CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

- Correct order of bond angle of following compounds is BF₃, PF₃, CIF₃
 - (1) $BF_3 > PF_3 > CIF_3$ (2) $PF_3 > CIF_3 > BF_3$
 - (3) $CIF_3 > PF_3 > BF_3$ (4) $BF_3 > CIF_3 > PF_3$

Answer (1)

Sol. $BF_3 \Rightarrow sp^2 \Rightarrow Bond angle = 120^\circ$

 $\mathsf{PF}_3 \Rightarrow sp^3 \Rightarrow \mathsf{Bond} \ \mathsf{angle} \approx 109^\circ 28'$

 $CIF_3 \Rightarrow sp^3d \Rightarrow Bond angle \approx 90^\circ$

- Identify the correct electronic configuration of Einstenium is
 - (1) [Rn] $5f^{14}6d^{1}7s^{2}$ (2) [Rn] $5f^{11}7s^{2}$
 - (3) [Rn] $5f^{10}6d^{1}7s^{2}$ (4) [Rn] $5f^{11}6d^{1}7s^{1}$

Answer (2)

- **Sol.** Es (Z = 99) \Rightarrow [Rn] $5f^{11}7s^2$
- The product obtained in the following reaction is: CN

Answer (3)

- 4. Ca²⁺ makes which type of complex with EDTA?
 - (1) Trigonal bipyramidal
 - (2) Square planar
 - (3) Tetrahedral
 - (4) Octahedral

Answer (4)

Sol. Co-ordination number of Ca²⁺ with EDTA is 6

Hybridisation = sp^3d^2

Shape = Octahedral

5. Consider the following reaction and identify the major product P.

Answer (1)

Sol. The reaction is benzylic oxidation reaction

6. Match the complexes given in List-I with the hybridisation of central metal atom/ion given in List-II and choose the correct option.

	List-I		List-II
	(Complexes)		(Hybridisation)
(A)	K2[Ni(CN)4]	(I)	sp ³
(B)	[Ni(CO)4]	(II)	sp³d²
(C)	[Co(NH ₃) ₆]Cl ₃	(111)	dsp²
(D)	Na₃[CoF ₆]	(IV)	d ² sp ³

- (1) (A)-(I); (B)-(II) (C)-(III); (D)-(IV)
- (2) (A)-(III); (B)-(I) (C)-(IV); (D)-(II)
- (3) (A)-(IV); (B)-(III) (C)-(II); (D)-(I)
- (4) (A)-(I); (B)-(II) (C)-(IV); (D)-(III)

Answer (2)

Sol.

(A)	K2[Ni(CN)4] Ni ²⁺ : 3 <i>d</i> ⁸	- 7	<i>dsp</i> ² hybridisation as CN ⁻ is strong field ligand
(B)	[Ni(CO) ₄] Ni ⁰ : 3d ⁸ 4s ²	- ,	<i>sp</i> ³ hybridisation as CO is strong field ligand
(C)	[Co(NH ₃) ₆]Cl ₃ Co ³⁺ : 3d ⁶	-,	<i>d²sp</i> ³ hybridisation as NH ₃ is strong field ligand
(D)	$Na_{3}[CoF_{6}]$ $[CoF_{6}]^{3-};Co^{3+}:3d^{6}$,	<i>sp</i> ³ <i>d</i> ² hybridisation as F⁻ion is a weak field ligand

7. $OCH_3 \xrightarrow{\text{alc. KCN}} Major product is$

Answer (2)

- Which of the following is correct for strong electrolyte (B > 0)
 - (1) $\lambda_m \lambda_m^0 B\sqrt{C} = 0$
 - (2) $\lambda_m + \lambda_m^0 B\sqrt{C} = 0$
 - (3) $\lambda_m \lambda_m^0 + B\sqrt{C} = 0$

$$(4) \quad \lambda_m + \lambda_m^0 + B\sqrt{C} = 0$$

Answer (3)

Sol.
$$\lambda_m = \lambda_m^0 - B\sqrt{C}$$

 $\lambda_m - \lambda_m^0 + B\sqrt{C} = 0$

- 9. Which one of the following statements regarding glucose is incorrect?
 - (1) Glucose is one of the monosaccharides of sucrose
 - (2) Glucose dissolves in water because it has aldehyde group.
 - (3) Glucose has six carbon atoms in its structure
 - (4) Glucose is an aldose

Answer (2)

Sol. Glucose is an aldohexose having molecular formula $C_6H_{12}O_6$. It is soluble in water due to number of hydroxyl groups which can form H-bonds with water. $\alpha(D)$ Glucose condenses with $\beta(D)$ fructose to form sucrose.

What is the work done on the gas in cyclic process ABCA

- (1) +773.7 J
- (2) -773.7 J
- (3) +4762.3 J
- (4) -4762.3 J

Answer (1)

Sol. $W_{AB} = 0$

 $W_{BC} = -10 (4 - 2)$

 $W_{CA} = 2.303(40) \log 2$

- = 27.636 atm. Lit
- $W_{total} = 7.636$ atm. Lit
 - = 773.7 Joule
- 11. Which of the following compounds does not give Tollen's test?
 - (1) Formaldehyde
 - (2) Formic acid
 - (3) Benzaldehyde
 - (4) Acetone

Answer (4)

Sol. Aldehyde and Formic acid can give Tollen's test with ammoniacal silver nitrate solution.

12. Which of the following will give positive lodoform test?

(1)
$$CH_3 - CH_2 - CH_2 - CHO$$

(2) $CH_3 - CH - CH_3$
(3) $CH_3 - CH_2 - CH_2 - CH_2 - CH_3$
(4) $CH_3 - CH_2 - CH_2 - CH_2 - OH_3$

Answer (2)

Sol. Molecules having

Groups as
$$\parallel \qquad or \qquad -C - CH_3$$
 or $-CH - CH_3$ gives

OH

positive iodoform test.

13. Match the List and choose correct option.

	List-I		List-II
(i)	Ni-Cd cell	(a)	Rechargeable
(ii)	Fuel cell	(b)	Anode (Zn \rightarrow Zn ²⁺ + 2e ⁻)
(iii)	Mercury cell	(c)	Used in hearing aid
(iv)	Leclanche cell	(d)	Combustion energy in to electrical energy

- (1) (i)-(a); (ii)-(d); (iii)-(c), (iv)-(b)
- (2) (i)-(b); (ii)-(a); (iii)-(c), (iv)-(d)
- (3) (i)-(d); (ii)-(a); (iii)-(c), (iv)-(b)
- (4) (i)-(a); (ii)-(b); (iii)-(c), (iv)-(d)

Answer (1)

- **Sol.** Ni-Cd cell is secondary cell and are rechargeable mercury cell is used in hearing aid.
- 14. What is the correct order of C C bond length of ethane, ethene and ethyne?
 - (1) Ethane > Ethene > Ethyne
 - (2) Ethene > Ethane > Ethyne
 - (3) Ethyne > Ethene > Ethane
 - (4) Ethyne > Ethane > Ethene

Answer (1)

Sol. Correct order of C – C bond length is

Ethane > Ethene > Ethyne

$$C-C$$
 > $C=C$ > $C\equiv C$

15.

16.

- 17.
- 18.
- 19.
- 20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. Fuming sulphuric acid has how many oxygen atoms?

Answer (7)

- Sol. Fuming sulphuric acid is oleum (H₂S₂O₇)
 - \therefore 7 O-atoms are present in fuming sulphuric acid.
- 22. Total sum of number of electrons in π^{\star} orbitals of $O_2. \ O_2^+$ and O_2^- is

Answer (6)

Sol. O₂ (16e⁻) :

$$\sigma_{1s}^{2} \sigma_{1s}^{*2} \sigma_{2s}^{*2} \sigma_{2s}^{2} \sigma_{2\rho_{z}}^{*2} \begin{pmatrix} \pi_{2\rho_{x}}^{2} \\ \pi_{2\rho_{y}}^{2} \end{pmatrix} \begin{pmatrix} \pi_{2\rho_{x}}^{*1} \\ \pi_{2\rho_{x}}^{*1} \end{pmatrix} \sigma_{2\rho_{z}}^{*}$$

Total number of e^- in π^* orbitals of O_2, O_2^+, O_2^- = 2 + 1 + 3 = 6

23. How many total number of stereoisomers are possible for the following structure

Answer (4)

The structure has two stereogenic centres, one geometrical centre and one optical centre. Hence it has total 4 stereoisomers.

 $2^2 = 4$

 Among the elements – Sc, Ti, V, Cr, Mn find magnetic moment of element which have highest ionization enthalpy in +2 oxidation state. [Nearest integer]

Answer (6)

Sol. Sc+2 Ti+2 V+2 Cr+2 Mn+2

Mn⁺² will have highest I.E. due to its stable half filled configuration.

$$Mn \rightarrow [Ar] 4s^2 \ 3a^6 \rightarrow 5 \text{ unpaired } e^6$$

$$\mu_{spin} = \sqrt{5(5+2)} BM$$

= $\sqrt{35}$

~ 6

25. How many of the following compounds will give Friedel Craft's reaction?

Answer (3)

Sol. Friedel Craft's reaction is not given by those aromatic compounds which have strong deactivating groups like –NO₂ group. Even aniline does not give Friedel Crafts reaction because the Lewis acid AlCl₃ will from co-coordinate bond with –NH₂ group thus converting it into strongly deactivating group, Friedel Crafts reaction is given

26.

27.

- 28.
- 29.
- 30.