SOLUTIONS OF TRIANGLE

NURTURE COURSE

CONTENTS

SOLUTIONS OF TRIANGLE

THEORY & ILLUSTRATIONS Page – 01
ELEMENTARY EXERCISE Page – 16
EXERCISE (O-1) Page – 18
EXERCISE (O-2) Page – 20
EXERCISE (S-1) Page – 22
EXERCISE (S-2) Page – 23
EXERCISE (JA) Page – 24
ANSWER KEY Page – 26

JEE (ADVANCED) SYLLABUS :

Solutions of Triangle : Relations between sides and angles of a triangle, sine rule, cosine rule, half-angle formula and the area of a triangle.

SOLUTIONS OF TRIANGLE

The process of calculating the sides and angles of triangle using given information is called solution of triangle.

In a \triangle ABC, the angles are denoted by capital letters A, B and C and the length of the sides opposite these angle are denoted by small letter a, b and c respectively.

1. SINE FORMULAE :

In any triangle ABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = \lambda = \frac{abc}{2\Delta} = 2R$$

where R is circumradius and Δ is area of triangle.

Illustration 1: Angles of a triangle are in 4 : 1 : 1 ratio. The ratio between its greatest side and perimeter is

(A)
$$\frac{3}{2+\sqrt{3}}$$
 (B) $\frac{\sqrt{3}}{2+\sqrt{3}}$ (C) $\frac{\sqrt{3}}{2-\sqrt{3}}$ (D) $\frac{1}{2+\sqrt{3}}$

Solution :

 \Rightarrow angles are 120°, 30°, 30°.

Angles are in ratio 4 : 1 : 1.

If sides opposite to these angles are a, b, c respectively, then a will be the greatest side.

Now from sine formula
$$\frac{a}{\sin 120^\circ} = \frac{b}{\sin 30^\circ} = \frac{c}{\sin 30^\circ}$$

 $\Rightarrow \frac{a}{\sqrt{3}/2} = \frac{b}{1/2} = \frac{c}{1/2}$
 $\Rightarrow \frac{a}{\sqrt{3}} = \frac{b}{1} = \frac{c}{1} = k \text{ (say)}$
then $a = \sqrt{3}k$, perimeter $= (2 + \sqrt{3})k$
 \therefore required ratio $= \frac{\sqrt{3}k}{(2 + \sqrt{3})k} = \frac{\sqrt{3}}{2 + \sqrt{3}}$ Ans. (B)
In triangle ABC, if $b = 3$, $c = 4$ and $\angle B = \pi/3$, then number of such triangles is -
(A) 1 (B) 2 (C) 0 (D) infinite
Using sine formulae $\frac{\sin B}{b} = \frac{\sin C}{c}$

Solution :

Illustration 2 :

$$\Rightarrow \quad \frac{\sin \pi/3}{3} = \frac{\sin C}{4} \Rightarrow \frac{\sqrt{3}}{6} = \frac{\sin C}{4} \Rightarrow \quad \sin C = \frac{2}{\sqrt{3}} > 1 \text{ which is not possible.}$$

Hence there exist no triangle with given elements.

Ans. (C)

1

node0.6\B0AH+A1\Kata\LEE(Advanced)\Nvurture\Waths \Sheet\SOT\Eng.p65

Illustration 3 :	The sides of a triangle are three consecutive natural numbers and its largest angle is twice								
Solution :	the smallest one. Determine the sides of the triangle. Let the sides be n, n + 1, n + 2 cms. i.e. $AC = n$, $AB = n + 1$, $BC = n + 2$ Smallest angle is B and largest one is A. Here, $\angle A = 2\angle B$ Also, $\angle A + \angle B + \angle C = 180^{\circ}$ $\Rightarrow 3\angle B + \angle C = 180^{\circ} \Rightarrow \angle C = 180^{\circ} - 3\angle B$ We have, sine law as,	$\frac{1}{B}$							
	$\frac{\sin A}{n+2} = \frac{\sin B}{n} = \frac{\sin C}{n+1} \implies \frac{\sin 2B}{n+2} = \frac{\sin B}{n} = \frac{\sin(180 - 3B)}{n+1}$								
	$\Rightarrow \frac{\sin 2B}{n+2} = \frac{\sin B}{n} = \frac{\sin 3B}{n+1}$ (i) (ii) (iii)								
	from (i) and (ii);								
	$\frac{2\sin B\cos B}{n+2} = \frac{\sin B}{n} \implies \cos B = \frac{n+2}{2n} \qquad (iv)$ and from (ii) and (iii);								
	$\frac{\sin B}{n} = \frac{3\sin B - 4\sin^3 B}{n+1} \implies \frac{\sin B}{n} = \frac{\sin B(3 - 4\sin^2 B)}{n+1}$								
	$\Rightarrow \frac{n+1}{n} = 3 - 4(1 - \cos^2 B) \qquad \dots $								
	from (iv) and (v), we get								
	$\frac{n+1}{n} = -1 + 4\left(\frac{n+2}{2n}\right)^2 \implies \frac{n+1}{n} + 1 = \left(\frac{n^2 + 4n + 4}{n^2}\right)$								
	$\Rightarrow \frac{2n+1}{n} = \frac{n^2 + 4n + 4}{n^2} \Rightarrow 2n^2 + n = n^2 + 4n + 4$ $\Rightarrow n^2 - 3n - 4 = 0 \Rightarrow (n-4)(n+1) = 0$								
	n = 4 or -1 where $n \neq -1$								
		Ans.							
Do yours	self - 1 :								
(i) If in	n a $\triangle ABC$, $\angle A = \frac{\pi}{6}$ and b : c = 2 : $\sqrt{3}$, find $\angle B$.								
	ow that, in any $\triangle ABC$: $a \sin(B - C) + b \sin(C - A) + c \sin(A - B) = 0$.								
(iii) If ir	n a $\triangle ABC$, $\frac{\sin A}{\sin C} = \frac{\sin(A-B)}{\sin(B-C)}$, show that a^2 , b^2 , c^2 are in A.P.								

node0.6.80AH-AIVKato UEE/advonced) VNurture/Maths Sheet/SOTVEng.pdS

2. COSINE FORMULAE :

(a) $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ (b) $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$ (c) $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ or $a^2 = b^2 + c^2 - 2bc \cos A$

Illustration 4: In a triangle ABC, if $B = 30^{\circ}$ and $c = \sqrt{3}$ b, then A can be equal to -(A) 45° (B) 60° (C) 90° (D) 120° We have $\cos B = \frac{c^2 + a^2 - b^2}{2ca} \Rightarrow \frac{\sqrt{3}}{2} = \frac{3b^2 + a^2 - b^2}{2 \times \sqrt{3}b \times a}$ Solution : $\Rightarrow a^2 - 3ab + 2b^2 = 0 \Rightarrow (a - 2b) (a - b) = 0$ \Rightarrow Either a = b \Rightarrow A = 30° or $a = 2b \implies a^2 = 4b^2 = b^2 + c^2 \implies A = 90^\circ$. Ans. (C) In a triangle ABC, $(a^2 - b^2 - c^2) \tan A + (a^2 - b^2 + c^2) \tan B$ is equal to -Illustration 5 : (B) $(a^2 + b^2 + c^2)$ tan C (A) $(a^2 + b^2 - c^2)$ tan C (C) $(b^2 + c^2 - a^2)$ tan C (D) none of these Solution : Using cosine law : The given expression is equal to -2 bc cos A tan A + 2 ac cos B tan B

$$= 2abc\left(-\frac{\sin A}{a} + \frac{\sin B}{b}\right) = 0$$
 Ans. (D)

Do yourself - 2 :

- (i) If a:b:c=4:5:6, then show that $\angle C = 2 \angle A$.
- (ii) In any $\triangle ABC$, prove that

(a)
$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{a^2 + b^2 + c^2}{2abc}$$

(b)
$$\frac{b^2}{a}\cos A + \frac{c^2}{b}\cos B + \frac{a^2}{c}\cos C = \frac{a^4 + b^4 + c^4}{2abc}$$

3. PROJECTION FORMULAE :

(a) $b \cos C + c \cos B = a$

- (**b**) $c \cos A + a \cos C = b$
- (c) $a \cos B + b \cos A = c$

mode06\B0AH;A1\Kata\JEE[Advanced]\Nurture\Wafts \Sheet\SOT\Eng.p65

3

Illustration 6: In a $\triangle ABC$, $\cos^2 \frac{A}{2} + a\cos^2 \frac{C}{2} = \frac{3b}{2}$, then show a, b, c are in A.P. Solution: Here, $\frac{c}{2}(1 + \cos A) + \frac{a}{2}(1 + \cos C) = \frac{3b}{2}$ $\Rightarrow a + c + (c \cos A + a \cos C) = 3b$ $\Rightarrow a + c + b = 3b$ {using projection formula} $\Rightarrow a + c = 2b$ which shows a, b, c are in A.P.

Do yourself - 3 :

(i) In a $\triangle ABC$, if $\angle A = \frac{\pi}{4}$, $\angle B = \frac{5\pi}{12}$, show that $a + c\sqrt{2} = 2b$.

(ii) In a $\triangle ABC$, prove that: (a) $b(a \cos C - c \cos A) = a^2 - c^2$ (b) $2\left(b \cos^2 \frac{C}{2} + c \cos^2 \frac{B}{2}\right) = a + b + c$

4. NAPIER'S ANALOGY (TANGENT RULE) :

(a)
$$\tan\left(\frac{B-C}{2}\right) = \frac{b-c}{b+c}\cot\frac{A}{2}$$
 (b) $\tan\left(\frac{C-A}{2}\right) = \frac{c-a}{c+a}\cot\frac{B}{2}$ (c) $\tan\left(\frac{A-B}{2}\right) = \frac{a-b}{a+b}\cot\frac{C}{2}$

Illustration 7: In a \triangle ABC, the tangent of half the difference of two angles is one-third the tangent of half the sum of the angles. Determine the ratio of the sides opposite to the angles.

Solution :

Here, $\tan\left(\frac{A-B}{2}\right) = \frac{1}{3}\tan\left(\frac{A+B}{2}\right)$ (i) using Napier's analogy, $\tan\left(\frac{A-B}{2}\right) = \frac{a-b}{a+b} \cdot \cot\left(\frac{C}{2}\right)$ (ii) from (i) & (ii) ; $\frac{1}{3}\tan\left(\frac{A+B}{2}\right) = \frac{a-b}{a+b} \cdot \cot\left(\frac{C}{2}\right) \Rightarrow \frac{1}{3}\cot\left(\frac{C}{2}\right) = \frac{a-b}{a+b} \cdot \cot\left(\frac{C}{2}\right)$

{as A + B + C =
$$\pi$$
 \therefore tan $\left(\frac{B+C}{2}\right)$ = tan $\left(\frac{\pi}{2} - \frac{C}{2}\right)$ = cot $\frac{C}{2}$ }

$$\Rightarrow \quad \frac{a-b}{a+b} = \frac{1}{3} \quad \text{or} \quad 3a-3b = a+b$$

$$2a = 4b$$
 or $\frac{a}{b} = \frac{2}{1} \Longrightarrow \frac{b}{a} = \frac{1}{2}$

Thus the ratio of the sides opposite to the angles is b : a = 1 : 2.

code0.6/B0AH:A1/Kota UEE(Advanced)/Nurture/Maths \Sheet\SOT\Eng.pd;

Ε

Ans.

Do yourself - 4 :

(i) In any
$$\triangle ABC$$
, prove that $\frac{b-c}{b+c} = \frac{\tan\left(\frac{B-C}{2}\right)}{\tan\left(\frac{B+C}{2}\right)}$
(ii) If $\triangle ABC$ is right angled at C, prove that : (a) $\tan\frac{A}{2} = \sqrt{\frac{c-b}{c+b}}$ (b) $\sin(A-B) = \frac{a^2-b^2}{a^2+b^2}$

5. HALF ANGLE FORMULAE :

$$s = \frac{a+b+c}{2} = \text{semi-perimeter of triangle.}$$
(a) (i) $\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$ (ii) $\sin \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{ca}}$ (iii) $\sin \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}$
(b) (i) $\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$ (ii) $\cos \frac{B}{2} = \sqrt{\frac{s(s-b)}{ca}}$ (iii) $\cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}}$
(c) (i) $\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$ (ii) $\tan \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}}$ (iii) $\tan \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$

$$= \frac{\Delta}{s(s-a)} = \frac{\Delta}{s(s-b)} = \frac{\Delta}{s(s-c)}$$

(d) Area of Triangle

$$\Delta = \sqrt{s(s-a)(s-b)(s-c)} = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C = \frac{1}{2}ap_1 = \frac{1}{2}bp_2 = \frac{1}{2}cp_3,$$

where p_1, p_2, p_3 are altitudes from vertices A,B,C respectively.

Illustration 8: If in a triangle ABC, CD is the angle bisector of the angle ACB, then CD is equal to-
(A)
$$\frac{a+b}{2ab}\cos\frac{C}{2}$$
 (B) $\frac{2ab}{a+b}\sin\frac{C}{2}$ (C) $\frac{2ab}{a+b}\cos\frac{C}{2}$ (D) $\frac{b\sin\angle DAC}{\sin(B+C/2)}$
Solution: $\triangle CAB = \triangle CAD + \triangle CDB$
 $\Rightarrow \frac{1}{2}absinC = \frac{1}{2}b.CD.sin(\frac{C}{2}) + \frac{1}{2}a.CD sin(\frac{C}{2})$
 $\Rightarrow CD(a+b) sin(\frac{C}{2}) = ab(2sin(\frac{C}{2})cos(\frac{C}{2}))$
So $CD = \frac{2abcos(C/2)}{(a+b)}$
and in $\triangle CAD$, $\frac{CD}{sin\angle DAC} = \frac{b}{sin\angle CDA}$ (by sine rule)
 $\Rightarrow CD = \frac{bsin\angle DAC}{sin(B+C/2)}$
Ans. (C,D)

node06\B0AH;A1\Kota\UEE(Advanced)\Nvirture\Mathis \Sheet\SOT\Eng.p65

Illustration 9: If Δ is the area and 2s the sum of the sides of a triangle, then show $\Delta \le \frac{s^2}{3\sqrt{3}}$.

Solution: We have, 2s = a + b + c, $\Delta^2 = s(s - a)(s - b)(s - c)$ Now, A.M. \geq G.M.

$$\frac{(s-a)+(s-b)+(s-c)}{3} \ge \{(s-a)(s-b)(s-c)\}^{1/3}$$

or
$$\frac{3s-2s}{3} \ge \left(\frac{\Delta^2}{s}\right)^{1/3}$$

$$\frac{s}{3} \ge \left(\frac{\Delta^2}{s}\right)$$

$$\frac{\Delta^2}{s} \le \frac{s^3}{27} \quad \Rightarrow \quad \Delta \le \frac{s^2}{3\sqrt{3}}$$
Ans.

Do yourself - 5 :

or

or

(i) Given a = 6, b = 8, c = 10. Find

(a) sin A (b) tan A (c) sin $\frac{A}{2}$ (d) cos $\frac{A}{2}$ (e) tan $\frac{A}{2}$ (ii) Prove that in any $\triangle ABC$, (abcs) sin $\frac{A}{2}$. sin $\frac{B}{2}$. sin $\frac{C}{2} = \Delta^2$.

6. m-n THEOREM :

 $(m+n) \cot \theta = m \cot \alpha - n \cot \beta$ $(m+n) \cot \theta = n \cot B - m \cot C.$

7. RADIUS OF THE CIRCUMCIRCLE 'R' :

Circumcentre is the point of intersection of perpendicular bisectors of the sides and distance between circumcentre & vertex of triangle is called circumradius 'R'.

$$R = \frac{a}{2\sin A} = \frac{b}{2\sin B} = \frac{c}{2\sin C} = \frac{abc}{4\Delta}.$$

8. RADIUS OF THE INCIRCLE 'r' :

Point of intersection of internal angle bisectors is incentre and perpendicular distance of incentre from any side is called inradius 'r'.

$$r = \frac{\Delta}{s} = (s-a)\tan\frac{A}{2} = (s-b)\tan\frac{B}{2} = (s-c)\tan\frac{C}{2} = 4R\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$$
$$= a\frac{\sin\frac{B}{2}\sin\frac{C}{2}}{\cos\frac{A}{2}} = b\frac{\sin\frac{A}{2}\sin\frac{C}{2}}{\cos\frac{B}{2}} = c\frac{\sin\frac{B}{2}\sin\frac{A}{2}}{\cos\frac{C}{2}}$$

R

(f) Δ

Illustration 10: In a triangle ABC, if a : b : c = 4 : 5 : 6, then ratio between its circumradius and inradius is-

(A)
$$\frac{16}{7}$$
 (B) $\frac{16}{9}$ (C) $\frac{7}{16}$ (D) $\frac{11}{7}$
Solution:

$$\frac{R}{r} = \frac{abc}{4\Delta} / \frac{\Delta}{s} = \frac{(abc)s}{4\Delta^2} \Rightarrow \frac{R}{r} = \frac{abc}{4(s-a)(s-b)(s-c)} \dots (i)$$

$$\therefore a: b: c = 4: 5: 6 \Rightarrow \frac{a}{4} = \frac{b}{5} = \frac{c}{6} = k \text{ (say)}$$

$$\Rightarrow a = 4k, b = 5k, c = 6k$$

$$\therefore s = \frac{a+b+c}{2} = \frac{15k}{2}, s-a = \frac{7k}{2}, s-b = \frac{5k}{2}, s-c = \frac{3k}{2}$$
using (i) in these values $\frac{R}{r} = \frac{(4k)(5k)(6k)}{4\left(\frac{7k}{2}\right)\left(\frac{5k}{2}\right)\left(\frac{3k}{2}\right)} = \frac{16}{7}$
Ans. (A)

Illustration 11: If A, B, C are the angles of a triangle, prove that : $\cos A + \cos B + \cos C = 1 + \frac{r}{R}$.

Solution :

$$\cos A + \cos B + \cos C = 2\cos\left(\frac{A+B}{2}\right) \cdot \cos\left(\frac{A-B}{2}\right) + \cos C$$

$$= 2\sin\frac{C}{2} \cdot \cos\left(\frac{A-B}{2}\right) + 1 - 2\sin^{2}\frac{C}{2} = 1 + 2\sin\frac{C}{2}\left[\cos\left(\frac{A-B}{2}\right) - \sin\left(\frac{C}{2}\right)\right]$$

$$= 1 + 2\sin\frac{C}{2}\left[\cos\left(\frac{A-B}{2}\right) - \cos\left(\frac{A+B}{2}\right)\right] \quad \left\{\because \frac{C}{2} = 90^{\circ} - \left(\frac{A+B}{2}\right)\right\}$$

$$= 1 + 2\sin\frac{C}{2} \cdot 2\sin\frac{A}{2} \cdot \sin\frac{B}{2} = 1 + 4\sin\frac{A}{2} \cdot \sin\frac{B}{2} \cdot \sin\frac{C}{2}$$

$$= 1 + \frac{r}{R} \quad \{as, r = 4R \sin A/2 \cdot \sin B/2 \cdot \sin C/2\}$$

$$\Rightarrow \quad \cos A + \cos B + \cos C = 1 + \frac{r}{R} \cdot \text{Hence proved.}$$

Do yourself - 6 :

(i) If in
$$\triangle ABC$$
, $a = 3$, $b = 4$ and $c = 5$, find
(a) \triangle (b) R (c) r
(ii) In a $\triangle ABC$, show that :
(a) $\frac{a^2 - b^2}{c} = 2R \sin(A - B)$ (b) $r \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} = \frac{\Delta}{4R}$ (c) $a + b + c = \frac{abc}{2Rr}$
(iii) Let $\triangle \& \Delta'$ denote the areas of a \triangle and that of its incircle. Prove that
 $\Delta : \Delta' = \left(\cot \frac{A}{2} . \cot \frac{B}{2} . \cot \frac{C}{2}\right) : \pi$

mode06\B0AH.A1\Kota\UEE(Advanced)\Nurture\Waths \Shee\\SOT\Eng.p65

JEE-Mathematics

9. RADII OF THE EX-CIRCLES :

Point of intersection of two external angles and one internal angle bisectors is excentre and perpendicular distance of excentre from any side is called exradius. If r_1 is the radius of escribed circle opposite to $\angle A$ of $\triangle ABC$ and so on, then -

(a)
$$r_1 = \frac{\Delta}{s-a} = s \tan \frac{A}{2} = 4R \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} = \frac{a \cos \frac{B}{2} \cos \frac{C}{2}}{\cos \frac{A}{2}}$$

(**b**)
$$r_2 = \frac{\Delta}{s-b} = s \tan \frac{B}{2} = 4R \cos \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2} = \frac{b \cos \frac{A}{2} \cos \frac{C}{2}}{\cos \frac{B}{2}}$$

(c)
$$r_3 = \frac{\Delta}{s-c} = s \tan \frac{C}{2} = 4R \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2} = \frac{c \cos \frac{A}{2} \cos \frac{B}{2}}{\cos \frac{C}{2}}$$

 $\rm I_{_1}, \, \rm I_{_2}$ and $\rm I_{_3}$ are taken as ex-centre opposite to vertex A, B, C repsectively.

.

Illustration 12: Value of the expression
$$\frac{b-c}{r_1} + \frac{c-a}{r_2} + \frac{a-b}{r_3}$$
 is equal to -
(A) 1 (B) 2 (C) 3 (D) 0
Solution: $\frac{(b-c)}{r_1} + \frac{(c-a)}{r_2} + \frac{(a-b)}{r_3}$
 $\Rightarrow (b-c)\left(\frac{s-a}{\Delta}\right) + (c-a)\left(\frac{s-b}{\Delta}\right) + (a-b)\cdot\left(\frac{s-c}{\Delta}\right)$
 $\Rightarrow \frac{(s-a)(b-c) + (s-b)(c-a) + (s-c)(a-b)}{\Delta}$
 $= \frac{s(b-c+c-a+a-b) - [ab-ac+bc-ba+ac-bc]}{\Delta} = \frac{0}{\Delta} = 0$
Thus, $\frac{b-c}{r_1} + \frac{c-a}{r_2} + \frac{a-b}{r_3} = 0$ Ans. (D)

.

Illustration 13 : If $r_1 = r_2 + r_3 + r$, prove that the triangle is right angled. **Solution :** We have, $r_1 - r = r_2 + r_3$

$$\Rightarrow \frac{\Delta}{s-a} - \frac{\Delta}{s} = \frac{\Delta}{s-b} + \frac{\Delta}{s-c} \Rightarrow \frac{s-s+a}{s(s-a)} = \frac{s-c+s-b}{(s-b)(s-c)}$$
$$\Rightarrow \frac{a}{s(s-a)} = \frac{2s-(b+c)}{(s-b)(s-c)} \qquad \{as, 2s = a+b+c\}$$
$$\Rightarrow \frac{a}{s(s-a)} = \frac{a}{(s-b)(s-c)} \Rightarrow s^{2} - (b+c) s + bc = s^{2} - as$$

Ans.

 $\Rightarrow \quad s(-a+b+c) = bc \qquad \Rightarrow \quad \frac{(b+c-a)(a+b+c)}{2} = bc$ $\Rightarrow \quad (b+c)^2 - (a)^2 = 2bc \qquad \Rightarrow \quad b^2 + c^2 + 2bc - a^2 = 2bc$ $\Rightarrow \quad b^2 + c^2 = a^2$ $\therefore \quad \angle A = 90^\circ.$

Do yourself - 7 :

(c)

(i) In an equilateral
$$\triangle ABC$$
, R = 2, find

(ii) In a $\triangle ABC$, show that

a)
$$r_1r_2 + r_2r_3 + r_3r_1 = s^2$$
 (b) $\frac{1}{4}r^2s^2\left(\frac{1}{r} - \frac{1}{r_1}\right)\left(\frac{1}{r} - \frac{1}{r_2}\right)\left(\frac{1}{r} - \frac{1}{r_3}\right) = R$

10. ANGLE BISECTORS & MEDIANS :

 $\sqrt{rr_1r_2r_3} = \Delta$

An angle bisector divides the base in the ratio of corresponding sides.

$$\frac{BD}{CD} = \frac{c}{b} \implies BD = \frac{ac}{b+c} \& CD = \frac{ab}{b+c}$$

$$m_{a} = \frac{1}{2}\sqrt{2b^{2} + 2c^{2} - a^{2}}$$
 and $\beta_{a} = \frac{2bc\cos\frac{A}{2}}{b+c}$

Note that $m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}(a^2 + b^2 + c^2)$

11. ORTHOCENTRE :

- (a) Point of intersection of altitudes is orthocentre & the triangle KLM which is formed by joining the feet of the altitudes is called the pedal triangle.
- (b) The distances of the orthocentre from the angular points of the $\triangle ABC$ are 2R cosA, 2R cosB, & 2R cosC.
- (c) The distance of P from sides are 2R cosB cosC, 2R cosC cosA and 2R cosA cosB.

JEE-Mathematics

Do yourself - 8 :

- (i) If x, y, z are the distance of the vertices of $\triangle ABC$ respectively from the orthocentre, then prove that $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \frac{abc}{xyz}$
- (ii) If p₁, p₂, p₃ are respectively the perpendiculars from the vertices of a triangle to the opposite sides, prove that

(a)
$$p_1 p_2 p_3 = \frac{a^2 b^2 c^2}{8R^3}$$
 (b) $\Delta = \sqrt{\frac{1}{2} R p_1 p_2 p_3}$

- (iii) In a $\triangle ABC$, AD is altitude and H is the orthocentre prove that AH : DH = (tanB + tanC) : tanA
- (iv) In a $\triangle ABC$, the lengths of the bisectors of the angle A, B and C are x, y, z respectively.

Show that
$$\frac{1}{x}\cos\frac{A}{2} + \frac{1}{y}\cos\frac{B}{2} + \frac{1}{z}\cos\frac{C}{2} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

12. THE DISTANCES BETWEEN THE SPECIAL POINTS :

- (a) The distance between circumcentre and orthocentre is = $R\sqrt{1-8\cos A \cos B \cos C}$
- (b) The distance between circumcentre and incentre is $=\sqrt{R^2 2Rr}$
- (c) The distance between incentre and orthocentre is = $\sqrt{2r^2 4R^2 \cos A \cos B \cos C}$
- (d) The distances between circumcentre & excentres are

$$OI_1 = R\sqrt{1 + 8\sin\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}} = \sqrt{R^2 + 2Rr_1}$$
 & so on.

Illustration 14: Prove that the distance between the circumcentre and the orthocentre of a triangle ABC is $R\sqrt{1-8\cos A\cos B\cos C}$.

Solution : Let O and P be the circumcentre and the orthocentre respectively. If OF is the perpendicular to AB, we have $\angle OAF = 90^\circ - \angle AOF = 90^\circ - C$. Also $\angle PAL = 90^\circ - C$. Hence, $\angle OAP = A - \angle OAF - \angle PAL = A - 2(90^\circ - C) = A + 2C - 180^\circ$ = A + 2C - (A + B + C) = C - B. Also OA = R and PA = 2RcosA. Now in $\triangle AOP$, $OP^2 = OA^2 + PA^2 - 2OA$. PA cosOAP

node06/B0AH:A1/Keta/JEE(Advanced)/Nurture/Maths/Sheet/SOT/Eng.p6

$$= R^{2} + 4R^{2}\cos^{2} A - 4R^{2}\cos A\cos(C - B)$$

= R² + 4R² cosA[cosA - cos(C - B)]
= R² - 4R² cosA[cos(B + C) + cos(C - B)] = R² - 8R² cosA cosB cosC.
Hence OP = R $\sqrt{1 - 8\cos A \cos B \cos C}$. Ans

13. SOLUTION OF TRIANGLES :

The three sides a,b,c and the three angles A,B,C are called the elements of the triangle ABC. When any three of these six elements (except all the three angles) of a triangle are given, the triangle is known completely; that is the other three elements can be expressed in terms of the given elements and can be evaluated. This process is called the solution of triangles.

* If the three sides a,b,c are given, angle A is obtained from $\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$

or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$. B and C can be obtained in the similar way.

* If two sides b and c and the included angle A are given, then $\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}$ gives

 $\frac{B-C}{2}$. Also $\frac{B+C}{2} = 90^{\circ} - \frac{A}{2}$, so that B and C can be evaluated. The third side is given by

$$a = b \frac{\sin A}{\sin B}$$

or $a^2 = b^2 + c^2 - 2bc \cos A$.

* If two sides b and c and an angle opposite the one of them (say B) are given then

$$\sin C = \frac{c}{b} \sin B$$
, $A = 180^{\circ} - (B + C)$ and $a = \frac{b \sin A}{\sin B}$ given the remaining elements.

Case I :

 $b < c \sin B$.

We draw the side c and angle B. Now it is obvious from the figure that there is no triangle possible.

JEE-Mathematics

Case II:

 $b = c \sin B$ and B is an acute angle, there is only one triangle possible. and it is right-angled at C.

Case III :

 $b > c \sin B$, b < c and B is an acute angle, then there are two triangles possible for two values of angle C.

sinB $b > c \sin B$, c < b and B is an acute angle, then there is only one triangle.

Case V:

 $b > c \sin B$, c > b and B is an obtuse angle.

For any choice of point C, b will be greater than c which is a contradication as c > b (given). So there is no triangle possible.

Case VI :

 $b > c \sin B$, c < b and B is an obtuse angle.

We can see that the circle with A as centre and b as radius will cut the line only in one point. So only one triangle is possible.

b > c and $B = 90^{\circ}$.

Again the circle with A as centre and b as radius will cut the line only in one point. So only one triangle is possible.

Case VIII :

 $b \le c$ and $B = 90^{\circ}$.

The circle with A as centre and b as radius will not cut the line in any point. So no triangle is possible.

This is, sometimes, called an ambiguous case.

Alternative Method :

By applying cosine rule, we have $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$

$$\Rightarrow a^{2} - (2c \cos B)a + (c^{2} - b^{2}) = 0 \Rightarrow a = c \cos B \pm \sqrt{(c \cos B)^{2} - (c^{2} - b^{2})^{2}}$$

$$\Rightarrow \quad a = c \cos B \pm \sqrt{b^2 - (c \sin B)^2}$$

This equation leads to following cases :

- **Case-I:** If b < csinB, no such triangle is possible.
- **Case-II:** Let $b = c \sin B$. There are further following case :

(a) B is an obtuse angle \Rightarrow cosB is negative. There exists no such triangle.

(b) B is an acute angle $\Rightarrow \cos B$ is positive. There exists only one such triangle.

Case-III: Let $b > c \sin B$. There are further following cases :

(a) B is an acute angle \Rightarrow cosB is positive. In this case triangle will exist if and only if

 $c \cos B > \sqrt{b^2 - (c \sin B)^2}$ or $c > b \Rightarrow$ Two such triangle is possible. If c < b, only one such triangle is possible.

(**b**) B is an obtuse angle \Rightarrow cosB is negative. In this case triangle will exist if and only if

 $\sqrt{b^2 - (c \sin B)^2} > |c \cos B| \Rightarrow b > c$. So in this case only one such triangle is possible. If

b < c there exists no such triangle.

This is called an ambiguous case.

- * If one side a and angles B and C are given, then $A = 180^{\circ} (B + C)$, and $b = \frac{a \sin B}{\sin A}$, $c = \frac{a \sin C}{\sin A}$.
- * If the three angles A,B,C are given, we can only find the ratios of the sides a,b,c by using sine rule (since there are infinite similar triangles possible).

Illustration 15: In the ambiguous case of the solution of triangles, prove that the circumcircles of the two triangles are of same size.

Solution: Let us say b,c and angle B are given in the ambiguous case. Both the triangles will have b and its opposite angle as B. so $\frac{b}{\sin B} = 2R$ will be given for both the triangles. So their circumradii and therefore their sizes will be same.

mode06\B0AH;A1\Kata\JEE(Advanced)\Nurture\Waths\Sheet\SOT\Eng.p65

If a,b and A are given in a triangle and c₁,c₂ are the possible values of the third side, prove Illustration 16: that $c_1^2 + c_2^2 - 2c_1c_2 \cos 2A = 4a^2\cos^2 A$. $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ Solution : \Rightarrow c² - 2bc cosA + b² - a² = 0. $c_{1} + c_{2} = 2b\cos A \text{ and } c_{1}c_{2} = b^{2} - a^{2}.$ $\Rightarrow c_{1}^{2} + c_{2}^{2} - 2c_{1}c_{2}\cos 2A = (c_{1} + c_{2})^{2} - 2c_{1}c_{2}(1 + \cos 2A)$ $= 4b^{2}\cos^{2}A - 2(b^{2} - a^{2})2\cos^{2}A = 4a^{2}\cos^{2}A.$ **Illustration 17:** If b,c,B are given and b < c, prove that $\cos\left(\frac{A_1 - A_2}{2}\right) = \frac{c \sin B}{b}$. Solution : $\angle C_2AC_1$ is bisected by AD. $\Rightarrow \text{ In } \Delta AC_2 D, \cos\left(\frac{A_1 - A_2}{2}\right) = \frac{AD}{AC_2} = \frac{c \sin B}{b}$ Hence proved. Do yourself - 9 : If b,c,B are given and b<c, prove that $\sin\left(\frac{A_1 - A_2}{2}\right) = \frac{a_1 - a_2}{2b}$ (i) In a $\triangle ABC$, b,c,B (c > b) are gives. If the third side has two values a_1 and a_2 such (ii) that $a_1 = 3a_2$, show that $\sin B = \sqrt{\frac{4b^2 - c^2}{3c^2}}$ 14. **REGULAR POLYGON:** A regular polygon has all its sides equal. It may be inscribed or circumscribed. (a) Inscribed in circle of radius r : $a = 2h \tan \frac{\pi}{n} = 2r \sin \frac{\pi}{n}$ (i) (ii) Perimeter (P) and area (A) of a regular polygon of n sides inscribed in a circle of radius r are given by $P = 2nr \sin \frac{\pi}{n}$ and $A = \frac{1}{2}nr^2 \sin \frac{2\pi}{n}$ Circumscribed about a circle of radius r : **(b)**

- π
 - (i) $a = 2r \tan \frac{\pi}{n}$
 - (ii) Perimeter (P) and area (A) of a regular polygon of n sides

circumscribed about a given circle of radius r is given by $P = 2 n r tan \frac{\pi}{n}$ and

$$A = nr^2 \tan \frac{\pi}{n}$$

Do yourself - 10 :

(i) If the perimeter of a circle and a regular polygon of n sides are equal, then

prove that
$$\frac{\text{area of the circle}}{\text{area of polygon}} = \frac{\tan \frac{\pi}{n}}{\frac{\pi}{n}}$$
.

(ii) The ratio of the area of n-sided regular polygon, circumscribed about a circle, to the area of the regular polygon of equal number of sides inscribed in the circle is 4 : 3. Find the value of n.

15. SOME NOTES :

(i)

- (a) (i) If $a \cos B = b \cos A$, then the triangle is isosceles.
 - (ii) If $a \cos A = b \cos B$, then the triangle is isosceles or right angled.
- (b) In right angle triangle (i) $a^2 + b^2 + c^2 = 8R^2$ (ii) $\cos^2 A + \cos^2 B + \cos^2 C = 1$
- (c) In equilateral triangle

R = 2r

(ii)
$$r_1 = r_2 = r_3 = \frac{3R}{2}$$

(iii)
$$r: R: r_1 = 1:2:3$$
 (iv) $area = \frac{\sqrt{3}a^2}{4}$ (v) $R = \frac{a}{\sqrt{3}}$

- (d) (i) The circumcentre lies (1) inside an acute angled triangle (2) outside an obtuse angled triangle & (3) mid point of the hypotenuse of right angled triangle.
 - (ii) The orthocentre of right angled triangle is the vertex at the right angle.
 - (iii) The orthocentre, centroid & circumcentre are collinear & centroid divides the line segment joining orthocentre & circumcentre internally in the ratio 2 : 1 except in case of equilateral triangle. In equilateral triangle, all these centres coincide

(e) Area of a cyclic quadrilateral =
$$\sqrt{(s-a)(s-b)(s-c)(s-d)}$$

where a, b, c, d are lengths of the sides of quadrilateral and $s = \frac{a+b+c+d}{2}$.

ANSWERS FOR DO YOURSELF

 1: (i) 90°

 5: (i) (a)
$$\frac{3}{5}$$
 (b) $\frac{3}{4}$
 (c) $\frac{1}{\sqrt{10}}$
 (d) $\frac{3}{\sqrt{10}}$
 (e) $\frac{1}{3}$
 (f) 24

 6: (i) (a) 6
 (b) $\frac{5}{2}$
 (c) 1

 7: (i) (a) 1
 (b) 3
 (c) $2\sqrt{3}$

 10: (ii) 6
 15

node06\B0AH-A1\Kata\IEE(Advanced)\Nurture\Maths\Sheet\SOT\Eng.p65

ELEMENTARY EXERCISE

1. Angles A, B and C of a triangle ABC are in A.P. If $\frac{b}{c} = \sqrt{\frac{3}{2}}$, then $\angle A$ is equal to

(A)
$$\frac{\pi}{6}$$
 (B) $\frac{\pi}{4}$ (C) $\frac{5\pi}{12}$ (D) $\frac{\pi}{2}$

2. If K is a point on the side BC of an equilateral triangle ABC and if $\angle BAK = 15^\circ$, then the ratio of lengths $\frac{AK}{AB}$ is

(A)
$$\frac{3\sqrt{2}(3+\sqrt{3})}{2}$$
 (B) $\frac{\sqrt{2}(3+\sqrt{3})}{2}$ (C) $\frac{\sqrt{2}(3-\sqrt{3})}{2}$ (D) $\frac{3\sqrt{2}(3-\sqrt{3})}{2}$

3. In a triangle ABC, $\angle A = 60^{\circ}$ and b : c = $(\sqrt{3} + 1)$: 2 then $(\angle B - \angle C)$ has the value equal to (A) 15° (B) 30° (C) 22.5° (D) 45°

4. In an acute triangle ABC, $\angle ABC = 45^{\circ}$, AB = 3 and $AC = \sqrt{6}$. The angle $\angle BAC$, is (A) 60° (B) 65° (C) 75° (D) 15° or 75°

5. Let ABC be a right triangle with length of side AB = 3 and hypotenuse AC = 5.

If D is a point on BC such that $\frac{BD}{DC} = \frac{AB}{AC}$, then AD is equal to

(A)
$$\frac{4\sqrt{3}}{3}$$
 (B) $\frac{3\sqrt{5}}{2}$ (C) $\frac{4\sqrt{5}}{3}$ (D) $\frac{5\sqrt{3}}{4}$

6. In a triangle ABC, if a = 6, b = 3 and $cos(A - B) = \frac{4}{5}$, the area of the triangle is

(A) 8 (B) 9 (C) 12 (D)
$$\frac{15}{2}$$

7. In $\triangle ABC$, if a = 2b and A = 3B, then the value of $\frac{c}{b}$ is equal to

(A) 3 (B)
$$\sqrt{2}$$
 (C) 1 (D) $\sqrt{3}$

8. If the sides of a triangle are $\sin \alpha$, $\cos \alpha$, $\sqrt{1 + \sin \alpha \cos \alpha}$, $0 < \alpha < \frac{\pi}{2}$, the largest angle is (A) 60° (B) 90° (C) 120° (D) 150°

9. If the angle A, B and C of a triangle are in an arithmetic progression and if a, b and c denote the lengths of the sides opposite to A, B and C respectively, then the value of expression
The side of the side o

$$E = \left(\frac{1}{c}\sin 2C + \frac{1}{a}\sin 2A\right), \text{ is}$$
(A) $\frac{1}{2}$ (B) $\frac{\sqrt{3}}{2}$ (C) 1 (D) $\sqrt{3}$

16

10.	If in a triangle sin A : sin C = sin (A – B) : sin (B – C), then a^2 , b^2 , c^2 (A) are in A.P. (B) are in G.P. (C) are in H.P. (D) none of these										
11.	In triangle ABC, if $\cot \frac{A}{2} = \frac{b+c}{a}$, then triangle ABC must be										
12.	[Note: All symbols used have usual meaning in $\triangle ABC$.] (A) isosceles (B) equilateral (C) right angled (D) isoceles right angled Consider a triangle ABC and let a, b and c denote the lengths of the sides opposite to vertices A, B and C respectively. If a = 1, b = 3 and C = 60°, then sin ² B is equal to										
	(A) $\frac{27}{28}$	(B) $\frac{3}{28}$	(C) $\frac{81}{28}$	(D) $\frac{1}{3}$							
13.	The ratio of the sides of	of a triangle ABC is $1:\sqrt{3}$	$\overline{3}$: 2. Then ratio of A : B :	C is							
	(A) 3 : 5 : 2	(B) 1 : √3 : 2	(C) 3 : 2 : 1	(D) 1 : 2 : 3							
14.	In triangle ABC, If $s = 3 + \sqrt{3} + \sqrt{2}$, $3B - C = 30^{\circ}$, $A + 2B = 120^{\circ}$, then the length of longest side of triangle is [Note: All symbols used have usual meaning in triangle ABC.]										
	(A) 2	(B) $2\sqrt{2}$	(C) $2(\sqrt{3}+1)$	(D) $\sqrt{3} - 1$							
15.		n B : $\tan C = 1 : 2 : 3$, the		(D) = 5 + 9 + 10							
	(A) 5 : 8 : 9		(C) 3 : 5 : 8 A C	(D) 5 : 8 : 10							
16.	In $\triangle ABC$, if a,b,c (taken in that order) are in A.P. then $\cot \frac{A}{2} \cot \frac{C}{2} =$ [Note: All symbols used have usual meaning in triangle ABC.]										
	(A) 1	(B) 2	(C) 3	(D) 4							
17.	In $\triangle ABC$ if $a = 8, b =$	9, $c = 10$, then the value	of $\frac{\tan C}{\sin B}$ is								
	(A) $\frac{32}{9}$	(B) $\frac{24}{7}$	(C) $\frac{21}{4}$	(D) $\frac{18}{5}$							
18.		$a^{2} - (b - c)^{2}$, then tan A ed have usual meaning in									
	(A) $\frac{15}{16}$	(B) $\frac{1}{2}$	(C) $\frac{8}{17}$	(D) $\frac{8}{15}$							
19.	In a triangle ABC, if the	ne sides a, b, c are roots o	$f x^3 - 11x^2 + 38x - 40 = 0$	0. If $\sum \left(\frac{\cos A}{a}\right) = \frac{p}{q}$, then							
		$(p+q)$ where $p,q \in N$.									
20.	ABC is a triangle such	that $\sin(2A + B) = \sin(0)$	$(C - A) = -\sin(B + 2C) =$	$\frac{1}{2}$. If A, B, C are in A.P.,							
	find A, B, C.			2							

mode0.6/B0AH:A/\KetaVEE[Advanced]\V\urture\Media:\Shee1\SOT\Eng.p65

17

EXERCISE (O-1)

1. A triangle has vertices A, B and C, and the respective opposite sides have lengths a, b and c. This triangle is inscribed in a circle of radius R. If b = c = 1 and the altitude from A to side BC has

length
$$\sqrt{\frac{2}{3}}$$
, then R equals

(A)
$$\frac{1}{\sqrt{3}}$$
 (B) $\frac{2}{\sqrt{3}}$ (C) $\frac{\sqrt{3}}{2}$ (D) $\frac{\sqrt{3}}{2\sqrt{2}}$

2. A circle is inscribed in a right triangle ABC, right angled at C. The circle is tangent to the segment AB at D and length of segments AD and DB are 7 and 13 respectively. Area of triangle ABC is equal to

3. In a triangle ABC, if a = 13, b = 14 and c = 15, then angle A is equal to

(All symbols used have their usual meaning in a triangle.)

(A)
$$\sin^{-1}\frac{4}{5}$$
 (B) $\sin^{-1}\frac{3}{5}$ (C) $\sin^{-1}\frac{3}{4}$ (D) $\sin^{-1}\frac{2}{3}$

4. In a triangle ABC, if $b = (\sqrt{3} - 1)a$ and $\angle C = 30^\circ$, then the value of (A – B) is equal to

(All symbols used have usual meaning in a triangle.)

(A)
$$30^{\circ}$$
 (B) 45° (C) 60° (D) 75°

5. In triangle ABC, if AC = 8, BC = 7 and D lies between A and B such that AD = 2, BD = 4, then the length CD equals

(A)
$$\sqrt{46}$$
 (B) $\sqrt{48}$ (C) $\sqrt{51}$ (D) $\sqrt{75}$

- 6. In a triangle ABC, if $\angle C = 105^\circ$, $\angle B = 45^\circ$ and length of side AC = 2 units, then the length of the side AB is equal to
 - (A) $\sqrt{2}$ (B) $\sqrt{3}$ (C) $\sqrt{2}+1$ (D) $\sqrt{3}+1$

7. In a triangle ABC, if $(a + b + c) (a + b - c) (b + c - a) (c + a - b) = \frac{8a^2b^2c^2}{a^2 + b^2 + c^2}$, then the triangle is

(A) isosceles (B) right angled (C) equilateral

8. In triangle ABC, if 2b = a + c and $A - C = 90^{\circ}$, then sin B equals [Note: All symbols used have usual meaning in triangle ABC.]

(A)
$$\frac{\sqrt{7}}{5}$$
 (B) $\frac{\sqrt{5}}{8}$ (C) $\frac{\sqrt{7}}{4}$ (D) $\frac{\sqrt{5}}{3}$

(D) obtuse angled

- 9. In a triangle ABC, a³ + b³ + c³ = c² (a + b + c) (All symbol used have usual meaning in a triangle.)
 Statement-1: The value of ∠C = 60°.
 Statement -2: ΔABC must be equilateral.
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
 - (C) Statement-1 is true, statement-2 is false.
 - (D) Statement-1 is false, statement-2 is true.
- The sides of a triangle are three consecutive integers. The largest angle is twice the smallest one. The area of triangle is equal to

(A)
$$\frac{5}{4}\sqrt{7}$$
 (B) $\frac{15}{2}\sqrt{7}$ (C) $\frac{15}{4}\sqrt{7}$ (D) $5\sqrt{7}$

11. The sides a, b, c (taken in that order) of triangle ABC are in A.P.

If
$$\cos \alpha = \frac{a}{b+c}$$
, $\cos \beta = \frac{b}{c+a}$, $\cos \gamma = \frac{c}{a+b}$ then $\tan^2\left(\frac{\alpha}{2}\right) + \tan^2\left(\frac{\gamma}{2}\right)$ is equal to

[Note: All symbols used have usual meaning in triangle ABC.]

12. AD and BE are the medians of a triangle ABC. If AD = 4, $\angle DAB = \frac{\pi}{6}$, $\angle ABE = \frac{\pi}{3}$, then area of triangle ABC equals

(A) $\frac{8}{3}$ (B) $\frac{16}{3}$ (C) $\frac{32}{3}$ (D) $\frac{32}{9}\sqrt{3}$

13. In triangle ABC, if $\sin^3 A + \sin^3 B + \sin^3 C = 3 \sin A \cdot \sin B \cdot \sin C$, then triangle is (A) obtuse angled (B) right angled (C) obtuse right angled (D) equilateral

14. For right angled isosceles triangle, $\frac{r}{R}$ = [Note: All symbols used have usual meaning in triangle ABC.]

(A)
$$\tan \frac{\pi}{12}$$
 (B) $\cot \frac{\pi}{12}$ (C) $\tan \frac{\pi}{8}$ (D) $\cot \frac{\pi}{8}$

15. In triangle ABC, If $\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$ then angle C is equal to [Note: All symbols used have usual meaning in triangle ABC.] (A) 30° (B) 45° (C) 60° (D) 90°

mode0.6\B0.AH.AI/Kora/JEE(Advanced)/Nurture/Maths \Sheet\SOT/Eng.pd5

EXERCISE (O-2)

Multiple Correct Answer Type :

1. In a triangle ABC, let $2a^2 + 4b^2 + c^2 = 2a(2b + c)$, then which of the following holds good? [Note: All symbols used have usual meaning in a triangle.]

(A)
$$\cos B = \frac{-7}{8}$$

(B) $\sin (A-C) = 0$
(C) $\frac{r}{r_1} = \frac{1}{5}$
(D) $\sin A : \sin B : \sin C = 1 : 2 : 1$

- 2. In a triangle ABC, if a = 4, $b = 8 \angle C = 60^{\circ}$, then which of the following relations is (are) correct? [Note: All symbols used have usual meaning in triangle ABC.]
 - (A) The area of triangle ABC is $8\sqrt{3}$
 - (B) The value of $\sum \sin^2 A = 2$
 - (C) Inradius of triangle ABC is $\frac{2\sqrt{3}}{3+\sqrt{3}}$

(D) The length of internal angle bisector of angle C is $\frac{4}{\sqrt{3}}$

In which of the following situations, it is possible to have a triangle ABC?
(All symbols used have usual meaning in a triangle.)
(A) (a + c - b) (a - c + b) = 4bc
(B) b² sin 2C + c² sin 2B = ab

(C)
$$a = 3, b = 5, c = 7 \text{ and } C = \frac{2\pi}{3}$$
 (D) $\cos\left(\frac{A-C}{2}\right) = \cos\left(\frac{A+C}{2}\right)$

4. In a triangle ABC, which of the following quantities denote the area of the triangle?

(A)
$$\frac{a^2 - b^2}{2} \left(\frac{\sin A \sin B}{\sin(A - B)} \right)$$
(B)
$$\frac{r_1 r_2 r_3}{\sqrt{\sum r_1 r_2}}$$
(C)
$$\frac{a^2 + b^2 + c^2}{\cot A + \cot B + \cot C}$$
(D)
$$r^2 \cot \frac{A}{2} \cdot \cot \frac{B}{2} \cot \frac{C}{2}$$

 In ΔABC, angle A, B and C are in the ratio 1 : 2 : 3, then which of the following is (are) correct? (All symbol used have usual meaning in a triangle.)

(A) Circumradius of
$$\triangle ABC = c$$

(B) $a : b : c = 1 : \sqrt{3} : 2$
(C) Perimeter of $\triangle ABC = 3 + \sqrt{3}$
(D) Area of $\triangle ABC = \frac{\sqrt{3}}{8} c^2$

- 6. Let one angle of a triangle be 60° , the area of triangle is $10\sqrt{3}$ and perimeter is 20 cm. If a > b > c where a, b and c denote lengths of sides opposite to vertices A, B and C respectively, then which of the following is (are) correct?
 - (A) Inradius of triangle is $\sqrt{3}$
 - (C) Circumradius of triangle is $\frac{7}{\sqrt{3}}$
- (B) Length of longest side of triangle is 7
- (D) Radius of largest escribed circle is $\frac{1}{12}$

- 7. In triangle ABC, let b = 10, $c = 10\sqrt{2}$ and $R = 5\sqrt{2}$ then which of the following statement(s) is (are) correct?
 - [Note: All symbols used have usual meaning in triangle ABC.]
 - (A) Area of triangle ABC is 50.
 - (B) Distance between orthocentre and circumcentre is $5\sqrt{2}$
 - (C) Sum of circumradius and inradius of triangle ABC is equal to 10
 - (D) Length of internal angle bisector of $\angle ACB$ of triangle ABC is $\frac{5}{2\sqrt{2}}$
- 8. In a triangle ABC, let BC = 1, AC = 2 and measure of angle C is 30°. Which of the following statement(s) is (are) correct?
 - (A) $2 \sin A = \sin B$
 - (B) Length of side AB equals $5-2\sqrt{3}$
 - (C) Measure of angle A is less than 30°
 - (D) Circumradius of triangle ABC is equal to length of side AB
- 9. Given an acute triangle ABC such that $\sin C = \frac{4}{5}$, $\tan A = \frac{24}{7}$ and AB = 50. Then-
 - (A) centroid, orthocentre and incentre of $\triangle ABC$ are collinear

(B)
$$\sin B = \frac{4}{5}$$

(C)
$$\sin B = \frac{4}{7}$$

node06\B0AH-AI\Kata\EE(Advanced)\Nurture\Maths\Sheet\SOT\Eng.p65

Е

- (D) area of $\triangle ABC = 1200$
- 10. In a triangle ABC, if $\cos A \cos 2B + \sin A \sin 2B \sin C = 1$, then
 - (A) A,B,C are in A.P. (B) B,A,C are in A.P. (C) $\frac{r}{R} = 2$ (D) $\frac{r}{R} = \sqrt{2} \sin \frac{\pi}{12}$

11. In $\triangle ABC$, angle A is 120°, BC + CA = 20 and AB + BC = 21, then (A) AB > AC (B) AB < AC

(C) $\triangle ABC$ is isosceles (D) area of $\triangle ABC = 14\sqrt{3}$

12. In a triangle ABC, $\angle A = 30^{\circ}$, b = 6. Let CB_1 and CB_2 are least and greatest integral value of side a for which two triangles can be formed. It is also given angle B_1 is obtuse and angle B_2 is acute angle. (All symbols used have usual meaning in a triangle.) (A) $|CB_1 - CB_2| = 1$ (B) $CB_1 + CB_2 = 9$ (C) area of $\Delta B_1 CB_2 = 6 + \frac{3}{2}\sqrt{7}$ (D) area of $\Delta AB_2 C = 6 + \frac{9}{2}\sqrt{3}$

21

JEE-Mathematics

- 13. If the lengths of the medians AD, BE and CF of triangle ABC are 6, 8,10 respectively, then-(A) AD & BE are perpendicular (B) BE and CF are perpendicular (C) area of $\triangle ABC = 32$ (D) area of $\triangle DEF = 8$
- 14. Let P be an interior point of $\triangle ABC$.

Match the correct entries for the ratios of the Area of $\triangle PBC$: Area of $\triangle PCA$: Area of $\triangle PAB$ depending on the position of the point P w.r.t. Δ ABC.

Column-I

- (A) If P is centroid (G)
- (B) If P is incentre (I)
- (C) If P is orthocentre (H)
- (D) If P is circumcentre

- - **Column-II**
 - (P) tanA : tanB : tanC
 - (Q) sin2A : sin2B : sin2C
 - (R) sinA : sinB : sinC
 - (S) 1:1:1
 - (T) $\cos A : \cos B : \cos C$

EXERCISE (S-1)

- Given a triangle ABC with sides a = 7, b = 8 and c = 5. If the value of the expression 1. $\left(\sum \sin A\right)\left(\sum \cot \frac{A}{2}\right)$ can be expressed in the form $\frac{p}{q}$ where p, $q \in N$ and $\frac{p}{q}$ is in its lowest form find the value of (p + q).
- 2. If two times the square of the diameter of the circumcircle of a triangle is equal to the sum of the squares of its sides then prove that the triangle is right angled.
- 3. In acute angled triangle ABC, a semicircle with radius r_a is constructed with its base on BC and tangent to the other two sides. r_b and r_c are defined similarly. If r is the radius of the incircle of triangle

ABC then prove that, $\frac{2}{r} = \frac{1}{r} + \frac{1}{r_1} + \frac{1}{r_2}$.

4. If the length of the perpendiculars from the vertices of a triangle A, B, C on the opposite sides are

 p_1, p_2, p_3 then prove that $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_2} = \frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_2}$.

- 5. With usual notations, prove that in a triangle ABC $a \cot A + b \cot B + c \cot C = 2(R+r)$
- 6. With usual notations, prove that in a triangle ABC

 $\operatorname{Rr}(\sin A + \sin B + \sin C) = \Delta$

7. With usual notations, prove that in a triangle ABC

$$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \frac{s^2}{\Delta}$$

8. With usual notations, prove that in a triangle ABC

$$\cot A + \cot B + \cot C = \frac{a^2 + b^2 + c^2}{4\Delta}$$

9. If a,b,c are the sides of triangle ABC satisfying $\log\left(1+\frac{c}{a}\right) + \log a - \log b = \log 2$.

Also $a(1 - x^2) + 2bx + c(1 + x^2) = 0$ has two equal roots. Find the value of sinA + sinB + sinC.

10. With usual notations, prove that in a triangle ABC

$$\frac{b-c}{r_1} + \frac{c-a}{r_2} + \frac{a-b}{r_3} = 0$$

11. With usual notations, prove that in a triangle ABC

$$\frac{r_1}{(s-b)(s-c)} + \frac{r_2}{(s-c)(s-a)} + \frac{r_3}{(s-a)(s-b)} = \frac{3}{r}$$

12. With usual notations, prove that in a triangle ABC

$$\frac{abc}{s} \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} = \Delta$$

13. With usual notations, prove that in a triangle ABC

$$\frac{1}{r^2} + \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} = \frac{a^2 + b^2 + c^2}{\Delta^2}$$

- 14. With usual notations, prove that in a triangle ABC 2R cos A = 2R + r - r₁
- **15.** If $r_1 = r + r_2 + r_3$ then prove that the triangle is a right angled triangle.

EXERCISE (S-2)

- 1. With usual notation, if in a \triangle ABC, $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13}$; then prove that, $\frac{\cos A}{7} = \frac{\cos B}{19} = \frac{\cos C}{25}$.
- 2. Given a triangle ABC with AB = 2 and AC = 1. Internal bisector of \angle BAC intersects BC at D. If AD = BD and \triangle is the area of triangle ABC, then find the value of $12\Delta^2$.
- 3. For any triangle ABC, if B = 3C, show that $\cos C = \sqrt{\frac{b+c}{4c}} & \sin \frac{A}{2} = \frac{b-c}{2c}$.
- 4. In a triangle ABC if $a^2 + b^2 = 101c^2$ then find the value of $\frac{\cot C}{\cot A + \cot B}$.
- 5. The two adjacent sides of a cyclic quadrilateral are 2 & 5 and the angle between them is 60°. If the area of the quadrilateral is $4\sqrt{3}$, find the remaining two sides.
- 6. If in a \triangle ABC, a = 6, b = 3 and cos(A B) = 4/5 then find its area.

In a
$$\triangle$$
 ABC, (i) $\frac{a}{\cos A} = \frac{b}{\cos B}$ (ii) $2 \sin A \cos B = \sin C$
(iii) $\tan^2 \frac{A}{2} + 2 \tan \frac{A}{2} \tan \frac{C}{2} - 1 = 0$, prove that (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iii)

8. Two sides of a triangle are of lengths $\sqrt{6}$ and 4 and the angle opposite to smaller side is 30⁰. How many such triangles are possible ? Find the length of their third side and area.

7.

23

JEE-Mathematics

- 9. The triangle ABC (with side lengths a, b, c as usual) satisfies $\log a^2 = \log b^2 + \log c^2 \log (2bc \cos A)$. What can you say about this triangle?
- 10. The sides of a triangle are consecutive integers n, n + 1 and n + 2 and the largest angle is twice the smallest angle. Find n.

EXERCISE (JA)

- 1. Let ABC and ABC' be two non-congruent triangles with sides AB = 4, $AC = AC' = 2\sqrt{2}$ and angle $B = 30^{\circ}$. The absolute value of the difference between the areas of these triangles is [JEE 2009, 5]
- (a) If the angle A,B and C of a triangle are in an arithmetic progression and if a,b and c denote the length of the sides opposite to A,B and C respectively, then the value of the expression

$$\frac{a}{c}\sin 2C + \frac{c}{a}\sin 2A$$
, is -
(A) $\frac{1}{2}$ (B) $\frac{\sqrt{3}}{2}$ (C) 1 (D) $\sqrt{3}$

- (b) Consider a triangle ABC and let a,b and c denote the length of the sides opposite to vertices A,B and C respectively. Suppose a = 6, b = 10 and the area of the triangle is $15\sqrt{3}$. If $\angle ACB$ is obtuse and if r denotes the radius of the incircle of the triangle, then r^2 is equal to
- (c) Let ABC be a triangle such that $\angle ACB = \frac{\pi}{6}$ and let a,b and c denote the lengths of the sides opposite to A,B and C respectively. The value(s) of x for which $a = x^2 + x + 1$, $b = x^2 - 1$ and c = 2x + 1 is/are [JEE 2010, 3+3+3]

(A)
$$-(2+\sqrt{3})$$
 (B) $1+\sqrt{3}$ (C) $2+\sqrt{3}$ (D) $4\sqrt{3}$

3. Let PQR be a triangle of area Δ with a = 2, $b = \frac{7}{2}$ and $c = \frac{5}{2}$, where a, b and c are the lengths of the sides of the triangle opposite to the angles at P, Q and R respectively. Then $\frac{2 \sin P - \sin 2P}{2 \sin P + \sin 2P}$ equals [JEE 2012, 3M, -1M]

(A) $\frac{3}{4\Delta}$ (B) $\frac{45}{4\Delta}$ (C) $\left(\frac{3}{4\Delta}\right)^2$ (D) $\left(\frac{45}{4\Delta}\right)^2$

4. In a triangle PQR, P is the largest angle and $\cos P = \frac{1}{3}$. Further the incircle of the triangle touches the sides PQ, QR and RP at N, L and M respectively, such that the lengths of PN, QL and RM are consecutive even integers. Then possible length(s) of the side(s) of the triangle is (are)

[JEE(Advanced) 2013, 3, (-1)]

(A) 16 (B) 18 (C) 24 (D) 22

Е

5. In a triangle the sum of two sides is x and the product of the same two sides is y. If $x^2 - c^2 = y$, where c is a third side of the triangle, then the ratio of the in-radius to the circum-radius of the triangle is - [JEE(Advanced)-2014, 3(-1)]

(A)
$$\frac{3y}{2x(x+c)}$$
 (B) $\frac{3y}{2c(x+c)}$ (C) $\frac{3y}{4x(x+c)}$ (D) $\frac{3y}{4c(x+c)}$

6. In a triangle XYZ, let x,y,z be the lengths of sides opposite to the angles X,Y,Z, respectively and

$$2s = x + y + z$$
. If $\frac{s-x}{4} = \frac{s-y}{3} = \frac{s-z}{2}$ and area of incircle of the triangle XYZ is $\frac{8\pi}{3}$, then-

- (A) area of the triangle XYZ is $6\sqrt{6}$
- (B) the radius of circumcircle of the triangle XYZ is $\frac{35}{6}\sqrt{6}$
- (C) $\sin \frac{X}{2} \sin \frac{Y}{2} \sin \frac{Z}{2} = \frac{4}{35}$ (D) $\sin^2 \left(\frac{X+Y}{2}\right) = \frac{3}{5}$ [JEE(Advanced)-2016, 4(-2)]
- 7. In a triangle PQR, let $\angle PQR = 30^{\circ}$ and the sides PQ and QR have lengths $10\sqrt{3}$ and 10, respectively. Then, which of the following statement(s) is (are) TRUE ? [JEE(Advanced)-2018, 4(-2)] (A) $\angle QPR = 45^{\circ}$
 - (B) The area of the triangle PQR is $25\sqrt{3}$ and $\angle QRP = 120^{\circ}$
 - (C) The radius of the incircle of the triangle PQR is $10\sqrt{3}$ –15
 - (D) The area of the circumcircle of the triangle PQR is 100π .

ANSWERS

ELEMENTARY	EXERCISE
------------	----------

1.	C	2.	C	3.	R 4	C	5.	R	6	R		7. D		8. C	0 D
	A	11.			A 1							16. C			
			45°,60°			0. D		• •	10.	11		100 0		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1/1	20	20.	10 ,00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				~							
						EZ	KERCI	SE	(0-1)						
1.	D	2.	А	3.	А	4.	С	5.	С	6.	D	7.	В	8.	С
9.	С	10.	C	11	l. D	12.	D	13.	D	14.	С	15.	С		
						E	KERCI	SE	(0-2)						
1.	B,C	2.	A,B	3.	B,C	4.	A,B,D	5.	B,D		6.	A,C	7.	A,B,C	
8.	A,C,D	9.	A,B,D	1(). B,D	11.	A,D	12.	A,B,C,I	D	13.	A,C,D			
14.	(A) S; ((B) R	R; (C) P;	(D)	Q										
						E	XERCI	SE	(8-1)						
									(0 -)						
1.	107		9. $\frac{12}{5}$	2											
EXERCISE (S-2)															
2.	9	4.	50	5.	3 cms &					nit					
8. Two tringle $(2\sqrt{3}-\sqrt{2})$, $(2\sqrt{3}+\sqrt{2})$, $(2\sqrt{3}-\sqrt{2})$ & $(2\sqrt{3}+\sqrt{2})$ sq. units															
9.	triangle	is is	osceles		10. 4										
EXERCISE (JA)															
1.	4	2.	(a) D,	(b) 3	s, (c) B						5.	В	6.	A,C,D	
7.	B,C,D														
	ы,с, р														