
Chapter 6
Permutation and  

Combination

6.1 introduction

Permutations and combinations is the art of counting without counting i.e., we study various principles 
and techniques of counting to obtain the total number of ways an event can occur without counting each 
and every way individually.

6.2 Fundamental PrinciPles oF counting

6.2.1 Addition Rule

If an event (operation) E1 can occur in n1 ways, E2 can occur in n2 ways ,…, and Ek can occur in nk ways 
(where k ≥ 1). And these ways for the above events to occur are pair-wise disjoint, then the number of  

ways for at least one of the events (E1, E2, E3, …, or Ek) to occurs is (n1 + n2 + n3 + … + nk) = 
i k

i
i 1

n
=

=
∑

 • An equivalent form of above rule using set-theoretic terminology is given below:
Let A1, A2, …. Ak be any k finite sets, where k ≥ 1. If the given sets are pairs wise disjoint,  

i.e., Ai ∩ Aj = f for i, j = 1, 2, …, k, i ≠ j, then 
k k

i 1 2 k i
i 1i 1

A | A A ... A | | A |
==

= ∪ ∪ ∪ =∑

 where |Ai|  

denotes the number of elements in the set Ai.

6.2.2 Multiplication Rule
If an event E can be decomposed into n ordered event E1, E2, …, Er and that there are n1 ways for the event 
E1 to occurs; n2 ways for the event E2 to occur, …, nr ways for the event Er to occur. Then the total number 

of ways for the event E to occur is given by: n(E1 and E2 and …., and Er) = 
r

1 2 r i
i 1

n n .., n n
=

× × × =∏ .

 • An equivalent form of (MP), using set-theoretic terminology is stated below
r

i 1 2 r
i 1

A A A ... A
=

= × × ×∏  = {(a1, a2, …., an)} | ai ∈ Ai, i = 1, 2, …, r} denote the cartesian product of the 

finite sets A1, A2, .., Ar. Then 
r r

i 1 2 r i
i 1 i 1

A | A | | A | ... | A | A
= =

= × × × =∏ ∏
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Notes:

 • And stands for intersection (∩) or multiplication.

 • Or stands for union (∪) or addition.

 • Both addition and multiplication rules can be extended to any finite number of mutually exclusive 
operations.

6.2.3 Complementation Rule

If A and A  are two complementary sets and S be universal set, then
Q	 ( )n(A) + n A  = n(S)   ⇒ = −n(A) n(S) n(A)

So, we count n(A)  or n(A) whichever is easier to count, then subtract  
from n(S) to get the other.

6.2.4 Principles of Inclusion-Exclusion

Let X be a finite set of m elements and x1, x2, x3,...., xr be some properties which the elements of X may or 
may not have if the subset of X having the property xi (where i = 1, 2, 3,...., r) is Xi and those having both 

properties xi and xj is denoted by i jX X∩  and so on.

Then the number of elements of X which have at least one of the properties x1, x2, x3,...., xr is given 

by 
r

i
i 1

n X
=

 
 
 


 = S1 - S2 + S3 - S4 + .... + (-1)r–1Sr and the number of elements of U which have none of the 

properties x1, x2, x3, ...xr is given by
r

c
i

i 1

n X m
=

 
= 

 


- S1 - S2 + S3 - S4 + .... + (-1)r–1Sr
 ; where 

r

1 i
i 1

S n(X )
=

=∑ , 
r r

2 i j
1 i 1 r

S n(X X )
≤ < ≤

= ∩∑∑
e.g., For r = 2, n(X1 ∪ X2) = n(X1) + n(X2) – n(X1 ∩ X2).
For r = 3, n(X1 ∪ X2 ∪ X3) = n(X1) + n(X2) + n(X3) – n(X1 ∩ X2) – n(X1 ∩ X3) – n(X2 ∩ X3) +  

n(X1 ∩ X2 ∩ X3).

6.2.5 Injection and Bijection Principles

Suppose that a group of n students attend a lecture in a lecture theater which has 100 seats, assuming that 
no student occupies more than one seat and no two students share a seat, if it is known that every student 
has a seat, then we must have n ≤ 100. If it known, furthermore, that no seat is vacant, then we are sure that 
n = 100 without actually counting the number of students.

6.2.5.1 Injection principle (IP)

Let A and B be two finite sets, if there is an injection from A to B, then |A| ≤ |B|.

6.2.5.2 Bijection principle (BP)

Let A and B be two finite sets, if there is a bijection from A to B, then |A| = |B|.
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6.3 combinations and Permutations

Each of the groups or selections which can be made by taking some or all of a number of things without 
considering the order in which the objects are taken is called a combination. Whereas a selection of  
objects where the order in which the objects are taken is also taken into account is called as an  
arrangement/permutation.

To understand the concept of combination and permutation, let us consider the combinations which 
can be made by taking the letters from a, b, c, d, two at a time namely,

Combinations (total no. 6)

Permutations (totalnumber 12)

ab ac ad da ca ba
bc bd bd cb

cd dc

=

=





Number of combinations of ‘n’ distinct objects taken r at a time denoted as n
r

n!C
r!(n r)!

=
−

.

Note:
From the above illustration, it is simply clear that in combinations we are only concerned with the number of 
things each selection contains without taking into account the order in which the objects are being selected. 
(i.e., ab and ba are regarded as same selection). Whereas in permutation the order of objects is taken into 
account.

6.4 Permutation oF diFFerent objects

Case I: When repetition of objects is not allowed.
Number of permutation of n distinct things taken r at a time (0 ≤ r ≤ n) is denoted by nPr and it is equivalent 
to filling up of r vacancies by n different person, clearly first place can be filled in n ways and after  
which 2nd place can be filled in (n -1) ways and 3rd place can be filled in (n - 2) ways and similarly rth place 
can be filled in (n - r + 1) ways.

⇒ nPr = n(n - 1) (n - 2) .... (n - r + 1) = n!
(n r)!−

 = n
r

n!r! . C r!
r!(n r)!

= ×
−

Case II: When repetition of objects is allowed.
Number of permutation = 

times

...


r

n n n n× × × ×  = nr, because now each of the vacancies can be filled  

up in n ways.

Notes:

 • The word indicating permutation are arrangement, standing in a line, seated in a row, problems on 
digits, word formation, rank of word, number of vectors joining given points and number of greetings 
sent among a group etc.

 • The number of permutations of n distinct objects taken all at a time = n!.

 • The number of all permutations of n different object taken r at a time, when a particular set of k objects 
is to be always included in each arrangement is r! n–kCr–k.

 • Number of permutations of n different things, taken all at a time, when r specified things always 
remain together is r!(n – r +1)!.
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 • Number of permutations of n different things, taken all at a time, when r specified things never occur 
together is n! – r!(n – r +1)!.

 • The number of permutations of n different things, taken all at a time, when no two of the r particular 
things come together is n–r+1Cr (n – r)! r!.

6.5  Permutation oF identical objects  
(taking all oF them at a time)

Number of permutations (N) of ‘n’ things taken all at a time when ‘p’ are of one kind, ‘q’ of a second kind, 

‘r’ of a third kind and so on is given by n!N
p!q!r!

=

Explanation let N be the required number of permutations. From any of these, if the p like things 
were different we could make p! new permutations. Thus if the p like things were all different, we would 
have got N(p!) new permutations. Similarly, if the q like things were different, we would get N (q!)  
new permutations from each of the second set of permutations.

Thus if the p like things and the q like things were all different, we would have got N.p!q!  
permutations in all. The process is continued untill all the sets of like things are different, and we then get 
the number of permutations of n things taken all at a time when they are all different (which is n!)

\ N.p!.q!.r !... n!=   ⇒ n!N
p!q!r!

=

6.6 rank oF words

When all the letters of a word are arranged in all possible ways to form different words and the words 
formed are further arranged as per the order of ordinary dictionary, then the position occupied by that 
word is called as its rank. e.g., rank of the word MAT is 3 because it occupied third position in the alpha-
betical list (AMT, ATM, MAT, MTA, TAM, TMA) of words formed using letters A, M, T.

Shortcut to Find Rank of a Word Example Banana Example Large

1.  Write the letters of the word in alphabetical 
order

AAABNN A E G L R

2.  Pick the letters one-by-one in the order in 
which they are heard while speaking.

B, A, N, A, N, A L, A, R, G, E

3.  For each of the letters in this order  
using representation in Step (1) find 

n

number of letter in left on n
x

p!q!
=

  
p, q are number of identical letters. 

Cross the letters as done with it.

1
3x AAABNN

3!2!
= →

x2 = 0  → AANN

3
2x AAN

2!2!
= →

x4 = 0
x5 = 1 → A

1x 3 AEGER= →

2x 0 AEGER= →

3x 2 EGR= →

x4 = 1

Rank = (x1)5! + (x2)4! + (x3)3! + (x4)2! + x5! + 0! 5! 3 3! 2 1 1 0! 34
3!2! 2!2!
× ×

+ + × + =
Rank 3 × 4! + 0  
× 3! + 2.2! + 1.1! 
+ 0! = 78
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6.7 circular Permutation

The arrangement of objects around a circle is called, ‘circular permutation’. Two circular permutations are 
called 'identical' iff one of them can be super imposed on the other by a suitable rotation without overturn-
ing and without changing the relative position of object. e.g., following 5 circular permutations are identical

  

 

6.7.1 Circular Permutation of n Objects
When ‘n’ distinct objects (A1, A2, A3,..., An) are to be arranged around a circle, then each circular  
arrangement generates ‘n’ number of distinct linear arrangements by rotating the objects around the  

circle by 
0360

n
 
 
 

 at a time (keeping their relative position fixed).

  
⇒ Each circular array generates ‘n’ linear permutation.
 Let the total number of circular array be x.

⇒ Number of linear arrays = nx  ⇒ nx = n! ⇒ n!x = n 1!
n

= −

Remark:
 • As in circular permutation (unlike linear permutations) there is no initial and terminal position 

therefore fixing the position of one object around the circle its position acts as a terminal, consequently 
the remaining (n – 1) positions become as distinct as in linear permutations. Therefore, rest of (n – 1) 
object can be arranged in these position in (n – 1)! ways.
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Explanation:
In a circular permutation the relative position among the things is important whereas the place of a thing 
has no significance. Thus, in a circular permutation the first thing can be placed anywhere. This operation 
can be done only in one way, then relative order begins. Thus the ways for performing remaining parts of the 
operation can be calculated just like the calculation of linear permutation for an example to place 8 different 
things round a circle, first we place any one thing at any place, there will be only one numbers of ways = 7!. 
Thus, required number of circular permutations if 7!.

 • Since each circular arrangement has its unique counter-clockwise arrangement therefore, the number 

of clockwise array = number of counter-clockwise arrays = −( n 1)!
2

.

 • In a garland of flowers or a necklace of beads (since the overturning of permutations is possible). It is 
difficult to distinguish clockwise and anti-clockwise orders of things, so a circular permutation under 
both these orders (the clockwise and anti-clockwise) is considered to be the same.

  Therefore, the number of ways of arranging n beads along a circular wire is −( n 1)!
2

.

 • The total number of circular arrangements of n distinct objects taken r at a time is.

   (i) − =
n

n r
r

P
C ( r 1)!

r
, when clockwise and anticlockwise orders are treated as different.

  (ii) − =
n

n r
r

P1
C ( r 1)!

2 2r
, when the above two orders are treated as same.

6.8 number oF numbers and their sum

Case I: Number of r digit numbers formed using n digits {D1, D2, ..., Dn} when repetition allowed:
 • Number of numbers = nr

 • Sum of all numbers = 
r r

r 1
k

k 1

10 1 . D .n
9

−

=

 −  
   

  
∑

Proof : When all the numbers formed are arranged vertically for summation. Any digit gets repeated nr–1 
times in each column keeping a particular digit say Dk

 
fixed at some place out of r, then remaining (r – 1) 

places can be arranged using n digits in nr–1 ways.

Summation of digits in any column = sum of all digits × repetition of digit ( )
n

r 1
k

k 1

D n −

=

 
 
 
∑ .

 ⇒ Sum of all numbers ( )
n

r 1
k

k 1

D n −

=

 
 
 
∑  (1 + 10 + 102 + … + 10r–1)

Case II: Number of r digit numbers formed using n digits {D1, D2, ..., Dn} when repetition not allowed

 • Number of numbers = 
n

rP ; if r n
0; if r n

 ≤
 >

.

 • Sum of all numbers = 
r r

n 1
k r 1

k 1

10 1 . D . P
9

−
−

=

 −  
   

  
∑ .

Proof: When all the numbers formed are arranged vertically for summation. Any digit gets  
repeated n–1Pr–1

 
times in each column keeping a particular digit, say Dk

 
fixed at some place out of r,  

then remaining (r – 1) places can be arranged using n – 1 digits in n–1Pr–1 ways.
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Summation of digits in any column = sum of all digits × repetition of digit = −
−

=

 
 
 
∑

n
n 1

k r 1
k 1

D . P .

⇒ Sum of all numbers = ( )
n

n 1
k r 1

k 1

D P−
−

=

 
 
 
∑ (1 + 10 + 102 + … + 10r–1) = 

r r
n 1

k r 1
k 1

10 1 . D . P
9

−
−

=

 −  
   

  
∑ .

6.8.1 Divisor of Composite Number
A natural number x = pa qb rg is called divisor of N = pa . qb . rc iff N is completely divisible by x.  
For Example, when all the prime factors of x are present in N which is possible only if 0 ≤ a ≤ a; 0 ≤ b ≤ b 
and 0 ≤ g ≤ c, where a, b, g ∈ ℕ ∪ {0}.

 • Set of all divisors of N is given as: {x : x = pa qb rg ; where 0 ≤ a ≤ a; 0 ≤ b ≤ b; 0 ≤ g ≤ c}.

 • Number of divisor: number of divisors = n{(a, b, g) : 0 ≤ a ≤ a; 0 ≤ b ≤ b; 0 ≤ g ≤ c}
= n{a : 0 ≤ a ≤ a} × n{b : 0 ≤ b ≤ b} × n{g : 0 ≤ g ≤ c} = (a + 1) (b + 1) (c + 1).

 • Number of divisors are given by number of distinct terms in the product
= (1+ p + p2 + .... + pa) (1+ q + q2 + .... + qb) (1+ r + r2 + .... + rc)
= (a + 1) (b + 1) (c + 1).... (which includes 1 and the N it self)

6.8.2 Sum of Divisor

Since each individual divisor is given as terms of the expansion, (p0 + p1 + p2 + .... + pa) (1+ q + q2 + .... + qb) 
(1+ r + r2 + .... + rc) therefore the sum of all divisors is = 1 + p + q + r + p2 + q2 + r2 + pq + pr +......+ pa . qb . rc

= 
a 1 b 1 c 1p 1 q 1 r 1
p 1 q 1 r 1

+ + +   − − −
   − − −   

 ....(i)

Notes:
 • Improper/Proper divisors of N = pa . qb . rc: When a = b = g = 0

  ⇒  x = 1 which is divisor of every integer and a = a, b = b and g = c, then x becomes number N itself. 
These two are called ‘improper divisor.’

  ⇒ The number of proper divisors of N = (a + 1).(b + 1).(c + 1) – 2.

 • If p = 2, then number of even divisors = a(b + 1)(c + 1), number of odd divisors = (b + 1)(c + 1).

6.8.3 Number/Sum of Divisors Divisible by a Given Number
If x = pa . qb . rg is divisor of N = pa . qb . rc and completely divisible by 1 1 1y =  p .q .r .α β γ

 • Set of all divisors of N is given as: { x : x = pa qb rg ; where a1 ≤ a ≤ a; b1 ≤ b ≤ b; g1 ≤ g ≤ c}.
 ⇒ Number of divisors = n{(a, b, g)}: {a1 ≤ a ≤ a; b1 ≤ b ≤ b; g1 ≤ g ≤ c} = (a – a1 + 1). (b – b1 + 1)  

(c – g1 + 1).

6.8.4 Factorizing a Number into Two Integer Factors
If x and y be two factors of the Natural Number N = pa . qb . rc : N = x.y

⇒ x and y are divisors of N.
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Case I: If number N is not a perfect square:

Number of two factor products (number of total divisors)= 
2

Case II: If number N is a perfect square:

Number of two factor products (number of total divisors) + 1= 
2

Case III: Number of integer solution of equation x.y = pa . qb . rc . sd = 2 × total number of divisor

Since number of natural number solution of the equation:

x.y = pa . qb . rc . sd = Number of divisors = (a + 1) (b + 1) (c + 1) (d + 1)

⇒ Number of integer solution of the equation = 2(a + 1) (b + 1) (c + 1) (d + 1)

6.9 combination

Combination of n objects taken r at a time is denoted as nCr and defined as n
r

n!C
r!(n r)!

=
−

.

6.9.1 Properties of Combinations

 1. The number of combination of n different things taken r at a time is denoted by nCr or C(n, r)  

or 
n
r
 
 
 

 and it is empirically calculated as: =
−

n
r

n!
C

r!(n r)!
; (0 ≤ r ≤ n); where n ∈ N and r ∈ W 

{whole numbers} = 0 (if r > n).
 2. nCr is always an integer.
  The following important conclusions can be made out of the above statement:
  (a) Product of r consecutive integers is always divisible by r!

   ∵	 n
r

n(n 1)(n 2)(n 3).....(n r 1)C I
r!

− − − − +
= ∈

   Clearly, the numerator is completely divisible by r!

  (b) 0! = 1; n n
0 n

n!
C C 1

n! 0!
  = = = 
  

and nC1 = n

  (c) k! = ∞ if k < 0 (Think why?)
 3. nCr = nCn–r this is simply selection of r things means rejection of n – r at the same time.
 4. nCx + nCy ⇒ x = y or x + y = n
 5. nCr + nCr–1 = n+1Cr (1 < r < n) this is also known as Pascal Rule.
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 6. r.nCr = n.n–1Cr–1
 ⇒ n n 1 n 2

r r 1 r 2
n n n 1C ( C ) C ...
r r r 1

− −
− −

− = = = − 
  Thus we can work out as:

Choosing r MP’s from n citizens (nCr ways)
Choosing 1 PM from r Choosen MP’s (r ways)
r × rCr ways
MP : Member of Parliament

≡
Choosing 1 PM from n citizens (n ways) 
and Choosing remaining (r–1) MP’s from
remaining (n – 1) citizens (n–1Cr–1) ways
MP : Prime Minister

 7. n n n 2
r r 1 r 2

r 1 (r 1(r 2)C C . C
n 1 (n 1)(n 2)

+
+ +

+ + + = = + + + 

 8. nCr 
rCs = nCs . 

n–sCr–s; (n ≥ r ≥ s). This we can work out as

Choosing r MP’s (nCr ways) and
Choosing s ministers out of r
MP’s (rCs ways) nCr × rCs

≡
Choosing s ministers (rCs ways) and
Choosing remaining (r – s) MP’s out of
remaining (n – s) citizens nCs × n–sCr–s

 9. 
n

r
n

r 1

C n r 1
C r−

− +
=

 10. nC0 + nC1 + nC2 + .... + nCn = 2n this is selection of any number of objects out of given n objects. For 
each object we have only two possibilities selection or rejection which is 2n.

 11. nC0 + nC2 + nC4 + ...= nC1 + nC3 + nC5 + …. = 2n–1.
 12. nCm + n–1Cm + n–2Cm + ... + mCm = n+1Cm+1.

6.9.2 Restricted Combinations

The number of combinations of n different things taking r at a time
 (a) When p particular things are always to be excluded = n–pCr.
 (b) When p particular things are always to be included = n–pCr–p.
 (c) When p particular things are always included and q particular things are always excluded = n–p–qCr–z.

6.9.3 Combination of Objects Taking any Number of Them at a Time

 • Number of selections of objects when any number of them can be selected is given as  
nC0 + nC1 +....... + nCn = 2n

Where nCr corresponds to the case when r objects are selected out of n different objects. In above case 
r varies from 0 to n. The right hand side value 2n can be explained as number of ways of dealing with 
all n objects each in exactly two ways either selected or rejected.

 • Number of selection of objects (at least one) out of n different objects  
n

n n n n n
r 1 2 n

r 0

C C C ... C 2 1
=

= + + + = −∑ .

 • Number of selection of atleast two object out of n = 2n–nC0 – nC1.
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6.9.4  Combination when Some Objects are Identical  
(Taking any Number of Them at a Time)

 1. Combination when some objects are identical. The total number of ways in which it is possible to 
make a selection taking some or all out of (p + q + r) things, where p are alike of the first kind, q are 
alike of the second kind and r alike of the third kind and s are different = (p + 1) (q + 1) (r + 1) 2s ways

  Explanation: Out of p alike things, we may select none or one or two or three, .... or all p. Hence 
they may be disposed off in (p + 1) ways. Similarly, q alike things may be disposed of in (q + 1) ways, 
similarly for r. And s different things may be disposed of in 2s ways. (This includes the case in which 
all of them are rejected).

  • Number of ways (if at least one object to be selected) = (p + 1) (q + 1) (r + 1) 2s –1.
  • Number of ways (if at least one from s different object to be selected) = (p + 1) (q + 1)(r + 1) (2s –1).
  • Number of ways (if at least one object of each identical type lot is to be selected) = (p . q . r)2s.

6.9.5  Combination when Some Objects are Identical  
(Taking specific number of them at a time)

Case 1: If a group has n things in which p are identical, then the number of ways of selecting r things 

from a group is 
r

n p
k

k 0

C−

=
∑ or 

r
n p

k
k r p

C−

= −
∑  according as r ≤ p or r > p.

Explanation: It can be obtained by assuming the selection of k distinct object and rest r – k objects  
identical and taking the values of variable k from 0 to r (or p) whichever is less.

For an instance when no object is selected from identical objects (k = 0), then the number of  
selection = n–pCr.

And when one object is selected from identical objects (k = 2), then the number of selection = n–pCr–1
Similarly, for k = 3 the number of selection = n–pCr–2 and so on.

Notes:

 (i) The number of ways of selecting r objects out of n identical objects is 1.

 (ii) The number of ways of selecting any number of objects out of n identical objects is n + 1.

Case 2: If there are p1 objects of one kind, p2 objects of second kind, ...., pn objects of nth kind then the 
number of ways of choosing r objects out of these (p1 + p2 + ... + pn) objects

= coefficients of xr in 1 2 np p p2(1 x ... x )(1 x ... x )...(1 x ... x )+ + + + + + + + +
If one object of each kind is to be included in such a collection, then the number of ways of  
choosing r objects.

= coefficients of xr in the product 1 2 np p p2(x ... x )(x ... x )...(x ... x )+ + + + + +
This problem can also be stated as 
Let there be n distinct objects x1, .... xn; x1 can be used at the most p1 times, x2 at the  

most p2 times, ..., xn at the most pn times, then the number of ways to have r things.

Renarks:
 • Given n distinct points in a plane, no three of which are collinear, then the number of line segments 

they determine is nC2.
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 • The number of diagonals in n-polygon (n sides closed polygon) is nC2 – n. 

  If in which m points are collinear (m ≥ 3), then the number of line segments is (nC2 – mC2) + 1.

 • Given n distinct points in a plane, no three of which are collinear then the number of triangles  
formed = nC3. If in which m points are collinear (m ≥ 3), then the number of triangles is nC3 – mC3.

 • Given n distinct points of which no three points are collinear:

    (i) Number of straight lines = nC2  

   (ii) Number of triangles = nC3.

  (iii) Number of quadrilaterals = nC4.

  (iv) Number of pentagon = nC5.

 • Given n points in a plane out of which r of them are collinear. Except these r points no other three 
points are collinear. Then number of different geometric figures constructed by joining these points are 
expressed as below.

    (i) number of line segments (L.S.) = nC2

   (ii) number of directed line segments vectors (D.L.S.) = nP2

  (iii)  number of lines formed  
= nC2 – rC2 + 1 or  n–rC2 + (n – r)r + 1.

  (iv)  number of triangles formed  
= nC3 – rC3 or  n–rC3 + (n – rC2)r + (n–r) rC2.

  (v)  number of quadrilateral  
= nC4 – (rC4 + (n – r) rC3 )) or n–rC4 + n–rC3 . 

rC1 + n–rC2.
rC2.

  (vi)  number of rectangles/squares formed put of m 
horizontal lines and n vertical lines such that distance 
between conjugative line both set of parallel lines is 
unity.

 • Given A1, A2, A3,...., An are horizontal lines B1, B2 B3, .... Bm 
are vertical lines as shown in figure:

    (i)  Number of rectangles = number of ways of  

choosing two lines from each set = ( )i j k ln A A and B B  

= nC2 × mC2.  
   (ii)  Number of square of size k × k = number of 

ways of choosing two lines i j jA A + horizontal  

line = ( ) ( )i j k j j k

1 i n k 1 j m k

n A A n B B+ +

≤ ≤ − ≤ ≤ −

×
 

  = (n – k) (m – k). 

  (iii) Total number of squares = ( ) ( )
k r

k 1

n – k  m – k
=

=
∑  where r = min {m – 1, n – 1}.

6.10 distribution

6.10.1 Distribution Among Unequal Groups

To find the number of ways in which m + n things can be divide into two groups containing  
m and n things respectively. This is clearly equivalent to finding the number of combinations of  
m + n things taking m at a time, for every time we select a group of m things we leave a group of n  
things behind.

Thus, the required number = (m n)!
m!n!
+ .
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6.10.2  To Find the Number of Ways in Which the m + n + p Things  
Can be Divided into Three Groups Containing m, n, p  
Things Separately

First divide the m + n + p things into two groups containing m and n + p things respectively; the number 

of ways in which this can be done is m+n+pCm = (m n p)!
m!(n p)!
+ +

+
. And the number of ways in which the group of  

n + p things can be divided into two groups containing n and p things respectively is n p
n

(n p)!C .
n!p!

+ +
=  Hence 

the number of ways in which the subdivision into three groups containing m, n, p things can be made follows:

6.10.3 Distribution Among Equal Groups

When name of groups is not specified: If 2m objects are to be distributed among two equal groups  

containing m objects each. Then it can be done in (m m)!
m! m!2!

+  = 2

2m!
(m!) 2!

 because each division it is possible 

to arrange the groups into 2! ways without obtaining new distribution.
Explanation: Then we divide the total number of arrangements obtained normally by k! where k is | 

number of groups among which the objects are distributed. If we put n = p = m we obtain
3m!

m! m! m!
;  

but since this include 3! times the actual number of divisions because of the arrangement of groups among 
them selves, therefore the number of different ways in which subdivision into three equal groups can  

be made is =
3m!

m!m! m! 3!
.

6.10.4 When Name of Groups Specified 
If the name of groups among which the objects are distributed are specified (e.g., distributing books to 
students, dividing soldiers into regiment, distributing students into sections etc.) If we put n = p = m ,  

we obtain 3m!
m! m! m!

.

 • The number of ways of dividing pq objects among p groups of same size, each group containing q 

objects = p

(pq)!
(q!) .p!

.

 • The number of ways of distributing pq objects among n people, each person getting q  

objects = p

(pq)!
(q!)

.

6.11 multinomial theorem

The expansion of [x1 + x2 + x3 + .... + xn]r; where n and r are integers (0 < r ≤ n) is a homogenous  

expression in x1, x2, x3, ... xn and given as: [x1+ x2 + x3 + .... + xn]r = 31 2 n
1 2 3 n

1 2 3 n

r ! x x x ....x
! ! !...... !

λλ λ λ 
  λ λ λ λ 

∑ ;  
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(where n and r are integers 0 < r ≤ n and l1 , l2, ..., ln are non-negative integers). Such that l1 + l2 + ......+  
ln = r (valid only if x1, x2 , x3 ,..., xn are independent of each other) coefficient of 31 2

1 2 3x x x ....λλ λ  = total number 
of arrangements of r objects out of which l1 number of x1’s are identical l2 number of x2’s are identical and 

so on = 1 2 3 n

1 2 3 n 1 2 3 n

( ...... )! (r)!
! ! !...... ! ! ! !...... !

λ +λ +λ + λ
=

λ λ λ λ λ λ λ λ

6.11.1 Number of Distinct Terms
Since (x1 + x2 + x3 + .... + xn)r is multiplication of (x1 + x2 + x3 + .... 
+ xn)r times and will be a homogeneous expansion of rth degree in 
x1, x2, ...xn .So in each term sum of powers of variables must be r.

So number of distinct terms will be total number of non-
negative integral solution of equation is l1 + l2 + l3 + ... + ln = r = Number of ways of distributing r identi-
cal objects among n persons = number of ways of distributing r balls among n people

= number of arrangements of r balls and n – 1 identical separators = (n 1 r)!
(n 1)!r!
− +
−

= n+r–1Cr = n+r–1Cn–1.

6.12 dearrangements and distribution in Parcels

Any change in the order of the things in a group is called a derangement. If n things are arranged in a row, 
the number of ways in which they can be dearranged so that none of them occupies its original position  

is n1 1 1 1 1n! 1 ...... ( 1)
1! 2! 3! 4! n!

 − + − + − + − 
 

 • If r objects go to wrong places out of n thing, then (n – r) objects go to their original place. If 
Dn → number of group, and if all objects go to the wrong places and Dr → number of 
ways if r objects go to wrong places out of n, then (n – r) objects go to correct places.  

Then Dn = nCn–r Dt; where Dr = r1 1 1 1 1r! 1 ...... ( 1)
1! 2! 3! 4! r!

 − + − + − + − 
 

 • Derangement of a given n-permutations −

−


1 2 3 n 1 n

n permutation

P P P ...P P  is an arrangement in which at least one  

object does not occupy its assigned position. ⇒ Total number of dearrangements = n! – 1.
 • Let Ai denotes set of arrays when ith objects occupies ith place n(Ai) = (n – 1)!

⇒ n(A1 ∪ Aj) = (n – 2)!
⇒  Number of arrays in which atleast one object occupies its correct place = n(A1 ∩ A2 ∩ A3 …. ∩ 

An) = Σn(Ai) – Σn(Ai ∪ Aj) + Σn(Ai ∪ Aj ∪ Ak) – …. + (–1)n–1 n (A1 ∪ A2 ∪ A3 …. ∪ An)
= nC1 (n – 1)! – nC2(n – 2)! + nC3 (n – 3)! – ….. + (–1)n–1 . nCnO!

= −
− + − +

nn! n! n! ( 1) n!....
1! 2! 3! n!

 = 
− −

− + − + 
 

n 11 1 1 ( 1)n! ....
1! 2! 3! n!

the total number of dearrangement in which no object occupies its correct place = n! – n  
(A1 ∩ A2 ∩ A3 …. ∩ An)

= 
− −

− − + + 
 

n 11 1 1 ( 1)n! n! ....
1! 2! 3! n!

 = 
  −
− + − + +     

n1 1 1 1 ( 1)n! 1 ...
1! 2! 3! 4! n!

= 
 −

− + + 
 

n1 1 1 ( 1)n! ....
2! 3! 4! n!

 
(n 1)separators

| | | |........ |
−


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 • Number of dearrangement in which exactly r objects occupy their assigned places

 = 


−

−

 −
× − − + − + − 


n r
n

r

choo singr objects
and placing them Arrangingg n r objects so that noneat their correct places oft hem occupies their assigned positions

1 1 1 ( 1)C (n r)! ...
2! 3! 4! (n r)!

6.13 distribution in Parcels

6.13.1 Distribution in Parcels When Empty Parcels are Allowed 
The number of ways in which n different objects can be distributed in r different groups (here distributed 
means order of objects inside a group is not important) under the condition that empty groups are allowed 
= rn. Take any one of the objects which can be put in any one of the groups in r ways. Similarly, all the 
objects can be put in any one of groups in r number of ways. So number of ways = r . r . r......n times = rn  

= coefficient of xn in n! (ex)r = 
r 1

k r n
k

k 0

( 1) . C (r k)
−

=

− −∑ .

6.13.2 When at Least One Parcel is Empty
Number of distribution when at least one parcel is empty:

= n (A1 ∪ A2 ∪ A3 ….. ∪ Ar) {Ai is the set of distribution when ith parcel is empty}
n(Ai) = (r – n)n  and n (Ai ∩ Aj) = (r – 2)n 
= Sn (Ai) – S n (Ai ∩ Aj) + Sn (Ai ∩ Aj ∩ Ak) + …. + (–1)r–1 n (A1 ∩ A2 ∩ .... ∩ Ar)

= nC1 (r –1)n  – rC2(r –2)n  + rC3 (r – 3)n + ……. +(–1)r–1 rCr–1  = 
r 1

k 1 r n
k

k 1

( 1) C (r k)
−

−

=

− −∑
The number of ways in which n different objects can be arranged in r different groups:
= n r 1

r 1n! C+ −
−×  if empty groups are allowed = n 1

r 1n! C−
−×  if empty groups are not allowed 

The number of ways in which n different things can be distributed into r different places, blank roots being 
admissible is rn 

.

Remarks
Given two sets A = {a1, a2,...., an} and B = {b1, b2, b3,..., br}, then following holds good.

 (i) n(A × B) = n(A) . n(B) = n × r.
 (ii) Number of relation R : A → B = number of subsets of A × B = 2n.r.
 (iii) Number of functions  f : A → B = number of ways of distributing n elements 

(objects) of A in to elements (boxes) of B = rn.
 (iv) Number of injective functions  f : A → B = number of permutations of n elements 

of A (objects) over r elements of B (places) =
r

nP if r n

0 if r n

 ≥


<
.

 (v) Number of into (non surjective) functions  f : A → B = number of ways of distributing n elements 

(objects) of A into elements (boxes) of B such that atleast one box is empty = 
r 1

k 1 r n
k

k 1

( 1) . C ( r k )
−

−

=

− −∑ .

 (vi) Number of on-to (surjective) functions  f : A → B = number of ways of distributing n elements (objects) 

of A in to elements (boxes) of B, such that no box is empty= 
r 1

k r n
k

k 0

( 1) . C ( r k )
−

=

− −∑ .
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6.14 exPonent oF a Prime in n!

Exponent of prime p in n! is denoted by Ep (n!); where n is natural number, so the last integer  
amongest 1, 2,.....,(n - 1)n which is divisible by p is [n/p] p when [n] ≤ x.

 ⇒ 
s

p 2

n n nE (n!) ...
p p p
     

= + + +     
     

, where s is the largest number, such that ps ≤ n < ps+1

6.14.1 Exponent of Prime ‘P’ in n! 

Exponent of prime number ‘p’ in n! is defined as power of p when n! is factorized into prime factor using 
unique factorization theorem and it is denoted as Ep (n!).

Theorem: The largest natural number divisible by p is less than or equal to ‘n’ is given as n p.
p
 
 
 

Proof: Division algorithm as n ≤ p, thus there exist:
Two natural number q and r, such that n = p.q + r 

where 0 ≤ r ≤ p ⇒ n rq
p p
= + ; where r0 1

p
≤ <

q is called integer part of number n/p, denoted as n rand
p p
 
 
 

is known as fractional part of  

number n/p denoted as n .
p

 
 
 

 Observe the situation on ℝ number lies.

Conclusion! i.e., n
p
 
 
 

 is the quotient in the division of n by p.

Theorem: The number of natural numbers divisible by p less than or equal to ‘n’ is equal to n
p
 
 
 

 ⇒ The number of natural numbers divisible by p2 less than or equal to ‘n’ is equal to 2

n
p
 
 
 

 ⇒ The number of natural numbers divisible by p3 less than or equal to ‘n’ is equal to 3

n
p
 
 
 

.

 \ Exponent of prime p in n!  p 2 3

n n nE (n!) ...
p p p
     

= + + +     
     

.


