PARABOLA DPP - 1

1. The equation $x^2 - 2xy + y^2 + 3x + 2 = 0$ represents.

(A) A parabola (B) An ellipse (C) A hyperbola

(D) A circle

2. The centre of $14x^2 - 4xy + 11y^2 - 44x - 58y + 71 = 0$ is -

(A)(2,3)

(B) (2, -3) (C) (-2,3) (D) (-2, -3)

3. The equation of parabola whose focus is (5,3) and directrix is 3x - 4y + 1 = 0, is

 $(A) (4x + 3y)^2 - 256x - 142y + 849 = 0 (B) (4x - 3y)^2 - 256x - 142y + 849 = 0$

(C) $(3x + 4y)^2 - 142x - 256y + 849 = 0$ (D) $(3x - 4y)^2 - 256x - 142y + 849 = 0$

4. The point on the parabola $y^2 = 18x$, for which the ordinate is three times the abscissa, is

(A) (6,2)

(B) (-2,-6) (C) (3,18)

(D)(2,6)

The equation of the directrix of parabola $5y^2 = 4x$ is 5.

(A) 4x-1=0 (B) 4x+1=0 (C) 5x+1=0 (D) 5x-1=0

6. Focus and directrix of the parabola $x^2 = -8av$ are

(A) (0,-2a) and y = 2a

(B) (0,2a) and y = -2a

(C) (2a,0) and x = -2a

(D) (-2a, 0) and x = 2a

7. The equation of the parabola with its vertex at the origin, axis on the y -axis and passing through the point (6,-3) is

(A) $y^2 = 12x + 6$ (B) $x^2 = 12y$ (C) $x^2 = -12y$ (D) $y^2 = -12x + 6$

Vertex of the parabola $x^2 + 4x + 2y - 7 = 0$ is 8.

(A) (-2, 11/2) (B) (-2, 2) (C) (-2, 11)

(D)(2,11)

Integer Type

Find the point on the parabola $y^2 = 8x$. Whose distance from the focus is 8, has x -coordinate as

The parabola $y^2 = 4ax$ passes through (-3,2), if the length of its latus rectum is in the form of 10. a/b (where a and b are coprime number)

(D) $\frac{1}{4}$

4.	$x-2=t^2, y=2t$ are the parametric equations of the parabola					
	(A) $y^2 = 4x$	(B) $y^2 = -4x$	(C) $x^2 = -4y$	(D) $y^2 = 4(x-2)$		
5.	The equation of a parabola is $y^2 = 4x.P(1,3)$ and $Q(1,1)$ are two points in the x y - plane. Then, for the parabola (A) P and Q are exterior points (B) P is an interior point while Q is an exterior point (C) P and Q are interior points (D) P is an exterior point while Q is an interior point					
6.	The ends of a line segment are $P(1,3)$ and $Q(1,1),R$ is a point on the line segment PQ such that $PQ:QR=1:\lambda$. If R is an interior point of the parabola $y^2=4x$, then					
	(A) $\lambda \in (0,1)$	(B) $\lambda \in \left(-\frac{3}{5},1\right)$	$(C) \lambda \in \left(\frac{1}{2}, \frac{3}{5}\right)$	(D) None of these		
7.	The straight line $y=2x+\lambda$ does not meet the parabola $y^2=2x$, if					
	$(A) \qquad \lambda < \frac{1}{4}$	(B) $\lambda > \frac{1}{4}$	(c) $\lambda = 4$	(D) $\lambda = 1$		
8.	The Focus of the parabola $4y^2 - 6x - 4y = 5$ is					
	(A) $(-8/5,2)$	(B) $(-5/8,1/2)$	(C) $(1/2,5/8)$	(D) $(6/8, -1/2)$		
9.	If the parabola $y^2 = 4ax$ passes through the point $(1,-2)$, then the tangent at this point is					
Sol.		(B) $x - y - 1 = 0$	(C) $x + y + 1 = 0$	(D) $x - y + 1 = 0$		
10.	The equation of the tangent to the parabola $y^2 = 16x$, which is perpendicular to the line $y = 3x + 7$ is					
	(A) $y 3x + 4 = 0$	(B) $3y x + 36 = 0$	(C) $3y + x - 36 = 0$	(D) $3y + x + 36 = 0$		

The equation of the directrix of the parabola $y^2 + 4y + 4x + 2 = 0$ is

Equation of the parabola with its vertex at (1,1) and focus (3,1) is

(B) 8

(A) x = -1 (B) x = 1 (C) $x = \frac{-3}{2}$ (D) $x = \frac{3}{2}$

(C) 4

(B) $(y-1)^2 = 8(x-3)$

(D) $(x-3)^2 = 8(y-1)$

The line x-1=0 is the directrix of the parabola $y^2-kx+8=0$. Then one of the values of k is

1.

2.

3.

(A) $\frac{1}{8}$

(A) $(x - 1)^2 = 8(y - 1)$

(C) $(y-1)^2 = 8(x-1)$

	contact is					
	(A) $\left(\frac{a}{2}, \frac{a}{2}\right)$	(B) $\left(\frac{a}{4}, \frac{a}{4}\right)$	(C) $\left(\frac{a}{2}, \frac{a}{4}\right)$	(D) $\left(\frac{a}{4}, \frac{a}{2}\right)$		
2.	The line $x-y+2=0$ touches the parabola $y^2=8x$ at the point					
	(A) (2, -4)	(B) $(1,2\sqrt{2})$	(C) $(4,-4\sqrt{2})$	(D) (2,4)		
3.	The equation of the tangent to the parabola at point $\left(a/t^2,2a/t\right)$ is					
	$(A) ty = xt^2 + a$	(B) $ty = x + at^2$	(C) $y = tx + at^2$	(D) $t = tx + (a/t^2)$		
4.	Two tangents are drawn from the point (-2,-1) to the parabola $y^2=4x$. If α is the angle between these tangents, then $\tan\alpha=$					
	(A) 3	(B) 1/3	(C) 2	(D) 1/2		
5.	If $\left(\frac{a}{b}\right)^{1/3} + \left(\frac{b}{a}\right)^{1/3} = \frac{\sqrt{3}}{2}$, then the angle of intersection of the parabola $y^2 = 4ax$ and $x^2 = 4by$					
	a point other than t (A) $\pi/4$	102000000 00	(C) $\pi/2$	(D) None of these		
6.	The equation of the common tangent touching the circle $(x-3)^2+y^2=9$ and the parabola $y^2=$ above the x -axis, is					
	50 201—40		(C) $\sqrt{3}y = x + 3$	(D) $\sqrt{3}y = -(3x+1)$		
7.	If $a \ne 0$ and the line $2bx + 3cy + 4d = 0$ passes through the points of intersection of the parabol $y^2 = 4ax$ and $x^2 = 4ay$ then					
	(A) $d^2 + (3b - 2c)^2 =$	0	(B) $d^2 + (3b + 2c)^2 = 0$			
	(C) $d^2 + (2b - 3c)^2 = 0$		(D) $d^2 + (2b+3c)^2 = 0$			
8.			/ ² = 12x, then k is (C) -9			
9.	The equation of nor	mal at the point $\left(\frac{a}{4}\right)$	u to the parabola y^2	$a^2 = 4ax$, is		

If the tangent to the parabola $y^2 = ax$ makes an angle of 45° with x -axis, then the point of

The point on the parabola $y^2 = 8x$ at which the normal is parallel to the line x - 2y + 5 = 0 is 10.

(A) 4x+8y+9a=0 (B) 4x+8y-9a=0 (C) 4x+y-a=0 (D) 4x-y+a=0

(A) (-1/2,2) (B) (1/2,-2) (C) (2,-1/2) (D) (-2,1/2)

PARABOLA DPP - 4+5

	(C) $x^2 - y^2 - 6ay + 9a^2 = 0$		(D) None of these			
2.	The normals at three points P,Q,R of the parabola $y^2 = 4ax$ meet in (h,k) , the centroid of triangle PQR lies on					
	(A) x = 0	(B) $y = 0$	(C) $x = -a$	(D) $y = a$		
3.	If two of the three feet of normals drawn from a point to the parabola $y^2=4x$ be (1,2) and (1,-2) then the third foot is					
	(A) $(2,2\sqrt{2})$	(B) $(2,-2\sqrt{2})$	(C) (0,0)	(D) None of these		
4.	If the points $\left(au^2,2au\right)$ and $\left(av^2,2av\right)$ are the extremities of a focal chord of the parabol					
	$y^2 = 4ax$, then					
	(A) $uv - 1 = 0$	(B) $uv + 1 = 0$	(C) $u + v = 0$	(D) $u - y = 0$		
5.	The locus of the midpoint of the line segment joining the focus to a moving point on the parabola $y^2 = 4ax$ is another parabola with the directrix					
	(A) x = -a	$(B) x = -\frac{a}{2}$	(C) $x = 0$	(D) $x = \frac{a}{2}$		
6.	The length of chord of contact of the tangents drawn from the point (2,5) to the parabola $y^2 = 8x$, is					
	$(A) \ \frac{1}{2} \sqrt{41}$	(B) $\sqrt{41}$	(C) $\frac{3}{2}\sqrt{41}$	(D) $2\sqrt{41}$		
7.	If b, k are the intercept of a focal chord of the parabola $y^2=4ax$, then K is equal to					
	(A) $\frac{ab}{b-a}$	(B) $\frac{b}{b-a}$	(C) $\frac{a}{b-a}$	(D) $\frac{ab}{a-b}$		
8.	The length of the su (A) 2	ub tangent to the para (B) 4	abola $y^2 = 16x$ at the (C) 8	point whose abscissa is 4, is (D) None of these		
9.	If P is a point on the parabola $y^2=4ax$ such that the subtangent and subnormal at P are equal then the coordinates of P are					
	(A) (a,2a) or (a, - 2a) (C) (4a,-4a) or (4a,4a)		(B) $(2a, 2\sqrt{2}a)$ or $(2a, -2\sqrt{2}a)$			
			(D) None of these			
10.	The pole of the line	The pole of the line $2x = y$ with respect to the purubola $y^2 = 2x$ is				
	(A) $\left(0,\frac{1}{2}\right)$	(B) $\left(\frac{1}{2},0\right)$	(C) $\left(0, -\frac{1}{2}\right)$	(D) None of these		

The equations of the normal at the ends of the latus rectum of the parabola $y^2 = 4ax$ are given by

(A) $x^2 - y^2 - 6ax + 9a^2 = 0$ (B) $x^2 - y^2 - 6ax - 6ay + 9a^2 = 0$

1.