Formula & Short Notes for Strength of Materials
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where, P = Standard load, D = Diameter of steel ball, and d = Diameter of the indent.
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Axial Elongation of Bar Prismatic Bar Due to External Load
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Elongation of Prismatic Bar Due to Self Weight
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Stress Induced by Axial Stress and Simple Shear
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Principal Stresses and Principal Planes
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Principal Strain
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STRAIN ENERGY
Energy Methods:

(i) Formula to calculate the strain energy due to axial loads (tension):
U=[P?/(2AE)dx limit 0 toL

Where, P = Applied tensile load, L = Length of the member, A = Area of the member, and
E = Young'smodulus.

(ii) Formula to calculate the strain energy due tobending:
U= M2/ (2E)dx limit 0 toL

Where, M = Bending moment due to applied loads, E = Young's modulus, and I = Moment of
inertia.

(iii) Formula to calculate the strain energy due totorsion:

U=[T?/(2G]) dx limit0 toL



Where, T =Applied Torsion, G = Shear modulus or Modulus of rigidity, and | = Polar
moment ofinertia

(iv) Formula to calculate the strain energy due to pureshear:
U=K | V?/(2GA) dx limitOtoL
Where, V= Shearload
G = Shear modulus or Modulus of rigidity
A = Area of cross section.
K = Constant depends upon shape of cross section.
(v) Formula to calculate the strain energy due to pure shear, if shear stress isgiven:
U=t*V/(2G)
Where, T = ShearStress
G = Shear modulus or Modulus of rigidity

V = Volume of the material.

(vi) Formula to calculate the strain energy, if the moment value isgiven:
U = M?*L/ (2EI)
Where, M = Bending moment
L = Length of the beam
E = Young'smodulus
I = Moment ofinertia
(vii) Formula to calculate the strain energy , if the torsion moment value isgiven:
U= T°4L/ (2G])
Where, T = AppliedTorsion
L = Length of the beam
G = Shear modulus or Modulus of rigidity

] = Polar moment of inertia



(viii) Formula to calculate the strain energy, if the applied tension load isgiven:
U = PiL /( 2AE)
Where,
P = Applied tensile load.
L = Length of the member
A = Area of the member
E = Young's modulus.
(ix) Castigliano’'s first theorem:
§=8U/ 9P
Where, & = Deflection, U= Strain Energy stored, and P = Load
(x) Formula for deflection of a fixed beam with point load at centre:
& = - wi3/192El
This defection is % times the deflection of a simply supported beam.
(xi) Formula for deflection of a fixed beam with uniformly distributed load:
& = - wl* J3B4EIl
This defection is 5 times the deflection of a simply supported beam.
(xii) Formula for deflection of a fixed beam with eccentric point load:
8 =- walbd/3JEIB

Stresses due to e

¢ Gradual Loading:- <+ Vertical Bar

F (IR Loss
0= i
A :
¢ Sudden Loading:- [ : 1A

= 2F/,



¢ Impact Loading:-
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Hooke's Law (Linear elasticity):

Hooke's Law stated that within elastic limit, the linear relationship between simple
stress and strain for a bar is expressed by equations.
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Where, E = Young's modulus of elasticity

P = Applied load across a cross-sectional area

Al = Change in length

I = Original length
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Relationship betweenE, G, K and p:
« Modulus of rigidity:-

Modulus of rigidity, ¢ =

e Bulk modulus:-
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e Shear Stress Circular Beam
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Moment of Inertia and Section Modulus
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e Direct Stress

p
A

where P = axial thrust, A = area of cross-section

M
* Bending Stress Op = Ty

where M = bending moment, y- distance of fibre from neutral axis, I =
moment of inertia.

Tr

o  Torsional Shear Stress T = T

where T = torque, r = radius of shaft, | = polar moment of inertia.

Equivalent Torsional Moment vMZ 4+ T2
Equivalent Bending Moment M+ VM2 +T?

Support: Supports are used to provide suitable reactions (Resisting force) to beams or any
body. Following types of supports are used
I. Simple support

2. Boller support

3. Hinged (Pin) support
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. Fixed support
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Types of Beams
l. Simply supported beams

A B
2, Over hanging beam
A e B
3. Cantilever beams
1a g
| |

4. Continuous beams

Types of Loads
1. Point load

1w

2. Uniformily'distributed load (UDL)
Wh'm
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Value of UDL = w = L KN point of application = mid point of AB
3. Uniformly varying load (UVL)
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Value of UVL = 12 x W « LKN point of application = CG of triangle formed
L
= 3 Lfrom A, 3 from B

dv
Shear force and Bending Moment Relation P -M
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Slenderness Ratio ( 1)
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Lg = Effective length

Tmin= V(Imin/A)

I'min = Least radius of gyration



Rankine's Formula for Columns

« Pgr=Crippling load by Rankine’s formula

* Po =0 A= Ultimate crushing load for column
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Deflection in different Beams

BEAM BENDING

Crippling load obtained by Euler’s formula
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Torsion

Where, T = Torque,

] = Polar moment of inertia
G = Modulus of ngidity,
6= Angle of twist

L = Length of shaft,




Total angle of twist

T
6=—
GJ
« (J =Torsional rigidity
. Tj = Torsional stiffness
I n ) ags
. a = Torsional flexibility
EA

¥ = = Axial stiffness

l
— = Axial flexibili
. P xial flexibility
Moment of Inertia About polar Axis

e« Moment of Inertia About polar Axis

xd’ 16T
J=— 717 =—
32 :.|'rda
s For hollow circular shaft
b}
J=— - d‘
5 d —d)

Compound Shaft
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Strain Energy in Torsion

For solid shaft,

_ 7
U= e X Yolume of shaft

For hollow shaft,

U= - {DQ—HF X Yolume of shaft

Thin Cylinder

Circumferential Stress /Hoop Stress
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Stresses in Thin Spherical Shell

=  Hoop stress/longitudinal stress

pe
JL=JH=E

» Hoop stress/longitudinal strain
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= Volumetric strain of sphere

3pd
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Thickness ratio of Cylindrical Shell with Hemisphere Ends

t =1—u
t1 E_E-"

Where v=Poisson Ratio
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