
Torsion of Shafts
and Springs, Columns

Torsion of Circular Shafts
When a moment is applied on a shaft about its axis, it is 
twisted about its axis. The shaft is then said to be in torsion. 
The applied moment is called twisting moment or torsional 
moment. Shafts transmitting power, springs, etc. are examples.

In actual practice a member/shaft may be subjected 
to combined eff ect of torsion, axial forces and bending 
moments. It is said to be under pure torsion if only torsional 
moments are acting.

Torsional Equation

B

T

T

A

R

B ′

qf

When a torsional moment is applied on the shaft the eff ects 
are:

 1. There is an angular displacement of a cross-section of 
one end with respect to the other end. 

 2. Shearing stresses are set up on any cross-section per-
pendicular to the axis.

From the previous fi gure, Line AB is twisted to a position 
AB′. The surface of the shaft is moved by angle ϕ. The cross 
section at B is twisted by an angle θ.

Here,
ϕ = Shear strain
θ = Angle of twist
It can be seen that
Rθ = Lϕ

But ϕ =
q

G
s

Where qs = Shear stress at surface

G = Modulus of rigidity

∴   R L
q

G
sθ =

or   
q

R

G

L
s =

θ

G

L

θ
being constant, it can be seen that shear stress is 

directly proportional to radius.

∴ =
q

R

q

r
s

R

r
dr
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Considering an elemental ring of thickness dr shearing 
resistance of the ring = q2πrdr 

∴ Total resisting moment T
q

R
r drs

O

R
= ∫ 2 3π

Since q
q

R
rs=

T
q R

R
q

Rs
s= =

π π4 3

2 2

= =
q

R
J J

Rs ; , where 
π 4

2
 the polar moment of inertia

or			 
q

R

T

J
s =

∴		
q

R

T

J

G

L
s = =

θ

This may be compared with the equation for bending 
moment 

f

y

M E

R
= =

Ι

Polar Modulus and Stiffness

T q
J

R
q Zs s p= =

Zp = Polar modulus

Also,
T

J

G

L
=

θ

or		           GJ
TL

=
θ

GJ is called the torsional rigidity or stiffness. It is the 
torque required for a twist of one radian per unit length of 
the shaft.

For hollow shafts,

J R r= −
π
2

4 4( )

     
= −

π
32

4 4( )D d

Power Transmitted

Power transmitted by a shaft =
2

60

π NT
 NM/s or W

where N = rpm
Consider a solid shaft and hollow shaft of the same mate-

rial, same length and same weight. Torque carrying capacity 
of both the shafts is to be compared.

Since mass remain the same
      ρvh = ρvs

⇒   vh = vs

π π
4 4

2 2 2( ) ,d d do i− × = ×� � �  being the same

		  do
2 - di

2  = d2� (1)

But, 
T

J

f

R
s=

Torque carrying capacity depends on 
f J

R
s .  Since fs is the 

same for both, it depends on
J

R
, the polar modulus.

T
J

R

d d

do

d
d

d

d
h

h o i

o
i

o

o

∝ =
−

× =

−
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥π π

32
2

16

1
4 4

4

4

( )

T d k k
d

d
h o

i

o

∝ − − =
π
16

1 13 4[ ] ( );  where 

T ds ∝
π
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∴ 
T

T
h

s

> 1

Therefore, torque carrying capacity of hollow shaft is 
more than that of solid shaft provided,
	 1.	 they are of the same material
	 2.	 they are of the same mass
	 3.	 they are of the same length

T

T

k

k

h

s

=
+

−

1

1

2

2

Comparison of Stiffness
A solid shaft and a hollow shaft of same material, same 
mass and same length may be considered. It is required to 
compare their stiffness.

We have the equation 
T

J

N
=

θ
�

T NJ

θ
= =Stiffness

�
;  ‘N’ and ‘’ being constant,
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Stiffness ∝ J
(Stiffness)solid ∝ Js

(Stiffness)hollow ∝ JH

∴ = =
−(stiffnesess)

(stiffness)
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solid

J

J

d k

d
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s

o
π

π
64

1

64

4 4( )

44
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d
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4 4
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1( )

∴  But, d2 = do
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Therefore, hollow shaft is more stiff when compared to 
solid shaft provided,
	 1.	 they are of  same mass
	 2.	 they are of same length
	 3.	 they are of same material

Shaft Combinations
A shaft may consists of various small shafts of different 
cross-sectional areas or different materials.

The shaft combination may be 

	 1.	 Shafts in series or stepped shafts
	 2.	 Shafts in parallel or composite shafts 
	 3.	 Indeterminate shafts 

In analyzing these shafts some points to be noted are: 

	 1.	 At fixed end a torque is developed to keep the shaft in 
equilibrium 

	 2.	 At the ends of any portion the torque developed are 
equal and opposite 

	 3.	 At common point between two portions angle of twist 
remain same

Shafts in Series
One end fixed and torque applied at the free end.

1

12
T

2

Here torque transmitted by each shaft is same i.e., T1 = 
T2 = T

Angle of twist
θ = θ1 + θ2

   

= +
⎛
⎝⎜

⎞
⎠⎟

T

J G G

� �1

1

2

2

Shafts in Parallel

2

1

In this case, angle of twist is same for each shaft.
That is, θ = θ1 + θ2 and torque, T = T1 + T2

Indeterminate Shafts
The shaft is fixed at both ends and torque is applied at a 
common point. 

A B

T

C

T1
T2

Torque T is applied at the point B. Torque T1 and T2 are 
developed at the ends. 

Here, T1 + T2 = T

and θ1B = θ2B

Torsion of a Tapering Shaft
It can be shown that the angle of twist in a tapering shaft of 
length L and end radii r1 and r2 when a constant torque, T 
is acting, is 

θ
π

=
+ +2

3
1
2

1 2 2
2

1
3

2
3

TL

G

r r r r

r r

Combined Bending and Torsion
A shaft is generally subjected to torsional shear stresses. 
But due to self-weight, eccentric thrust, etc., there may be 
bending moments also.

A

B

xx

Bending stresses and torsional shear stresses are maxi-
mum at the extreme fibres A and B.

Bending stress, f
M

y
d

= =
Ι

32
3

 M

π
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Shear stress, q
T

J
R

T

d
= =

16
3π

Maximum principal stress 

p
f f
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2
2

2 2
= + ⎛
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⎞
⎠⎟
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⎠⎟
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⎣

⎤
⎦

16
3
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Let Me be the equivalent bending moment 

then p
M

d
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max = =
32

3 1π

∴ = + +⎡
⎣

⎤
⎦M M M Te

1

2
2 2

Maximum shear stress 

q
f
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⎞
⎠⎟

+
2

2
2

                         
= ⎛

⎝⎜
⎞
⎠⎟
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⎝⎜

⎞
⎠⎟

1

4

32 16
3

2

3

2
 M

π πd

T

d

If Te is the equivalent twisting moment, then 

q
T

d
e

max =
16

3π

∴ = +T M Te
2 2 .

Strain Energy in Torsion

Strain energy, U T=
1

2
θ

It can be shown that U
q

G
s= ×
2

4
volume

Solved Examples

Example 1:  A 2 m long steel drive shaft with 6 cm outer 
and 4 cm inner diameter transmits 150 kw at 1,500 rpm.

Taking modulus of rigidity 

G = ×8 106  N/cm2

determine maximum shear stress.

Solution:  Power transmitted =
2

60

π NT
W

That is, 150 10
2 1500

60
3× =

× ×π T

⇒  T = 954.93 Nm

       = 95,493 Ncm

T

J

q

R
s=

J D d= −
π
32

4 4( )

  
= −

π
32

6 44 4( )

= 102.1 cm4

∴ T

J
= =

95493

102 1
935 29

.
.

Maximum shear stress = 

q
TR

J
= = ×935 29 3.  N/cm2

= 2805 87.  N/cm .2

Example 2:  In the above problem find angle of twist of 
the shaft.

Solution:

T

J

G

L
=

θ

Angle of twist θ = = ×
×

TL

JG
935 29

200

8 106
.

= 0.0234 radian

= ° =
°⎛

⎝⎜
⎞
⎠⎟

1 34 1
180

.  rad
π

Example 3:  A hollow shaft is to transmit a torque 
3500  Nm.The diametral ratio of the hollow shaft is 0.5. 
The permissible shear stress of the material is 80 MPa. The 
outside diameter of the shaft is 
(A)	 28 m 	 (B)	 31 mm
(C)	 25.5 mm  	 (D)	 35 mm

Solution:

T
f d ks o=

−π 3 41

16

( )

700 1 000
80 1 0 5

16

3 4

× =
× −

,
( . )πdo

⇒  700,000 = πdo
3 [1 - 0.0625]

⇒  do = 61.94 = 62 mm

∴  di = 31 mm
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1. � Torque carrying capacity of a shaft is represented by 

the polar modulus J

R

⎛
⎝⎜

⎞
⎠⎟

.

Stiffness of the shaft is represented by the polar 
moment of inertia (J).

2.  Torque carried by solid shaft of diameter ‘d’, 

T f
d

s=
π 3

16

Torque carried by hollow shaft

T f
do

ks= −
π 3

4

16
1( )

where k – diameter ratio 
di

do
 for the hollow shaft.

NOTES

Example 4:  A 2.5 m long steel shaft of circular cross-
section is subjected to torques as shown in the figure.

A
B

1 m1.5 m

C

Torque at B = 500 Nm (anticlockwise)

Torque at C = 1,000 Nm (clockwise)

Determine the diameter of the shaft if permissible shear 

stress is 6000 kN/m2

Modulus of rigidity = 80 GN /m2

Solution:

T

J

q

R
s=

or q
T

D
s =

16
3π

Maximum value of torque is to be considered for selecting 
the diameter.
For section BC, torque is 1,000 Nm
For section AB, torque is 1,000 - 500 = 500 Nm

D
T

qs

3 16
=

×π

 
=

×
× ×

= × −16 1000

6000 10
0 849 10

3
3

π
.

∴ D = 0.0947 m

    = 9.47 cm

Helical Springs (Closed Coiled)

R

R

W

d

WR

q
d

When a load W is attached at the end of the spring the torque, 
T on every section of the rod of the spring will be WR.

But, T q
r

s=
π 3

2

= q
d

s
π 3

16

That is, WR q
d

s= ×
π 3

16
∴ Shear stress,

q
WR

d
s = 16

3π

Length of the spring = n2πR

Strain Energy in Springs

= ×
q

G
s
2

4
volume

=
32 2 3

4

W R n

Gd

If vertical displacement due to the load is δ,

Work done =
1

2
Wδ

Equating with strain energy 

1

2

32 2 3

4
W

W R n

Gd
δ =

δ θ= =
64

4

WR n

Gd
R

n

Stiffness of the spring or spring constant

= =
W Gd

R nδ

4

364

Wahl stress factor (K)  is given by the formula

K
c

c c
=

−
−

+
4 1

4 4

0 615.
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Where c = spring index =
D

d

Shear stress after considering the stress factor becomes, 

q
WRk

d
s =

16
3π

.

Springs in Series
In series, total extension is equal to sum of individual exten-
sion of the springs.

That is, δ δ δ= +1 2

∴		
F

k

F

k

F

keq

= +
1 2

where k = stiffness of the springs

From the above, k
k k

k k
eq =

+
1 2

1 2

Springs in Parallel
Here, 

F = F1 + F2

∴ keq 
. δ = k1δ + k2δ

[∵ δ = δ1 = δ2]

∴ keq = k1 + k2

Example 5:  A close coiled helical spring of 10 cm mean 
diameter carries an axial load of 80 N. The spring is having 
20 turns of 8 mm diameter wire. Find shear stress developed 

and deflection. ( . )Modulus of rigidity  N/cm2= ×8 4 106

Solution:

q
T

d

WR

d
s = =

16 16
3 3π π

=
× ×16 80 5

0 8 3π( . )

    = 3981 N/cm2

δ =
× ×

=
64

8 4 10 0 8
3 72

3

6 4

WR n

. ( . )
. . cm

Example 6:  3 springs of same wire diameter are vertically 
arranged in a line over which a stiff bar of negligible weight 
is placed. A load P is acting in between the first two springs. 
Find the distance of the load from the first spring if the 
springs are equally spaced and number of turns are and 8, 
10 and 12, respectively. Mean radii are in the proportion 
10 : 12 : 15.

P1 P3P2 n = 12n = 10n = 8

x P

L L

1 2 3

Solution:  Let loads on springs are P1, P2
 and P3.

All the springs have same deflection δ.

δ =
×

=
×64 8 64 1 2 101

3

4
2

3

4

P R

Gd

P R

Gd

( . )

                        
=

×64 1 5 123
3

4

P R

Gd

( . )

That is, 8P1 = 1.23 × 10P2 = 1.53 × 12P3

∴ P1 = 5.06P3

     P2 = 2.34P3

Taking algebraic sum of the moments about the point where 
P acts.

P1x = P2(L - x) + P3(2L - x)

 5.06 P3x = 2.34 P3(L - x) + P3(2L - x)

i.e.,              5.06x = 2.34 (L - x) + (2L - x)

                   5.06x = (2.34 +2)L -(2.34 + 1)x

                      8.4x = 4.34L

x = 0.517L

Theory of Columns and Struts
Euler’s theory of columns: A column is a compressive 
member that under gradually increasing loads fails by buck-
ling at loads considerably less than those required to cause 
failure by crushing. Long column fails by buckling, inter-
mediate by a combination of crushing and buckling, short 
compression blocks by crushing. 

An ideal column is homogenous that is initially straight 
and subjected to axial compressive loads. However, actual 
columns have small imperfections of material and fabrica-
tion as well as unavoidable accidental eccentricities of load.  
The initial crookedness of the column, together with the 
placement of the load, causes an intermediate eccentricity 
‘e’ with respect to the centroid of a typical section. 

Compression member of a truss is called strut. Both col-
umns and struts are subjected mainly to compressive forces 
and their analysis can be treated together.

Mainly there are three types of columns:

	 1.	 Centrally loaded short columns
	 2.	 Eccentrically loaded masonry columns
	 3.	 Elastic long columns
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Eccentrically Loaded Columns
When a column is subjected to an eccentric load, apart 
from the main compressive stress a bending moment also 
is resulted causing tension on one side and compression on 
the other side.

For a rectangular column loaded eccentrically with 
respect to only one axis,

                                 

f
P

A

P
b

e

y
min = − 2

Ι

       
= −⎛

⎝⎜
⎞
⎠⎟

P

A

e

b
1

6

f
P

A b
e

max = +








1

6

If eccentricity is with respect to both x and y axis,

f
P

A

e

b

e

dmin = − −








1

6 61 2

f
P

A

e

b

e

dmax = + −








1

6 61 2

For no tension,
Fmin should not be negative.

∴ = = − −f
e

b

e

dmin 0 1
6 61 2

when e e
d

1 20
6

= =,  

when e e
b

2 10
6

= =,  

6
b

6
d

b

d 

y

If load acts in the shaded area, tension will not be devel-
oped. This area is known as kern of the section. 

For circular sections,

f
P

A

s

d
max = +⎛

⎝⎜
⎞
⎠⎟

1
8

f
P

A

s

d
min = −⎛

⎝⎜
⎞
⎠⎟

1
8

where s = distance from centre

For no tension, S
d

=
8

∴ Kern of a circular section is a circle of radius 
d

8
.

Analysis of the Critical Load for Long 
Column by Euler’s Formula
The analysis is based on the differential equations of the 
elastic curve.

EI
d y

dx
M P y Py

2

2
= = − = −( )

y
x

x

P

d

2
L

2
L

•

M
d x

dt
kx

2

2
= −

for which the general equations are 

X C t
k

m
C t

k

m
=

⎛

⎝⎜
⎞

⎠⎟
+

⎛

⎝⎜
⎞

⎠⎟
1 2sin cos

   

Y C x
p

EI
C x

P

EI
= +

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟1 2sin cos

Putting y = 0 at x = 0
we get C2 = 0

Again putting y = 0 at x = L we get 0 = C L
P

EI
1 sin

⎛

⎝⎜
⎞

⎠⎟C1 = nπ

P n
EIx

L
= 2

2

2

Special cases
	 1.	 For fixed end columns

P
EI

L
Cr =

4 2

2

π

	 2.	 One end fixed and the other hinged 

P
EI

L
cr =

2 2

2

π
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	 3.	 Both ends hinged P
EI

L
Cr =

π 2

2

	 4.	 One end fixed and the other end free P
EI

L
Cr =

π 2

24

Limitations

	 1.	 The value of I in the column formulas is always with 
the least moment of inertia of the cross-section. Any 
tendency to buckle, therefore occurs about the least 
axis of inertia of the cross-section.

	 2.	 Euler’s formula also shows that the critical load that 
causes buckling depends not only on the elastic modu-
lus of the material, but also with dimensions and mod-
ulus of elasticity.

	 3.	 In order for Euler’s formula to be applicable, the stress 
accompanying the bending that occurs during buckling 
must not exceed the proportional limit. 

	 4.	 Euler’s formula determines critical loads but not work-
ing loads.

		    All the above cases may be represented by a com-
mon expression

P
E

L
Cr

e

=
π 2

2

Ι

		  where Le = effective length.

		  So effective length for fixed end column =
L

2

		  For one end fixed and other end free it is = 2L etc.

Effective Lengths for Different End 
Conditions of Column
	 1.	 Fixed end columns 

L
L

e =
2

	 2.	 One end fixed and other end hinged

L
L

e =
2

	 3.	 Both ends hinged 
Le = L

	 4.	 One end fixed and other end free

Le = 2L

Rankine’s Formula
Euler’s formula holds good only for long columns with 

higher values of slenderness ratios L

K

⎛
⎝⎜

⎞
⎠⎟

 where K = radius 

of gyration. 
Rankine’s formula is one of the empirical formulae 

which take care of entire range of slenderness ratios.

It is based on the relationship between actual crippling 
load (PCr ), crushing load (Pc) and Euler’s buckling load 
(PE). The relationship established is 

1 1 1

P P PCr c E

= +

Rankine’s formula is derived from the above. According 
to this,

P
f A

a
L

K

Cr
c=

+ ⎛
⎝⎜

⎞
⎠⎟

1
2

where a
f

E
c=

π 2
,  the Rankine’s constant and fc = crushing 

strength

Example 7:
A

150

100

Q (10, 20)

D

B

C

(Dimensions in mm)

The above figure shows section of a pillar. A load of 100 kN 
was applied at point Q. Find the stress developed at point D.

Solution:

f
P

A

Pe
y

Pe
x

x y

= + +2 1

Ι Ι
,

where P = load
          A = sectional area

=
×

+
×

× ×

100 000

150 100

100 000 20
1

12
100 1503

, , y

                   

+
×

× ×

100 000 10
1

12
150 1003

, x

=
×

+
×

+
×⎡

⎣⎢
⎤
⎦⎥

100 000

150 100
1

12 20

150

12 10

1002 2

,
y x

= 6.667 [1 - 0.8 - 0.6]
as y = -75 and x = -50

= − =2 67 2 67. . ( ). N/mm  N/mm Tensile2 2

Example 8:  A hollow cylindrical column carries an axial 
load of 1,000 kN. Length of the column is 3 m and ends are 
fixed. The internal diameter is half of outside diameter. Find 
the diameter of the column using the following data.
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fc = 550 N/mm2

Factor of safety = 4
Rankine’s constant for both ends hinged =

1

1600
.

Solution:

Effective Length = =
3

2
1 5.  m

D = 2d

 
Ι = −

π
64

4 4( )D d

K
A

2 =
Ι

=

−

−

( )

( )

D d

D d

4 4

2 2
64

4

= +
1

16
2 2( )D d

= + ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
1

16
1

1

2
0 0781252

2
2D D.

K = 0.2795D mm

           
L

K D D
= =

1500

0 2795

5366 56

.

.

Working load = 1000 kN
Critical load = 1000 × FS

(PCr) = 4000 kN

using Rankine’s formula,

P
F A

a
L

K

Cr
c=

+ ⎛
⎝⎜

⎞
⎠⎟

1
2

That is, 4000 10
550

4

1
1

1600

5366 56
3

2 2

2
× =

× −

+ × ⎛
⎝⎜

⎞
⎠⎟

π
( )

.

D d

D

=

× − ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+

550
4

1
1

2

1
18000

2
2

2

π
D

D

=
×

+
323 98

18 000

2 2

2

.

,

D D

D

That is, 12 35 10
18 000

3
4

2
.

,
× =

+
D

D

⇒  12.35 × 103 D2 + 222,300 × 103 = D4

⇒  D4 - 12350 D2 - 2.223 × 108 = 0

⇒  D2
2 812350 12350 4 2 223 10

2
=

+ + × ×.

⇒    D2 = 22312.86

⇒     D = 149.37 mm

∴       d = 74.69 mm

Exercises

Practice Problems 1
Direction for questions 1 to 15:  Select the correct alterna-
tive from the given choices.

Direction for questions 1 and 2: A stepped shaft is made of 
brass and steel as shown in the figure. The brass end is fixed 
and the steel end is free.

 8 cm dia 6 cm dia

80 cm 100 cm

The following values may be taken for steel and brass.

Steel Brass

J 127 cm4 402 cm4

qs 100 N/mm2 80 N/mm2

G 80k N/mm2 40k N/mm2

	 1.	 Find the maximum torque that can be applied at the 
free end.

	 (A)	 3244 Nm	 (B)	 2962 Nm
	 (C)	 4233 Nm	 (D)	 3050 Nm

	 2.	 Find the angle of twist at the free end.
	 (A)	 3.05°	 (B)	 3.59°
	 (C)	 2.56°	 (D)	 3.18°

	 3.	 A solid circular shaft transmits 150 kW at 200 rpm. 
The twist in the shaft length of 2 m is limited to 1°. 
Maximum shear stress is 60 N/mm2 and shear modulus 
G is 1 × 105 N/mm2.

		  The diameter of the shaft is 
	 (A)	 85.77 mm	 (B)	 84.7 mm
	 (C)	 95.62 mm	 (D)	 90.62 mm

	 4.	 A solid shaft transmits a power of 6,000 watts at 1,500 
rpm. To transmit the same power a hollow shaft of 
same material with diametral ratio 0.6 is chosen. The 
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percentage of material saving is (permissible shear 
stress of material is 80 MPa)

	 (A)	 20.83%	 (B)	 26.25%
	 (C)	 29.88%	 (D)	 30.25%

	 5.	 A closed-coiled spring to have a stiffness of 1 N/cm 
under a maximum load of 5 N and a maximum shearing 
stress of 12,500 N/cm2 . The length of the spring when 
coils are touching is to be 4.5 cm. Modulus of rigidity 
G = 42 × 105 N/cm2.

		  Wire diameter of the spring is
	 (A)	 2.2 mm	 (B)	 1.1 mm
	 (C)	 1.8 mm	 (D)	 1.6 mm

	 6.	 A closed-coiled helical spring made of 1 cm diam-
eter steel wire has 15 coils of 10 cm mean diameter. 
Modulus of rigidity is G = 8.16 × 106 N/cm2. When the 
spring is subjected to an axial load of 100 N, the stiff-
ness of the spring is 

	 (A)	 68 N/cm	 (B)	 72 N/cm
	 (C)	 76 N/cm	 (D)	 66 N/cm

	 7.	 A solid shaft of diameter D carries a twisting moment 
that develops maximum shear stress f. If the shaft is 
replaced by a hollow shaft of outside diameter D and 

inside diameter 
D

2
,  then maximum shear stress will be

	 (A)	 1.143f	 (B)	 1.330f
	 (C)	 2f	 (D)	 1.067f

	 8.	 A hollow cylindrical shaft used as a column 4.5 m long 
with both ends fixed has internal diameter 0.6 times the 
external diameter. The column is to carry an axial load 
of 250 kN.

		  Take fc = 550 N/mm2 and Rankine’s constant a =
1

1600
		  The relation between radius of gyration and outer 

diameter of column is 
	 (A)	 0.392 D	 (B)	 0.2915 D
	 (C)	 0.1763 D	 (D)	 0.3535 D

	 9.	 A strut is made of a bar of circular section and 5 m long 
which pin jointed at both ends. When the bar is used as 
a simple supported beam gives a midspan deflection of 
10 mm with a load of 10 N at centre. Critical load of the 
strut is

	 (A)	 1,136 N	 (B)	 1,226 N
	 (C)	 1,029 N	 (D)	 1,185 N

	10.	 An m. s column is built up using an I-section and m. 
s plates, the cross-section of which is shown in the 
figure. It is 4 m long and both ends are hinged. Given 
that fc = 315 N/mm2.

		  Rankine’s constant =
1

7500
		  For I-section,
		  c.s. Area = 3,671 mm2

		  Ixx = 26.245 × 106 mm4 
		  Iyy = 3.288 × 106  mm4 
		   Kx = 84.6 mm
		   Ky = 29.9 mm

		  The safe axial load for the column, assuming a factor of 
safety of 4 and using Rankine’s formula, is 

200
G
•

140 × 10

140 × 10

	 (A)	 184.86 kN	 (B)	 196.84 kN
	 (C)	 172.92 kN	 (D)	 176.76 kN

	11.	 At a certain cross-section, a shaft of 100 mm diame-
ter is subjected to a bending moment of 4 kNm and a 
twisting moment of 8 kNm. Maximum principal stress 
induced in the section is 

	 (A)	 72.8 N/mm2	 (B)	 6.17 N/mm2

	 (C)	 65.9 N/mm2	 (D)	 68.6 N/mm2

	12.	 A solid shaft of 150 mm diameter is transmitting a 
torque of 20 kNm. At the same time it is subjected to 
a bending moment of 10 kNm and an axial thrust of 
150 kN. Maximum shear stress developed will be

	 (A)	 35.71 N/mm2	 (B)	 37.62 N/mm2

	 (C)	 34.83 N/mm2	 (D)	 38.13 N/mm2

	13.	 A rod PQ of 60 mm diameter and 2.5 m long is fit-
ted both ends hinged as shown in the figure. Young’s 
modulus = 2 × 105 N/mm2. The minimum force F under 
which the rod will buckle is

P

FQ45°

	 (A)	 277 kN	 (B)	 285 kN
	 (C)	 281 kN	 (D)	 296 kN

	14.	 The stepped shaft shown in the figure is subjected tor-
ques of 150 Nm and 300 Nm at points B and D, respec-
tively. Modulus of rigidity is 80 kN/mm2. The rotation 
of the free end will be

ABDE

0.5 mm 0.5 mm
1.5 mm 1 mm

80 mm 30 mm• •

M02_TRIS7308_C05.indd   159 27/06/2017   19:25:59



3.160  |  Part III  •  Unit 2  •  Strength of Materials

	 (A)	 0.742°	 (B)	 0.951°
	 (C)	 0.633°	 (D)	 0.872°
	15.	 A solid shaft of 210 mm diameter is to be replaced by a 

hollow shaft of external diameter D and internal diam-

eter 
D

2
. If same power is to be transmitted at the same 

speed and at same level of shear stress, the external 
diameter of hollow shaft is

	 (A)	 218.6 mm
	 (B)	 204.3 mm
	 (C)	 216.4 mm
	 (D)	 214.6 mm

Practice Problems 2
Direction for questions 1 to 10:  Select the correct alterna-
tive from the given choices.

	 1.	 In a shaft of 5 m length a stress of 75 MPa was developed. 
Find the diameter of the shaft if the angle of twist was 3°.

		  Take G = 83 GPa
	 (A)	 16.24 cm	 (B)	 15.89 cm
	 (C)	 17.26 cm	 (D)	 18.22 cm

	 2.	 In the above problem find the torque developed.
	 (A)	 65.8 × 106 Nmm	 (B)	 79.5 × 106 Nmm
	 (C)	 62.3 × 106 Nmm 	 (D)	 75.7 × 106 Nmm

Direction for questions 3 and 4: A closely coiled spring 
having mean diameter of 200 mm is made of 30 mm diam-
eter rod and has 30 turns. A weight of 1.5 kN is dropped 
from a height on the spring such that the spring compresses 
by 120 mm (G = 8 × 104 N/mm2).

	 3.	 The gradually applied load which produces spring 
deflection of 120 mm is

	 (A)	 5,170 N	 (B)	 4,050 N
	 (C)	 6,269 N	 (D)	 3,850 N

	 4.	 The drop height is
	 (A)	 40 mm	 (B)	 38 mm	
	 (C)	 42 mm	 (D)	 36 mm

	 5.	 A hollow shaft of diameter ratio 
3

5
 is required to trans-

mit 600 kW at 110 rpm, the maximum torque being 
20% greater than mean. The shear stress is not to 
exceed 6,300 N/cm2. The maximum external diameter 
of the shaft is

	 (A)	 16.86 cm	 (B)	 17.98 cm
	 (C)	 14.97 cm	 (D)	 18.52 cm

	 6.	 If the twist in a length of 3 m is not to exceed 1.4° the 
maximum external diameter is 

		  (Take G = 84 × 105 N/cm2)
	 (A)	 16.88 cm	 (B)	 17.56 cm
	 (C)	 18.44 cm	 (D)	 19.77 cm

	 7.	 A closed-coiled helical spring of 15 coils having a 
mean radius 9 cm is free to rotate at its ends. It is sub-
jected to axial compressive load. If the spring absorbs 
58 Nm of energy consistent with a maximum deflection 
of 5 cm, the diameter of the rod forming the spring is      
(G = 8.5 × 106 N/cm2)

	 (A)	 2.5 cm	 (B)	 2.8 cm
	 (C)	 3.2 cm	 (D)	 3.6 cm

	 8.	

B

C

x

y

D

P (25, 20)

A

300

400

		  A load of 500 kN is applied at point P on a masonry 
pillar as shown in the figure. The stress developed at the 
corner D is

	 (A)	 3.836 N/mm2	 (B)	 4.087 N/mm2

	 (C)	 4.427 N/mm2	 (D)	 3.576 N/mm2

	 9.	 A wooden column of length 2 m and square cross-sec-
tion is to be made. Taking E = 12 GPa and allowable 
stress 12 MPa, the size of the column to support a load 
of 100 kN is (use Euler’s Crippling load with factor of 
safety 3)

	 (A)	 110 mm	 (B)	 105 mm
	 (C)	 100 mm	 (D)	 95 mm

10.	 A hollow cast iron how column of length 4.5 m is hav-
ing an outside diameter of 200 mm and thickness of 
20 mm. The safe load using Rankine’s formula is (Take 
factor of safety 3, E = 1 × 105 N/mm2 , Rankine’s con-

stant =
1

1600
,  fc = 550 N/mm2 and assume both ends 

fixed)
	 (A)	 1,220 kN	 (B)	 1,250 kN
	 (C)	 1,010 kN	 (D)	 1,170 kN
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Previous Years’ Questions
	 1.	 A torque of 10 Nm is transmitted through a stepped 

shaft as shown in the figure. The torsional stiffnesses 
of individual sections of lengths MN, NO and OP are 
20 Nm/rad, 30 Nm/rad and 60 Nm/rad, respectively. 
The angular deflection between the ends M and P of 
the shaft is� [2004]

NM
O P

TT = 10 N m

	 (A)	 0.5 rad	 (B)	 1.0 rad
	 (C)	 5.0 rad	 (D)	 10.0 rad

	 2.	 The two shafts AB and BC, of equal length and diame-
ters d and 2d, are made of the same material. They are 
joined at B through a shaft coupling, while the ends A 
and C are built-in (cantilevered). A twisting moment 
T is applied to the coupling. If TA and TC represent the 
twisting moments at the ends A and C, respectively, 
then� [2005]

L L

A B C

d 2d
Coupling

	 (A)	 TC = TA	 (B)	 TC = 8TA

	 (C)	 TC = 16TA	 (D)	 TA = 16TC

	 3.	 A pin-ended column of length L, modulus of elastic-
ity E and second moment of the cross-sectional area  
I is loaded centrically by a compressive load P. The 
critical bucking load (PCr) is given by� [2006]

	 (A)	 P
EI

L
Cr =

π 2 2
	 (B)	 P

EI

L
Cr =

π 2

23

	 (C)	 P
EI

L
Cr =

π
2

	 (D)	 P
EI

L
Cr =

π 2

2

	 4.	 A stepped steel shaft shown below is subjected to 10 
Nm torque. If the modulus of rigidity is 80 GPa, the 
strain energy in the shaft in N mm is� [2007]

T = 10 Nm25 mm

100 mm100 mm

50
 m

m

	 (A)	 4.12	 (B)	 3.46
	 (C)	 1.73	 (D)	 0.86

	 5.	 The rod PQ of length L and with flexural rigidity EI is 
hinged at both ends. For what minimum force F is it 
expected to buckle?� [2008]

P

FQ45°

	 (A)	
π2EI
L2 	 (B)	

2
2

EI

L

	 (C)	
EI

L2 2
	 (D)	

EI

L2 2

	 6.	 A solid shaft of diameter, d and length L is fixed at 
both the ends. A torque, To is applied at a distance, L/4 
from the left end as shown in the figure given below:
� [2009]

T0

•

L /4 3L /4

		  The maximum shear stress in the shaft is

	 (A)	
16

3

T

d
o

π
	 (B)	

12
3

T

d
o

π

	 (C)	
8

3

T

d
o

p 	 (D)	
4

3

T

d
o

p

	 7.	 A column has a rectangular cross-section of 10 mm × 
20 mm and a length of 1 m. The slenderness ratio of 
the column is close to� [2011]

	 (A)	 200	 (B)	 346
	 (C)	 477	 (D)	 1000

	 8.	 A torque T is applied at the free end of a stepped rod 
of circular cross-sections as shown in the figure. The 
shear modulus of the material of the rod is G. The 
expression for d to produce an angular twist θ at the 
free end is� [2011]

T

L

2d d

L /2

π2

π2 π2
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	 (A)	
32

1

4TL

Gπθ
⎛
⎝⎜

⎞
⎠⎟

 	 (B)	
18

1

4TL

Gπθ
⎛
⎝⎜

⎞
⎠⎟

	 (C)	
16

1

4TL

Gπθ
⎛
⎝⎜

⎞
⎠⎟

	 (D)	
2

1

4TL

Gπθ
⎛
⎝⎜

⎞
⎠⎟

	 9.	 For a long slender column of uniform cross section, 
the ratio of critical buckling load for the case with 
both ends clamped to the case with both ends hinged 
is� [2012]

	 (A)	 1			   (B)	 2
	 (C)	 4			   (D)	 8

	10.	 Two solid circular shafts of radii R1 and R2 are sub-
jected to same torque. The maximum shear stresses 
developed in the two shafts are τ τ1 2 and . If R1/R2 = 2, 

then
τ
τ

2

1

is _________.� [2014]

	11.	 A hollow shaft of 1 m length is designed to transmit a 
power of 30 kW at 700 RPM. The maximum permis-
sible angle of twist in the shaft is 1o. The inner diam-
eter of the shaft is 0.7 times the outer diameter. The 
modulus of rigidity is 80 GPa. The outside diameter 
(in mm) of the shaft is ______.� [2015]

	12.	 The cross-sections of two hollow bars made of the 
same material are concentric circles as shown in the 
figure. It is given that r3 > r1 and r4 > r2, and that the 
areas of the cross-sections are the same. J1 and J2 are 
the torsional rigidities of the bars on the left and right, 
respectively. The ratio J2/J1 is:� [2016]

r1

r2

r3

r4

(A)	 > 1	 (B)	 < 0.5
(C)	 = 1	 (D)	 between 0.5 and 1

	13.	 The spring constant of a helical compression spring 
DOES NOT depend on:� [2016]

(A)	 coil diameter
(B)	 material strength
(C)	 number of active turns
(D)	 wire diameter

	14.	 A rigid horizontal rod of length 2L is fixed to a circu-
lar cylinder of radius R as shown in the figure. Vertical 
forces of magnitude P are applied at the two ends as 
shown in the figure. The shear modulus for the cylin-
der is G and the Young’s modulus is E.� [2016]

P

A
L

L

PL

R  

		  The vertical deflection at point A is
(A)	 PL3/(pR4 G)	 (B)	 PL3/(pR4 E)
(C)	 2PL3/(pR4 E)	 (D)	 4PL3/(pR4 G)

	15.	 Two circular shafts made of same material, one solid 
(S) and one hollow (H), have the same length and 
polar moment of inertia. Both are subjected to same 
torque. Here, θS is the twist and τS is the maximum 
shear stress in the solid shaft, whereas θH is the twist 
and τH is the maximum shear stress in the hollow 
shaft. Which one of the following is TRUE?� [2016]

(A)	 θS = θH and τS = τH

(B)	 θS > θH and τS > τH

(C)	 θS < θH and τS < τH

(D)	 θS = θH and τS < τH
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Answer Keys

Exercises
Practice Problems 1
	 1.  C	 2.  B	 3.  C	 4.  C	 5.  B	 6.  A	 7.  D	 8.  B	 9.  C	 10.  A
	11.  C	 12.  A	 13.  B	 14.  A	 15.  D

Practice Problems 2
1.  C	 2.  D	 3.  B	 4.  C	 5.  B	 6.  C	 7.  A	 8.  B	 9.  B	 10.  D

Previous Years’ Questions
	 1.  B	  2.  C	 3.  D	 4.  C	 5.  C	 6.  B	 7.  B	 8.  B	 9.  C
10.  7.9 to 8.1		 11.  43 to 45		  12.  A	 13.  B	 14.  D	 15.  D
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Test

Strength of Materials� Time: 60 Minutes

Direction for questions 1 to 30:  Select the correct alterna-
tive from the given choices.

	 1.	 The ratio of strain in the direction perpendicular to the 
direction of application of force to the strain along the 
direction of application of force is called

	 (A)	 Young’s modulus	 (B)	 Bulk modulus
	 (C)	 Poisson’s ratio	 (D)	 Modulus of rigidity

	 2.	 The maximum stress at which even a billion reversal of 
stress cannot cause failure of the material is called

	 (A)	 Safe stress	 (B)	 Proof stress
	 (C)	 Endurance limit	 (D) Fatigue stress

	 3.	 The ratio of load applied to the actual cross-section 
area of the specimen is known as

	 (A)	 Nominal stress	 (B)	 True stress
	 (C)	 Ultimate stress	 (D)	 Yield stress

	 4.	 The maximum strain energy which can be stored by 
a body without undergoing permanent deformation is 
known as

	 (A)	 Safe resilience	 (B)	 Modulus of rigidity
	 (C)	 Modulus of resilience	 (D)	 Proof resilience

	 5.	 In a uni-dimensional stress system, principal plain is 
defined as the one on which

	 (A)	 Shear stress is minimum
	 (B)	 Normal stress is zero and shear stress is maximum
	 (C)	 Shear stress is maximum
	 (D)	 Normal stress is maximum and shear stress is zero

	 6.	 If px and py are normal stresses on two mutually perpen-
dicular sections and p1 and p2 are the principal stresses 
then radius of Mohr’s cycle is

	 (A)	
p px y+

2
	 (B)	

p p1 2

2

+

	 (C)	
p p1 2

2

−
	 (D)	

p px y−
2

	 7.	 A body subjected to uni-axial tension will fail in a 
plane at 45° due to shear, if its shear strength is less than

	 (A)	 Tensile strength
	 (B)	 Compressive strength
	 (C)	 Half the tensile strength
	 (D)	� Difference between tensile and compressive 

strength.

	 8.	 At point of contraflexure 
	 (A)	 +ve bending moment is maximum
	 (B)	 Bending moment have change in sign
	 (C)	 -ve bending moment is maximum
	 (D)	 Shear force is zero

	 9.	 A cantilever of span L subjected to a uniformly vary-
ing load, w/unit length at fixed end to zero at free end, 
undergoes a maximum bending moment of

	 (A)	
wL2

6
	 (B)	

wL2

8

	 (C)	
wL3

6
	 (D)	

wL2

12

	10.	 Maximum shear stress in a beam of circular cross- 
section, when subjected to a shearing force is

	 (A)	
5

3
 times the average shear stress

	 (B)	
3

2  times the average shear stress

	 (C)	
4

3
 times the average shear stress

	 (D)	 Equal to average shear stress

Direction for questions 11 and 12: The steel block shown 
in the figure is subjected to a uniform pressure of 150 MPa 
on all its faces. Young’s modulus is 200 GPa and Poisson’s 
ratio is 0.4.

50

100 × 80 × 5080

100

	11.	 The thickness of the block will
	 (A)	 Decrease by 0.01875 mm
	 (B)	 Decrease by 0.015 mm
	 (C)	 Decrease by .0075 mm
	 (D)	 Data insufficient

	12.	 The volume of the steel block will
	 (A)	 Decrease by 180 mm3	 (B)	 Decrease by 300 mm3

	 (C)	 Decrease by 250 mm3	 (D)	 Decrease by 281 mm3

	13.	 The state of stress at a point in a stressed element is 
shown in the figure.

15 N/mm2

15 N/mm215 N/mm2

15 N/mm2
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		  The maximum tensile stress in the element will be
	 (A) 20 N/mm2	 (B)	 15 2 N/mm2

	 (C)	 15 N/mm2	 (D)	 Zero

	14.	 In an element if the stresses are given by

		  px  = 110 MPa

		  py  =  30 MPa

		  qxy =  30 MPa

		  the principal stresses in MPa are,
	 (A)	 20, 120	 (B)	 110, 30
	 (C)	 0, 140	 (D)	 20, 140

	15.	 A round bar of diameter 40 mm and length 2.5 m is 
stretched 2.5 mm. Young’s modulus of the material 
is 110 GN/m2 and shear modulus is 42 GN/m2. Then 
Lateral contraction is

	 (A)	 0.111 mm	 (B)	 0.0112 mm
	 (C)	 0.0124 mm	 (D)	 0.01 mm

Direction for questions 16 and 17: A steel rod of 4 m length 
is heated through a temperature of 50°C. The coefficient of 
linear expansion is 6.5 × 10-6/°C and Young’s modulus is 
2 × 107 N/cm2.

	16.	 The increase in length of the rod is
	 (A)	 1.3 mm	 (B)	 1 mm
	 (C)	 1.2 mm	 (D)	 1.4 mm

	17.	 Stress induced in the rod if the expansion due to heat-
ing is restricted, is

	 (A)	 5,000 N/cm2	 (B)	 6,000 N/cm2

	 (C)	 6,500 N/cm2	 (D)	 7,000 N/cm2

	18.	 A cylindrical bar of 30 mm diameter and 1 m length 
is subjected to a tensile load. If the longitudinal strain 
is 2 times that of lateral strain and Young’s modulus is 
2 ×105 N/mm2 the modulus of rigidity is

	 (A)	 0.52 × 105 N/mm2

	 (B)	 0.67 × 105 N/mm2

	 (C)	 0.82 × 105 N/mm2

	 (D)	 0.77 × 105 N/mm2

	19.	 The state of stress in a material is given in the figure. 
Maximum principal stress will be

5

5

5

55

5

5

5

	 (A)	 5	 (B)	 10
	 (C)	 15	 (D)	 12.5

	20.	 A simply supported beam of span 5 m carries a uni-
formly varying load from zero at one support to 2 kN/m 
at the other support. Maximum bending moment will be

	 (A)	 3,000 Nm	 (B)	 3,200 Nm
	 (C)	 3,100 Nm	 (D)	 3,300 Nm

	21.	 A steel rod of 50 mm diameter and 6 m length is sub-
jected to a tensile load of 100 kN. Poisson’s ratio is 0.25 
and Young’s modulus is 2 × 105 N/mm2.

		  Change in diameter of the rod is 
	 (A)	 2.92 × 10-3 mm	 (B)	 3.62 × 10-3 mm
	 (C)	 3.18 × 10-3 mm	 (D)	 3.48 × 10-3 mm

	22.	 A 100 N weight falls from a height of 100 mm on a 
collar attached to a bar of 20 mm diameter and 300 mm 
long. Young’s modulus = 2 × 105 N/mm2. The instanta-
neous stress produced is 

	 (A)	 198 N/mm2	 (B)	 192 N/mm2

	 (C)	 216 N/mm2	 (D)	 206 N/mm2

	23.	 A simply supported beam of span 6 m carries a uni-
formly distributed load of 30 kN/m and a central point 
load of 50 kN. Moment of inertia of the cross-section 
about neutral axis is 1.34 × 109 mm4. Bottom of the 
section is at a distance of 290 mm from neutral axis. 
Maximum bending stress at the bottom is

	 (A)	 54.3 N/mm2	 (B)	 45.4 N/mm2

	 (C)	 49.2 N/mm2	 (D)	 47.6 N/mm2

	24.	 The I section shown in figure is subjected to a shear 
force of 40 kN.

80
20

20

120

20

200

	 	 (dimensions in mm)

		  Shear stress at the top of the web will be (Take I = 65 × 
106 mm4))

	 (A)	 4.86 N/mm2 	 (B)	 6.32 N/mm2

	 (C)	 5.72 N/mm2	 (D)	 5.96 N/mm2

	25.	 A stepped shaft is made of 2 materials 1 and 2. First 
part is having a length of 400 mm and diameter 40 mm. 
Second part is 800 mm long with 30 mm diameter. 
Young’s modulus for 1 and 2 are 2 × 105  and 1 × 105 
N/mm2, respectively. The extension produced under an 
axial pull of 30 kN is 

	 (A)	 0.364 mm	 (B)	 0.394 mm
	 (C)	 0.387 mm	 (D)	 0.412 mm

Direction for questions 26 and 27: Two wires of equal 
length made of steel and copper carry a common load of 
8 kN at their end.  Steel wire has an area of cross-section 
1 cm2 and for copper wire it is 2 cm2. Young’s modulus for 
steel and copper are 2 × 107 N/cm2 and 1.2 × 107N/cm2, 
respectively.  
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	26.	 Load shared by steel wire is 
	 (A)	 4,354 N	 (B)	 3,646 N
	 (C)	 3,636 N	 (D)	 4,364 N

	27.	 Load shared by the copper wire is 
	 (A)	 4,354 N	 (B)	 3,646 N
	 (C)	 3,636 N	 (D)	 4,364 N
Direction for questions 28 and 29: A compound steel bar is 
subjected to loads as shown in the figure.

		  (Take E = 200 × 103 N/mm2)

A
C

B

D

E

1 m1 m1 m

FP
100 mm2

200 mm2

25 mm2
25 kN

200 kN50 kN

	28.	 For equilibrium, the value of force P is 
	 (A)	 170 kN	 (B)	 −170 kN
	 (C)	 200 kN	 (D)	 −200 kN

	29.	 Total increase in length is 
	 (A)	 8.25 mm	 (B)	 4.25 mm
	 (C)	 2.75 mm	 (D)	 3.75 mm

	30.	 The state of stress in a strained material is shown in 
the figure. The magnitude and direction of the resultant 
stress on plane BC is

150

100100
40

40
150

45°B

C

	 (A)	 166.88 and 8.62
	 (B)	 196.47 and 20.14
	 (C)	 190 and 14.74
	 (D)	 166.88 and 14.74

Answer Keys

	 1.  C	 2.  C	 3.  B	 4.  D	 5.  D	 6.  C	 7.  C	 8.  B	 9.  A	 10.  C
	11.  C	 12.  A	 13.  C	 14.  A	 15.  C	 16.  A	 17.  C	 18.  B	 19.  B	 20.  B
	21.  C	 22.  D	 23.  B	 24.  D	 25.  C	 26.  C	 27.  D	 28.  B	 29.  C	 30.  A
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