + g$ is not one-one

ans.

Q.9) (i) If
$$A = \{1,2,3\}$$
 and $B = \{a, c, d, e\}$. Find number of one-one functions

(ii) Find the number of on-to function from A to A if $A = \{1, 2, 3, \dots, n\}$

- Sol.9) (i) The element 1 in A can be attached / associated with any element of B in 4 ways element 2 in A can be attached / Associated in 3 ways and element 3 can be associated in 2 ways
 - \therefore total no. of one-one function = $4 \times 3 \times 2 = 24$ ans.
 - (ii) The element 1 in co-domain can be attached / Associated with any element of domain in = n

ways

a)

element 2 can be associated in = (n - 1) ways element 3 can be associated in = (n - 2) ways element n can be associated in = 1 way

 \therefore the total no of on-to function an = $n \times (n-1) \times (n-2) \times \ldots = n!$ ans.

Q.10)

Which of the following graphs represent a function ?

Sol.10) (a) is a function

 \therefore for each value of x, f(x) attains a unique and different value.

(b) is not a function

since for same value of x, f(x) has multiple values.