DPP - 1 CLASS - 12th

TOPIC - Relection of light from Plain and spherical surface

- **Q.1** A concave mirror of focal lengtth 20 cm is placed 50 cm from a wall. How far from the wall an object be placed to form its real image on the wall
- **Q.2** An object is placed at a distance of 40 cm from a concave mirror of focal lengtth 15 cm. If the object is displaced through a distance of 20 cm towards the mirror, by how much distance is the image displaced?
- **Q.3** An object is placed at a distance of 25 cm from a spherical mirror and its image is formed behind the mirror at a distance of 5 cm. Find the focal length of the mirror. Is the mirror concave or convex in nature?
- **Q.4** An object is placed at a distance of 36 cm from a convex mirror. A plane mirror is placed inbetween, so that the two virtual images so formed coincide. If the plane mirror is at a distance of 24 cm from f the object, find the radius of curvature of the convex e mirror.
- Q.5 An object is placed in front of a concave mirror of radius of curvature 40 cm at a distance of 10 cm. Find the position, nature and magnification of the image.
- **Q.6** An object is placed 15 cm from a convex mirror of radius of curvature 90 cm. Calculate the image position and magnification.
- **Q.7** An object is placed in front of a convex mirror of focal length 30 cm. If the image formed is a quarter of the size of the object, find the position of the image.
- **Q.8** An object is kept in front of a concave mirror of focal length 15 cm. The image formed is three times the size of the object. Calculate two possible distances of the object from the mirror
- **Q.9** What is the difference between virtual image produced by a convex mirror and concave mirror?
- **Q.10** Why is the aperture of a spherical mirror taken as small?
- **Q.11** Why are convex mirrors used as side view mirrors in cars?

SOLUTION RAY OPTICS

DPP - 1 CLASS - 12th

TOPIC - Relection of light from Plain and spherical surface

Sol.1. Fig. 1.18 shows a concave mirror placed at a distance of 50 cm from the wall. Suppose that the

object AB is placed at a distance x from the wall, to form its image A'B' on the wall.

Since the image is formed on the same side of the object,

v = -50 cmAlso, f = -20 cm

f = -20 cm (concave mirror)

From the mirror formula, we have

$$\frac{1}{u} = \frac{1}{f} - \frac{1}{v} = \frac{1}{-20} - \frac{1}{-50} = -\frac{3}{100}$$

$$u = -33.3 \text{ cm}$$

Therefore, the distance of the object from the wall,

$$x - 50 - |u| = 50 - |-33.3|$$

= 16.7 cm

Sol.2. Here, f = -15 cm; u = -40 cm

Now,
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

or

or

$$v = \frac{uf}{u - f}$$

$$= \frac{(-40) \times (-15)}{(-40) - (-15)} = \frac{40 \times 15}{25} = -24 \text{ cm}$$

When the object is displaced towards the mirror: Let u' be the distance of the object from the mirror in

its new position.

Then,
$$u' = -(40-20) = -20 \text{ cm}$$

If the image is formed at a distance V from the mirror, then

$$v' = \frac{u'f}{u'-f}$$

$$= \frac{(-20)\times(-15)}{(-20)-(-15)} = -\frac{20\times15}{5} = -60 \text{ cm}$$

Therefore, the image wil move away from the concave mirror through a distance

$$|v'| - |v| = |-60| - |-24| = 36 \text{ cm}$$

Sol.3. Here u. =
$$-25$$
cm; v = $+5$ cm

from the mirror formula, we have

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v} = \frac{1}{-25} + \frac{1}{5} = \frac{4}{25}$$
$$f = + 6.25 \text{ cm}$$

or

As the focal length is positive, the mirror is convex in nature

Sol.4. Fig. 1.19 shows an object AB placed at a distance PA 36 cm from the convex mirror. The distance of the plane mirror from the object is MA = 24 cm. The image A'B' of the object in the plane mirror will be formed at a distance of 24 cm behind it i.e. MA' = 24 cm.

Since the image formed in the plane mirror coincides

$$v = PA' = (MA + MA') - PA$$

= $2 MA - PA$
= $2 \times 24 - 36 = 12 cm$

Also,
$$u = -36 \text{ cm}$$

Now, $\frac{2}{R} = \frac{1}{u} + \frac{1}{v} = \frac{1}{-36} + \frac{1}{12} = \frac{1}{18}$
or $R = 36 \text{ cm}$

Sol.5. Here u = -10cm R = -40cm (concave mirror)

$$f = R/2 = -40/2 = -20 \text{ cm}$$

From the mirror formula, we have

$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u} = \frac{1}{-20} - \frac{1}{-10} = \frac{1}{20}$$

or v = +20 cm

As *v* is positive, a *virtual* and *erect* image will be formed on the other side of the object *i.e.* behind the mirror.

Now,
$$m = -\frac{v}{u} = -\frac{+20}{-10} = 2$$

Sol.6. Here, u = -15 cm; R = +90 cm (convex mirror)

$$f = R/2 = +90/2 = +45 \text{ cm}$$

From the mirror formula, we have

$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u} = \frac{1}{+45} - \frac{1}{-15} = \frac{4}{45}$$

or

$$v = 45/4 = +11.25$$
 cm

As v is positive, a virtual and erect image will be formed on the other side of the object i.e. behind the mirror.

Now,
$$m = -\frac{v}{u} = -\frac{+11.25}{-15} = 0.75$$

Sol.7. Here, F = +30 cm (Convex mirror); $M = \frac{1}{4}$

Now,
$$m = \frac{f - v}{f}$$

$$\therefore \frac{1}{4} = \frac{+30 - v}{+30} \quad \text{or} \quad 30 = 120 - 4v$$
or $v = 90 / 4 = +22.5 \text{ cm}$

As v is positive, a virtual and erect image will be formed on the other side of the object i.e. behind the

mirror

Sol.8. Here, f = -15 cm and |m| = 3

When the image formed is real: Then, m = -3

Now,
$$m = -\frac{v}{u} = -3$$

or $v = 3u$

From the mirror formula, we have

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

or
$$\frac{1}{u} + \frac{1}{3u} = \frac{1}{-15}$$
 or $\frac{4}{3u} = -\frac{1}{15}$

or
$$u = -20 \text{ cm}$$

When the image formed is virtual: Then, m = +3

Now,
$$m = -\frac{v}{u} = 3$$

or $v = -3u$

From the mirror formula, we have

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$
or
$$\frac{1}{u} + \frac{1}{-3u} = \frac{1}{-15}$$
or
$$\frac{2}{3u} = -\frac{1}{15}$$
or
$$u = -10 \text{ cm}$$

- **Sol.9**. The virtual image formed by a concave mirror is larger than the size of the object, whereas the virtual image formed by a convex mirror is smaller than the size of the object.
- **Sol.10**. The mirror formula has been derived on the assumption that the aperture of the mirror is small.
- **Sol.11**. The convex mirror is used as side view mirrors in cars as it gives a wide field of view of the traffic.