		трі	JCTURE EXERCISE-I
1			
 1. 2. 3. 	The following quantum no. are possible for how many orbitals $n = 3$, $\ell = 2$, $m = +2$ (1) 1 (2) 2 (3) 3 (4) 4 The energy of second Bohr orbit of the hydrogen atom is -328 KJ/mol. Hence the energy of fourth Bohr orbit should be : (1) -41 KJ/mol (2) -1312 KJ/mol (3) -164 KJ/mol (4) -82 KJ/mol The measurement of the electron position is associated with an uncertainty in momentum, which	10. 11.	The energy of an electron of $2p_y$ orbital is (1) greater than $2p_x$ orbital (2) Less than $2p_z$ orbial (3) same as that of $2p_x$ and $2p_z$ orbital (4) Equal to 2s orbital A and B are two elements which have same atomic weight and are having atomic number 27 and 30 respectively. If the atomic weight of A is 57 then number of neutron in B is :-
	is equal to 1×10^{-18} g cm s ⁻¹ . the uncertainty in electron velocity is : (mass of electron = 9×10^{-28} g) (1) 1×10^{11} cm s ⁻¹ (2) 1×10^{9} cm s ⁻¹ (3) 1×10^{6} cm s ⁻¹ (4) 1×10^{5} cm s ⁻¹	12.	(1) 27 (2) 33 (3) 30 (4) 40 Energy required to remove an e^- from M shell of H-atom is 1.51 eV, then energy of I st excited state will be :- (1) -1.51 eV (2) +1.51 eV (3) -3.4 eV (4) -13.6 eV
4. 5.	Maximum number of electrons in a subshell of an atom is determined by the following :- (1) $2n^2$ (2) $4\ell + 2$ (3) $2\ell + 1$ (4) $4\ell - 2$ A 0.66 kg ball is moving with a speed of 100 m/s. The associated wavelength will be	13. 14.	Number of possible orbitals (all types) in n = 3 energy level is :- (1) 1 (2) 3 (3) 4 (4) 9 When 3d orbital is complete, the new electron enters into :-
6.	(h = 6.6 × 10 ⁻³⁴ Js) :- (1) 6.6 × 10 ⁻³⁴ m (2) 1.0 × 10 ⁻³⁵ m (3) 1.0 × 10 ⁻³² m (4) 6.6 × 10 ⁻³² m The energies E ₁ and E ₂ of two radiations are 25 eV and 50eV respectively. The relation between their wavelengths i.e. λ_1 and λ_2 will be : (1) $\lambda_1 = \lambda_2$ (2) $\lambda_1 = 2\lambda_2$	15.	 (1) 4p orbital (2) 4f orbital (3) 4s orbital (4) 4d orbital Which orbital diagram does not obey Aufbau principle :-
7. 8.	(3) $\lambda_1 = 4\lambda_2$ (4) $\lambda_1 = \frac{1}{2}\lambda_2$ Smallest wavelength occurs for (1) Lyman series (2) Balmar series (3) Paschen series (4) Brackett series Maximum number of electrons in a subshell with	16.	(1) 11 (1)(2) 11 11 11 (3) 11 11 11 11 11 11 11 (3) 11 11 11 11 11 11 11 (3) 11 11 11 11 11 11 (3) 11 11 11 11 11 11 (3) 11 11 11 11 11 11 (a) CN^- (b) OH^- (c) CH_3^+ (d) N_2 (e) CO CO CO
9.	$\ell = 3 \text{ and } n = 4 \text{ is:}$ (1) 10 (2) 12 (3) 14 (4) 16 The value of Planck's constant is 6.63×10^{-34} Js. The speed of light is 3×10^{17} nm s ⁻¹ . Which value is closest to the wavelength in nanometer of a quantum of light with frequency of 6×10^{15} s ⁻¹ ? (1) 75 (2) 10 (3) 25 (4) 50	17.	Correct Ans :- (1) a, b, c (2) a, c, d (3) a, d, e (4) b, c, d $\frac{h}{2\pi}$ is angular momentum inorbit of He ⁺ (1) First (2) Second (3) Third (4) Infinite

18.	I^{st} shell energy of $He^{\scriptscriptstyle +}$ is –54.4 eV. Then energy
	of its 2 nd shell is :-

(1) –54.4 eV	(2) –13.6 eV
(3) –27.2 eV	(4) +27.2 eV

- 19. Third line of Balmer series is produced by which transition in spectrum of H-atom(1) 5 to 2
 - (2) 5 to 1
 - (3) 4 to 2
 - (4) 4 to 1
- **20.** The ratio of radii of 3rd and 2nd Bohr's orbits of hydrogen atom is :-
 - (1) 3 : 2 (2) 4 : 9
 - (3) 9 : 4 (4) 9 : 1
- **21.** A metal in its dipositive state has the electronic configuration 2, 8, 14 and has the atomic weight equal to 56. Number of neutrons in its nucleus would be
 - (1) 30 (2) 32 (3) 34 (4) 28
- 22. In Balmer series of hydrogen atom spectrum which electronic transition causes third line :(1) Fifth Bohr orbit to second
 (2) Fifth Bohr orbit to first
 - (3) Fourth Bohr orbit to second
 - (4) Fourth Bohr orbit to first
- 23. The ratio between kinetic energy and the total energy of the electrons of hydrogen atom according to Bohr's model is :(1) 2 : 1
 (2) 1 : 1
 - $\begin{array}{c} (3) \ 1 \ : \ -1 \\ \end{array} \qquad \begin{array}{c} (4) \ 1 \ : \ 2 \\ \end{array}$
- 24. Correct statement is :-

(1) $K = 4s^1$, $Cr = 3d^4 4s^2$, $Cu = 3d^{10} 4s^2$ (2) $K = 4s^2$, $Cr = 3d^4 4s^2$, $Cu = 3d^{10} 4s^2$ (3) $K = 4s^2$, $Cr = 3d^5 4s^1$, $Cu = 3d^{10} 4s^2$ (4) $K = 4s^1$, $Cr = 3d^5 4s^1$, $Cu = 3d^{10} 4s^1$

- 25. Which of the following pairs is correctly matched (1) Isotopes ⁴⁰₂₀Ca , ⁴⁰₁₉K
 (2) Isotones ³⁰₁₄Si,³¹₁₅P,³²₁₆S
 (3) Isobars ¹⁶₈O, ¹⁷₈O, ¹⁸₈O
 (4) Isoelectronic N⁻³, O⁻², Cr⁺³
- **26.** The relative abundance of two rubidium isotopes of atomic weights 85 and 87 are 75% and 25% respectively. The average atomic wt. of rubidium is:-
 - (1) 75.5(2) 85.5(3) 86.5(4) 87.5
- **27.** The ratio of specific charge of a proton and an α -particle is :- (1) 2 : 1 (2) 1 : 2
 - $\begin{array}{c} (1) & 2 & 1 \\ (3) & 1 & 1 \\ \end{array}$
- **28.** In an atom ${}_{13}Al^{27}$. number of protons is (a) electron is (b) and neutron is (c). Hence ratio will be [in order c : b : a]
 - (1) 13 : 14 : 13 (2) 13 : 13 : 14
 - (3) 14 : 13 : 13 (4) 14 : 13 : 14
- **29.** An isotone of $_{32}$ Ge⁷⁶ is :-

(i) ₃₂ Ge ⁷⁷	(ii) ₃₃ As ⁷⁷
(iii) ₃₄ Se ⁷⁷	(iv) $_{34}$ Se 78
(1) (ii) & (iii)	(2) (i) & (ii)
(3) (ii) & (iv)	(4) (ii) & (iii) & (iv)
_	

30. For Li^{+2} , $r_2 : r_5$ will be :-

(1) 9 : 25	(2) 4 : 25
(3) 25 : 4	(4) 25 : 9

ANSWER KEY Exercise-I											
					ANSWER KEY			Exerci			
Que.	1	2	3	4	5	6	7	8	9	10	
Ans.	1	4	2	2	2	2	1	3	4	3	
Que.	11	12	13	14	15	16	17	18	19	20	
Ans.	1	3	4	1	2	3	1	2	1	3	
Que.	21	22	23	24	25	26	27	28	29	30	
Ans.	1	1	3	4	2	2	1	3	3	2	
				-			-				

PR	EVIOUS YEARS'	QUESTIONS			EXERCISE-II
1 . 2 .	H atom is – 13.6 eV . The of the excited state(s) for hydrogen is/are : (1) – 3.4 eV	n in the first Bohr orbit of ne possible energy value(s) electrons in Bohr orbits of [JEE 1998] (2) - 4.2 eV (4) + 6.8 eV anes in a p _x orbital is:	9.	Which of the following se correct for an electron in (1) n = 3, <i>l</i> = 2, m = -2 (2) n = 4, <i>l</i> = 4, m = -4 (3) n = 4, <i>l</i> = 3, m = + (4) n = 4, <i>l</i> = 3, m = +	4f orbital ? [AIEEE-2004] 2, s = + 1/2 4, s = - 1/2 1, s = + 1/2
3.		(2) 2.86 ×10 ⁻³² cm	10. 11.	Consider the ground state numbers of electrons with numbers, $l = 1$ and 2 are, re (1) 16 and 5 (3) 16 and 4 The wavelength of the rad hydrogen atom electron stationary state 1, would	a the azimuthal quantum espectively [AIEEE-2004] (2) 12 and 5 (4) 12 and 4 liation emitted, when in a n falls from infinity to
4 . 5.	Hence energy in the sec (1) -6.8 eV (3) -1.51 eV Uncertainty in position of	[AIEEE 2002] (2) -3.4 eV (4) -4.3 eV f a particle of 25 g in space incertainty in velocity	12.	(Rydberg constant = 1.09 (1) 9.1×10^{-8} nm (3) 406 nm Which one of the following the collection of isoelectro (1) Na ⁺ , Mg ²⁺ , Al ³⁺ , Cl ⁻	97×10 ⁷ m ⁻¹) : (2) 192 nm (4) 91 nm ng sets of ions represents poinc species ? [AIEEE-2004] (2) Na ⁺ , Ca ²⁺ , Sc ³⁺ , F ⁻
6.	(1) 2.1×10^{-28} (3) 0.5×10^{-34} The orbital angular mo	[AIEEE-2002] (2) 2.1×10^{-34} (4) 5.0×20^{-24} ementum for an electron pen by $\sqrt{\ell(\ell+1)} \cdot \frac{h}{2\pi}$. This	13. 14.	 (3) K⁺, Cl⁻, Mg²⁺, Sc³⁺ The radius of which of the that of the first Bohr's orb (1) He⁺ (n = 2) (3) Li²⁺ (n = 3) In a multi-electron atom, 	following orbit is same as bit of hydrogen atom? [JEE 2004] (2) Li^{2+} (n = 2) (4) Be^{3+} (n = 2) which of the following
7.	momentum for an s-elect (1) $\sqrt{2} \cdot \frac{h}{2\pi}$ (3) zero The number of d-elect	tron will be given by [AIEEE-2003] (2) + $\frac{1}{2} \cdot \frac{h}{2\pi}$ (4) $\frac{h}{2\pi}$ ctrons retained in Fe ²⁺		orbitals described by the t will have the same energy in and electric fields ? (A) $n = 1$, $l = 0$, $m = 0$ (B) $n = 2$, $l = 0$, $m = 0$ (C) $n = 2$, $l = 1$, $m = 1$ (D) $n = 3$, $l = 2$, $m = 1$ (E) $n = 3$, $l = 2$, $m = 0$	
8.	(At. no. of $Fe = 26$) ion (1) 6 (2) 3 The de Broglie waveleng		15.	 (1) (D) and (E) (3) (B) and (C) Of the following sets white isoelectronic species ? (1) BO₃³⁻, CO₃²⁻, NO₃⁻ (3) CN⁻, N₂, C₂²⁻ 	[AIEEE-2005] (2) SO ₃ ²⁻ , CO ₃ ²⁻ , NO ₃ ⁻

	(2) 3s and 3 orbitals	o orbitals a	re of lower	energy tha	n 3d				
17.	 (3) 3p orbital is lower in energy than 3d orbital (4) 3s orbitals is lower in energy than 3p orbital According to Bohr's theory angular momentum of electron in 5th shell is :- [AIEEE-2006] 								
18.	electron in 5 ^m shell is :- [AIEEE-2006] (1) 1.0 h/ π (2) 10 h/ π (3) 2.5 h/ π (4) 25 h/ π Uncertainty in the position of an electron (mass = 9.1 × 10 ⁻³¹ Kg) moving with a velocity 300 ms ⁻¹ , accurate upto 0.001%, will be :-								
	$(h = 6.63 \times 10^{-10})$) ⁻³⁴ Js)		[AIEEE-2	006]				
19.	 (1) 5.76 × 10 (3) 3.84 × 10 Which of the represents th 	D ⁻² m following	(4) 19.2 sets of qua	$2 \times 10^{-2} \text{ m}$ $2 \times 10^{-2} \text{ m}$ antum num	ibers	5.			
		-		[AIEEE-2	007]				
20.	(1) $n = 3$, $l =$ (2) $n = 3$, $l =$ (3) $n = 4$, $l =$ (4) $n = 3$, $l =$ The ionziati 1.312 x 10 ⁶ d the electron i	2, m = 1, s 0, m = 0, s 0, m = 0, s on enthal J mol ⁻¹ . The	$s = +\frac{1}{2}$ $s = +\frac{1}{2}$ $s = +\frac{1}{2}$ py of hyd e energy re	equired to e	xcite 2	6.			
			1 110111 11 = .						
21.	[AIEEE-2008] (1) $8.51 \times 10^5 \text{ J mol}^{-1}$ (2) $6.56 \times 10^5 \text{ J mol}^{-1}$ (3) $7.56 \times 10^5 \text{ J mol}^{-1}$ (4) $9.84 \times 10^5 \text{ J mol}^{-1}$ I. In an atom, an electron is moving with a speed of 600 m/s with an accuracy of 0.005% . Certainity with which the position of the electron can be located is (h = 6.6×10^{-34} kg m ² s ⁻¹ , mass of electron, $e_{\rm m} = 9.1 \times 10^{-31}$ kg):- [AIEEE-2009] (1) 1.92×10^{-3} m (2) 3.84×10^{-3} m (3) 1.52×10^{-4} m (4) 5.10×10^{-3} m								
PRE	VIOUS YEAR:	S QUESTI	ONS	AN	SWER	KE			
Que.	1	2	3	4	5				
Ans. Que.		1 12	1 13	3 14	1 15				
Ans.		4	4	1	2	Γ			
Que.		22	23	24	25				
Ans.	1	4	3	2	3				

Calculate the wavelength (in nanometer) associated with a proton moving at 1.0×10^3 ms⁻¹ (Mass of proton = 1.67×10^{-27} kg and h = 6.63×10^{-34} Js):-[AIEEE-2009]

(1) 2.5 nm	(2) 14.0 nm
(3) 0.032 nm	(4) 0.40 nm

Ionisation energy of He⁺ is 19.6×10^{-18} J atom⁻¹. The 23. energy of the first stationary state (n = 1) of Li^{2+} is:-[AIEEE-2010]

> (1) $8.82 \times 10^{-17} \text{ J atom}^{-1}$ (2) $4.41 \times 10^{-16} \text{ J atom}^{-1}$ (3) $-4.41 \times 10^{-17} \text{ J atom}^{-1}$ (4) $-2.2 \times 10^{-15} \text{ J atom}^{-1}$

24. The frequency of light emitted for the transition n = 4 to n = 2 of He⁺ is equal to the transition in H atom corresponding to which of the following

[AIEEE-2011]

(1) n = 3 to n = 1	(2) $n = 2$ to $n = 1$
(3) n = 3 to n = 2	(4) $n = 4$ to $n = 3$

25. The electrons identified by quantum numbers n and ℓ :-[AIEEE-2012] (b) $n = 4, \ell = 0$ (a) n = 4, $\ell = 1$

(d) $n = 3, \ell = 1$ (c) n = 3, $\ell = 2$ Can be placed in order of increasing energy as (1) (a) < (c) < (b) < (d) (2) (c) < (d) < (b) < (a) (3) (d) < (b) < (c) < (a) (4) (b) < (d) < (a) < (c)

26. The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is [a₀ is Bohr radius]

[JEE 2012]

(1)
$$\frac{h^2}{4\pi^2 ma_0^2}$$
 (2) $\frac{h^2}{16\pi^2 ma_0^2}$
(3) $\frac{h^2}{32\pi^2 ma_0^2}$ (4) $\frac{h^2}{32\pi^2 ma_0^2}$

REVIOUS YEARS QUESTIONS				ANSWER KEY			Exercise-II			
ue.	1	2	3	4	5	6	7	8	9	10
ns.	1	1	1	3	1	3	1	2	3	2
ue.	11	12	13	14	15	16	17	18	19	20
ns.	4	4	4	1	2	1	3	2	2	4
ue.	21	22	23	24	25	26				-
ns.	1	4	3	2	3	3				