Stress and strain

Brinell Hardness Number (BHN)

$$HB = \frac{\text{Load (kgf)}}{\text{Surface Area of Indentation (mm2)}} = \frac{P}{\frac{\pi D}{2} \left(D - \sqrt{D^2 - d^2} \right)}$$

where D: Diameter of the ball indenter,
d: Diameter at the rim of the permanent impression,
P: Load.
$$\frac{\text{Stress}}{2} = \text{Elastic Modulus} = \frac{\sigma}{2}$$

Elastic constants:

 $\frac{\text{Stress}}{\text{Strain}}$ = Elastic Modulus = $\frac{\sigma}{\epsilon}$

where, P = Standard load, D = Diameter of steel ball, and d = Diameter of the indent.

Axial Elongation of Bar Prismatic Bar Due to External Load

 $\Delta = \frac{PL}{AE}$

Elongation of Prismatic Bar Due to Self Weight

$$\Delta = \frac{PL}{2AE} = \frac{\gamma L^2}{2E}$$

Where γ is specific weight

Elongation of Tapered Bar

• Circular Tapered

$$\Delta = \frac{4PL}{\pi D_1 D_2 E}$$

Rectangular Tapered

$$\Delta = \frac{PLlog_e\left(\frac{B_2}{B_1}\right)}{E.t(B_2 - B_1)}$$

Stress Induced by Axial Stress and Simple Shear

Normal stress

$$\sigma_n = \sigma_1 \cos^2 \theta + \sigma_2 \sin^2 \theta + \tau \sin 2\theta$$

Tangential stress

$$\sigma_1 = -\left(\frac{\sigma_1 + \sigma_2}{2}\right)\sin 2\theta + \tau \cos 2\theta$$

Principal Stresses and Principal Planes

Major principal stress

$$\sigma_1 = \frac{\sigma_1 + \sigma_2}{2} + \sqrt{\frac{(\sigma_1 - \sigma_2)^2}{2} + \tau^2}$$

Major principal stress

$$\sigma_{2}' = \frac{\sigma_{1} + \sigma_{2}}{2} - \sqrt{\frac{(\sigma_{1} - \sigma_{2})^{2}}{2}} + \tau^{2}$$

Induced stress body diagram

$$\tan 2\theta_{p} = \frac{2\tau}{\sigma_{1} - \sigma_{2}}$$

$$\sigma_{1}' + \sigma_{2}' = \sigma_{1} + \sigma_{2}$$

when $2\theta_{p} = 0$
$$\Rightarrow \sigma_{1}' = \sigma_{1} \text{ and } \sigma_{2}' = \sigma_{2}$$

Principal Strain

$$\varepsilon_{I} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} + \frac{1}{2}\sqrt{(\varepsilon_{x} - \varepsilon_{y})^{2} + \gamma_{xy}^{2}}$$
$$\varepsilon_{II} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} - \frac{1}{2}\sqrt{(\varepsilon_{x} - \varepsilon_{y})^{2} + \gamma_{xy}^{2}}$$

Mohr's Circle-

STRAIN ENERGY Energy Methods:

(i) Formula to calculate the strain energy due to axial loads (tension):

 $U = \int P^2 / (2AE) dx \qquad \text{limit 0 toL}$

Where, P = Applied tensile load, L = Length of the member, A = Area of the member, and E = Young's modulus.

(ii) Formula to calculate the strain energy due tobending:

 $U = \int M^2 / (2EI) dx$ limit 0 toL

Where, M = Bending moment due to applied loads, E = Young's modulus, and I = Moment of inertia.

(iii) Formula to calculate the strain energy due totorsion:

$$U = \int T^2 / (2GJ) dx \quad \text{limit 0 toL}$$

Where, T = Applied Torsion, G = Shear modulus or Modulus of rigidity, and J = Polar moment ofinertia

(iv) Formula to calculate the strain energy due to pureshear:

 $U = K \int V^2 / (2GA) dx$ limit 0 to L

Where, V= Shearload

G = Shear modulus or Modulus of rigidity

A = Area of cross section.

K = Constant depends upon shape of cross section.

(v) Formula to calculate the strain energy due to pure shear, if shear stress isgiven:

$$U = \tau^2 V / (2G)$$

Where, $\tau = ShearStress$

G = Shear modulus or Modulus of rigidity

V = Volume of the material.

(vi) Formula to calculate the strain energy, if the moment value isgiven:

 $U = M^2 L / (2EI)$

Where, M = Bending moment

L = Length of the beam

E = Young'smodulus

I = Moment ofinertia

(vii) Formula to calculate the strain energy, if the torsion moment value isgiven:

 $U = T^{2}L / (2GJ)$

Where, T = AppliedTorsion

L = Length of the beam

G = Shear modulus or Modulus of rigidity

J = Polar moment of inertia

(viii) Formula to calculate the strain energy, if the applied tension load isgiven:

 $U = P^{2}L / (2AE)$

Where,

P = Applied tensile load.

L = Length of the member

A = Area of the member

E = Young's modulus.

(ix) Castigliano's first theorem:

$$\delta = \partial U / \partial P$$

Where, δ = Deflection, U= Strain Energy stored, and P = Load

(x) Formula for deflection of a fixed beam with point load at centre:

$$\delta = - wl^3 / 192EI$$

This defection is ¼ times the deflection of a simply supported beam.

(xi) Formula for deflection of a fixed beam with uniformly distributed load:

 $\delta = - wl^4 / 384EI$

This defection is 5 times the deflection of a simply supported beam.

(xii) Formula for deflection of a fixed beam with eccentric point load:

$$\delta = - wa^3b^3 / 3 EII^3$$

Stresses due to

Gradual Loading:-

$$\sigma = \frac{F}{A}$$

 $\sigma = \frac{2F}{A}$

Sudden Loading:-

• Impact Loading:-

$$\sigma = \frac{P}{A} \left(1 + \sqrt{1 + \frac{2AEh}{PL}} \right)$$

Deflection,

$$If \Delta_{st} = \frac{1}{AE}$$
$$\Delta = \Delta_{st} + \sqrt{(\Delta_{st})^2 + 2h\Delta_{st}}$$

PL

if h is very small then $\Delta \approx \sqrt{2h \Delta_{st}}$

Thermal Stresses:-

$$\Delta \mathbf{L} = \boldsymbol{\alpha} \mathbf{L} \Delta \mathbf{T}$$
$$\boldsymbol{\sigma} = \boldsymbol{\alpha} \mathbf{E} \Delta \mathbf{T}$$

When bar is not totally free to expand and can be expand free by "a"

$$\sigma = \frac{\mathbf{E}\alpha\Delta \mathbf{T} - \frac{\mathbf{a}\mathbf{E}}{\mathbf{L}}}{\mathbf{L}}$$

Temperature Stresses in Taper Bars:-

$$Stress = \alpha L \Delta T = \frac{4PL}{\pi d_1 d_2 E}$$

Tempertaure Stresses in Composite Bars

Hooke's Law (Linear elasticity):

Hooke's Law stated that within elastic limit, the linear relationship between simple stress and strain for a bar is expressed by equations.

$$O \propto \mathcal{E},$$

 $O = E \mathcal{E}$
 $\frac{P}{A} = E \frac{\Delta L}{L}$
E = Young's modulus of elasticity
Applied load across a cross-sectional area

P = A

 Δl = Change in length

l = Original length

Poisson's Ratio:

Where,

Volumetric Strain:

Volumetric Strain = $\frac{\text{Change in Volume}(\delta V)}{\text{Original Volume}(V)}$ $\epsilon_1 = \frac{\sigma_1}{E} - \mu \frac{\sigma_2}{E} - \mu \frac{\sigma_3}{E}$ $\epsilon_2 = \frac{\sigma_2}{E} - \mu \frac{\sigma_1}{E} - \mu \frac{\sigma_3}{E}$ $\epsilon_3 = \frac{\sigma_3}{E} - \mu \frac{\sigma_1}{E} - \mu \frac{\sigma_2}{E}$ Futher Volumetric strain $=\epsilon_1 + \epsilon_2 + \epsilon_3$ $=\frac{(\sigma_1+\sigma_2+\sigma_3)}{\mathsf{E}}-\frac{2\mu(\sigma_1+\sigma_2+\sigma_3)}{\mathsf{E}}$ $=\frac{(\sigma_1+\sigma_2+\sigma_3)(1-2\mu)}{\mathsf{E}}$ hencethe Volumetric strain = $\frac{(\sigma_1 + \sigma_2 + \sigma_3)(1 - 2\mu)}{E}$

Relationship between E, G, K and µ:

· Modulus of rigidity:-

Modulus of rigidity,
$$G = \frac{shear \ stress}{shear \ stress} = \frac{\tau}{\gamma}$$

Bulk modulus:-

$$K = \frac{\text{Volumetric stress}}{\text{Volumetric strain}}$$
$$K = -\frac{\text{dP}}{\frac{\text{dV}}{\text{V}}} = -\text{V}\frac{\text{dP}}{\text{dV}}$$

Negative sign shows decrease in volume.

$$E = 2G(1 + \mu) = 3K(1 - 2\mu)$$

$$E = \frac{9KG}{G + 3K}$$

$$\mu = \frac{3K - 2G}{G + 3K}$$
Shear
Stress
in
Rectang
ular
Beam

Compound Stresses

Equation of Pure Bending

$$\frac{\sigma_a}{y} = \frac{M}{I} = \frac{E}{R}$$

Section Modulus

$$z = \frac{I}{y_{max}} \Rightarrow \frac{M}{I} = \frac{\sigma}{y}$$
$$M = \sigma_{max} \frac{I}{y_{max}} \Rightarrow M = \sigma_{max} xz$$

Shearing Stress

$$\tau = \frac{VA\overline{y}}{Ib}$$

Where,

V = Shearing force

 $A\overline{y}$ =First moment of area

$$\tau_{\max} = \frac{3 V}{2 A}$$
$$\tau_{\max} = 1.5 \tau_{avg}$$

Shear Stress Circular Beam

$$\tau_{\max} = \frac{4V}{3A} = \frac{4}{3}\tau_{xy}$$

Moment of Inertia and Section Modulus

Table 11.2.1						
Type of section	Moment of Inertia		Section modulas (Z)			
Rectangle or paralleogram $x \xrightarrow{N} \xrightarrow{d} \xrightarrow{b} \xrightarrow{N} \xrightarrow{d} \xrightarrow{h} \xrightarrow{N} \xrightarrow{d} \xrightarrow{h} \xrightarrow{h} \xrightarrow{h} \xrightarrow{h} \xrightarrow{h} \xrightarrow{h} \xrightarrow{h} h$	$I_{xx} = \frac{bd^3}{12}$ $I_{yy} = \frac{db^3}{12}$	A N P S	$Z_{xx} = \frac{bd^2}{6}$ $Z_{yy} = \frac{db^2}{6}$			
Hollow rectangular section						
$y \xrightarrow{N} \qquad \qquad N \xrightarrow{d} \qquad \qquad N \xrightarrow{d} \qquad \qquad$	$l_{xx} = \frac{bd^3}{12} \cdot \frac{b_1 d_1^3}{12}$ $l_{yy} = \frac{db^3}{12} \cdot \frac{d_1 b_1^3}{12}$	NIG NID	$Z_{xx} = \frac{1}{6d} (bd^3 - b_1 d_1^3)$ $Z_{yy} = \frac{1}{6b} (db^3 - d_1 b_1^3)$			
Circular section						
× ·	$I_{xx} = \frac{p}{64} d^4$ $I_{yy} = \frac{p}{64} d^4$	A N N N	$Z_{xx} = \frac{p}{32} d^3$ $Z_{yy} = \frac{p}{32} d^3$			
Hollow curcular section						
	$l_{xx} = l_{yy} = 1$ $l_{yy} = \frac{p}{64} (D^4 - d^4)$	Diz	$Z_{xx} = Z_{yy} = Z$ $Z = \frac{p}{32D} (D^4 - d^4)$			
I-section y \downarrow x x x x x y $\frac{b_1}{2}$ $\frac{b_1}{3}$ $b_$	$I_{xx} = \frac{bd^3}{12} - \frac{b_1d_1^3}{12}$ $I_{yy} = \frac{db^3}{12} - \frac{d_1d_1^3}{12}$ or $I_{xx} = \frac{1}{12} (bd^3 - (b - 1) d_1^3)$		$Z_{xx} = \frac{1}{6d} (bd^3 - b_1 d_1^3)$ $Z_{yy} = \frac{1}{6b} (db^3 - d_1 b_1^3)$			
Triangle	$I_G = \frac{bh^3}{36}$	$\frac{2}{3}h$	$Z_G = \frac{bh^2}{24}$			

Direct Stress

$$\sigma = \frac{P}{A}$$

where P = axial thrust, A = area of cross-section

Bending Stress

where M = bending moment, y- distance of fibre from neutral axis, I = moment of inertia.

 $\sigma_b = \frac{My}{I}$

• Torsional Shear Stress $au = \frac{Tr}{J}$

where T = torque, r = radius of shaft, J = polar moment of inertia.

Equivalent Torsional Moment	$\sqrt{M^2 + T^2}$
Equivalent Bending Moment	$M + \sqrt{M^2 + T^2}$

Support: Supports are used to provide suitable reactions (Resisting force) to beams or any body. Following types of supports are used

1. Simple support

3. Hinged (Pin) support

4. Fixed support

Types of Beams

1. Simply supported beams

Types of Loads

1. Point load

2. Uniformly distributed load (UDL)

Value of UDL = w × L KN point of application -> mid point of AB

3. Uniformly varying load (UVL)

Value of UVL = $\frac{1}{2} \times W \times L KN$ point of application = CG of triangle formed $\Rightarrow \frac{2}{3}$ L from A, $\frac{L}{3}$ from B

Shear force and Bending Moment Relation $\frac{dV}{dx} = -M$

Load	0	0	Constant
Shear	Constant	Constant	Linear
Moment	Linear	Linear	Parabolic
Load	0	Constant	Linear
Shear	Constant	Linear	Parabolic
Moment	Linear	Parabolic	Cubic

Euler's Buckling Load

$$P_{Critical} = \frac{\pi^2 EI}{l_{equi}^2}$$

For both end hinged $l_{equi} = l$ For one end fixed and other free $l_{equi} = 2l$ For both end fixed $l_{equi} = l/2$ For one end fixed and other hinged $l_{equi} = l/\sqrt{2}$

Slenderness Ratio (λ)

$$\begin{split} \lambda &= \frac{L_{\theta}}{r_{min}} \\ L_{\theta} &= Effective \ length \\ r_{min} &= \sqrt{(I_{min}/A)} \\ r_{min} &= \text{Least radius of gyration} \end{split}$$

Rankine's Formula for Columns

$$\frac{1}{P_{R}} = \frac{1}{P_{cs}} + \frac{1}{P_{E}}$$

- *P_R* = Crippling load by Rankine's formula
- $P_{cs} = \sigma_{cs} A =$ Ultimate crushing load for column

$$P_{E} = \frac{\pi^{2} E l}{l_{eff}^{2}} =$$
Crippling load obtained by Euler's formula

Deflection in different Beams

\mathcal{L} = overall length \mathcal{W} = point load, \mathcal{M} = moment \mathcal{W} = load per unit length	End Slope	Max Deflection	Max bending moment
JM	$\frac{ML}{EI}$	$\frac{ML^2}{2EI}$	м
J.W.	$\frac{WL^2}{2EI}$	$\frac{WL^3}{3EI}$	WL
Jana Mariana	$\frac{wL^3}{6EI}$	$\frac{wL^4}{8EI}$	$\frac{wL^2}{2}$
MT	$\frac{ML}{2EI}$	ML ² 8EI	М
10 10 10 10 10 10 10 10 10 10 10 10 10 1	$\frac{WL^2}{16EI}$	$\frac{WL^3}{48EI}$	$\frac{WL}{4}$
Contraction of the second seco	$\frac{wL^3}{24EI}$	$\frac{5wL^4}{384EI}$	$\frac{wL^2}{8}$
$A \xrightarrow{W} \not \leftarrow c \rightarrow B$ $\leftarrow a b b$ $a \leq b, \ c = \sqrt{\frac{1}{3}b(L+a)}$	$\theta_B = \frac{Wac^2}{2LEI}$ $\theta_A = \frac{L+b}{L+a} \theta_B$	$\frac{Wac^3}{3LEI}$ (at position c)	$\frac{Wab}{L}$ (under load)

DEAM DENIDING

Torsion

$$\frac{\tau_l}{r} = \frac{T}{J} = \frac{G\theta}{l}$$

Where, T = Torque,

- J = Polar moment of inertia
- G = Modulus of rigidity, $\theta =$ Angle of twist
- L = Length of shaft,

Total angle of twist

$$\theta = \frac{Tl}{GJ}$$

- GJ = Torsional rigidity
- $\frac{GJ}{l} = \text{Torsional stiffness}$ $\frac{I}{GJ} = \text{Torsional flexibility}$
- $\frac{EA}{A}$ = Axial stiffness
- = Axial flexibility EA

Moment of Inertia About polar Axis

Moment of Inertia About polar Axis .

$$J = \frac{\pi d^4}{32}, \tau_{\max} = \frac{16T}{\pi d^3}$$

For hollow circular shaft

$$J = \frac{\pi}{32} (d_0^4 - d_i^4)$$

Compound Shaft

Series connection

$$\theta = \theta_1 + \theta_2$$

$$T = T_1 = T_2$$
Series connection

$$\theta = \frac{\mathrm{TL}_1}{\mathrm{G}_1\mathrm{J}_1} + \frac{\mathrm{TL}_2}{\mathrm{G}_2\mathrm{J}_2}$$

Where,

- θ_1 = Angular deformation of 1st shaft
- θ_2 = Angular deformation of 2nd shaft

Parallel Connection

$$\theta_1 = \theta_2$$
$$T = T_1 + T_2$$
$$\frac{T_{1L}}{G_1 J_1} = \frac{T_{2L}}{G_2 J_2}$$

Strain Energy in Torsion

$$U = \frac{1}{2}T\theta = \frac{1}{4}\frac{T^2L}{GJ}$$

For solid shaft,

$$U = \frac{\tau^2}{4G} \times \text{Volume of shaft}$$

For hollow shaft,

$$U = \frac{\tau^2}{4G} \left(\frac{D^2 + d^2}{D^2} \right) \times \text{Volume of shaft}$$

Thin Cylinder

Circumferential Stress /Hoop Stress

$$\sigma_h = \frac{pd}{2t} \Longrightarrow \sigma_h = \frac{pd}{2tn}$$

 η = Efficiency of joint

Longitudinal Stress

 $\sigma_t = \frac{pd}{4t} \Rightarrow \sigma_t = \frac{pd}{4t\eta}$

Hoop Strain

$$\varepsilon_h = \frac{pd}{4tE} (2-\mu)$$

Longitudinal Strain

$$\varepsilon_L = \frac{pd}{4tE} \left(1 - 2\mu \right)$$

Ratio of Hoop Strain to Longitudinal Strain

$$\varepsilon_v = \frac{pd}{4tE} \left(5 - 4\mu \right)$$

Stresses in Thin Spherical Shell

Hoop stress/longitudinal stress

$$\sigma_L = \sigma_h = \frac{pd}{4t}$$

Hoop stress/longitudinal strain

$$\varepsilon_L = \varepsilon_h = \frac{pd}{4tE} (1-\mu)$$

• Volumetric strain of sphere

$$\varepsilon_{V}=\frac{3pd}{4tE}\left(1-\mu\right)$$

Thickness ratio of Cylindrical Shell with Hemisphere Ends

$$\frac{t_2}{t_1} = \frac{1-\nu}{2-\nu}$$

Where v=Poisson Ratio