IONIC EQUILIBRIUM & ACID BASE

(2) NH₂OH

(2) CH₂COO-

 $(4) N_2 H_4$

Which of the following is not a Bronsted acid:-

EXERCISE-I

	$(3) H_2O$	(4) HSO $_4^-$							
3.	In the reaction								
	$HNO_3 + H_2O \longrightarrow H_3O^+ + NO_3^-$, the conjugate								
	base of HNO ₃ is :-								
	(1) H2O	(2) H_3O^+							
	(3) NO ⁻ ₃	(4) $H_3^{O^+}$ and NO_3^-							
4.	Out of the following, amphiprotic species in aqueous								
	medium are								
	I: HPO ₃ ²⁻	II OH-							
	III $H_2PO_4^-$	IV HCO ₃							
	(1) I, III, IV	(2) I and III							
	(3) III and IV	(4) All							
5 .	When ammonia is added t	to water, it decreases the							
	concentration of which of								
	(1) OH-	(2) H_3O^+							
	(3) NH_{4}^{+}	(4) NH ₄ ⁺ & OH ⁻							
6 .	Which of the following pa								
	base & Product of these								
	(1) BF ₃ , NH ₃	(2) SiCl ₄ , 2Cl ⁻							
	(3) CH_3^{\oplus} , ΘOC_2H_5	(4) All of these							
7 .	Ionic product of water wi	ll increase, if :-							
	(1) Pressure is decreased								
	(2) H ⁺ is added								
	(3) OH ⁻ is increased								
	(4) Temperature is increased								
8 .	At 60°C, pure water has [H	O .							
	is the value of K_W at 60°								
	$(1) 10^{-6} \qquad (2) 10^{-12}$	$(3) 10^{-67} \qquad (4) 10^{-13.4}$							
9.	The pH of solution is increased from 3 to 6. Its								
	H ⁺ ion conc. will be :-								
	(1) Reduced to half								
	(2) Doubled								
	(3) Reduced by 1000 time								
10	(4) Increased by 1000 tim								
10.	Degree of dissociation of (Dissociation constant = 1)								
	(1) 10^{-5} (2) 10^{-4}								
	(1) 10 (2) 10	(0) 10 (4) 10							

1.

2.

(1) NH₃

(3) NH_4^+

(1) CH₂NH₄⁺

The conjugate acid of NH_2^- is

```
11.
       The pH of a 0.02 M ammonia solution which is 5%
       ionised will be :-
       (1) 2
                      (2) 11
                                    (3)5
                                                   (4) 7
12.
       The pH of an aqueous solution of 1.0 M solution
       of a weak monoprotic acid which is 1% ionised is
       (1)\ 1
                      (2)\ 2
                                    (3) 3
                                                   (4) 11
       The concentration of [H+] and concentration of [OH]-
       of a 0.1 M aqueous solution of 2% ionised weak acid
       is [ionic product of water = 1 \times 10^{-14}]
       (1) 0.02 \times 10^{-3} \text{ M} and 5 \times 10^{-11} \text{ M}
       (2) 1 \times 10^{-3} M and 3 \times 10^{-11} M
       (3) 2 \times 10^{-3} M and 5 \times 10^{-12} M
       (4) 3 \times 10^{-2} M and 4 \times 10^{-13} M
       What is the quantity of NaOH present in 250\,\mathrm{cc} of
       the solution, so that it gives a pH = 13:
       (1) 10^{-13} g (2) 10^{-1} g (3) 1.0 g
       An aqueous solution of HCl is 10^{-9} M HCl. The pH
       of the solution should be:-
       (1)9
                                    (2) Between 6 and 7
       (3) 7
                                    (4) Unpredictable
16.
       Which one of the following has highest pH:-
       (1) Distilled water
       (2) 1 M NH<sub>3</sub>
       (3) 1 M NaOH
       (4) Water saturated with chlorine
       8 gm NaOH and 4.9 gm H<sub>2</sub>SO<sub>4</sub> are present in one
17.
       litre of the solution. What is its pH
       (1)\ 1
                      (2) 13
                                    (3) 12
                                                   (4) 2
```

10 ml of $\frac{M}{200}$ H₂SO₄ is mixed with 40 ml of $\frac{M}{200}$

Which of the following solution will have pH close

(1) $100 \, \text{ml}$ of M/100 HCl + $100 \, \text{ml}$ of M/10 NaOH (2) 55 ml of M/10 HCl + 45 ml of M/10 NaOH (3) 10 ml of M/10 HCl + 90 ml of M/10 NaOH (4) 75 ml of M/5 HCl + 25 ml of M/5 NaOH A solution with pH 2.0 is more acidic than the one

with pH 6.0 by a factor of:

(2) 4

(2) 2

 $(3)\ 3000$

 $(4)\ 10000$

(4) none of these

H₂SO₄. The pH of the resulting solution is

(1) 1

(1) 3

19.

20.

(3) 2.3

- 21. The first and second dissociation constants of an acid H_2A are 1.0×10^{-5} and 5.0×10^{-10} respectively. The overall dissociation constant of the acid will be:
 - (1) 5.0×10^{-5}
- (2) 5.0×10^{15}
- (3) 5.0×10^{-15}
- (4) 0.2×10^5
- **22**. pH of an aqueous solution of NaCl at 85°C should
 - (1) 7
- (2) > 7
- (3) < 7
- (4) 0
- **23**. The degree of hydrolysis of a salt of weak acid and weak base in it's 0.1 M solution is found to be 50%. If the molarity of the solution is 0.2 M, the percentage hydrolysis of the salt should be
 - (1) 100%
- (2) 50%
- (3) 25%
- (4) none of these
- 24. If 40 ml of 0.2 M KOH is added to 160 ml of $0.1 \text{ M HCOOH } [K_a = 2 \times 10^{-4}], \text{ the pOH of the}$ resulting solution is
 - (1) 3.4
- (2) 3.7

(3) 7

- (4) 10.3
- The pK_a of a weak acid (HA) is 4.5. The pOH of **25**. an aqueous buffered solution of HA in which 50% of the acid is ionized is:
 - (1) 4.5
- (2) 2.5
- (3) 9.5
- (4) 7.0

- To a 50 ml. of 0.05M formic acid, how much volume of 0.10M sodium formate must be added to get a buffer solution of pH = 4.0?
 - $(pK_a \text{ of the acid is } 3.7) (log2 = 0.3)$
 - (1) 40 ml.
- (2) 4 ml.
- (3) 50 ml.
- (4) 100 ml.
- **27**. Which can act as buffer :-
 - (1) $NH_4OH + NaOH$
 - (2) HCOOH + HCl
 - (3) 40 ml. of 0.1 M NaCN + 20 ml. of 0.1 M HCl
 - (4) All of them
- **28**. Calculate the pH of a buffer prepared by mixing 600 cc of 0.6 M NH_3 and 400 cc of $0.5 \text{ M NH}_4\text{Cl}$. K_b for $NH_3 = 1.8 \times 10^{-5}$, (log 1.8 = 0.26)
 - (1) 11.3(2) 9.0
- (3) 9.52
- **29**. When 0.02 moles of NaOH are added to a litre of buffer solution, its pH changes from 5.75 to 5.80. What is its buffer capacity:-
 - (1) 0.4
- (2) 0.05
- (3) 0.05 (4) 2.5
- **30**. Calculate the pH range in which an acid indicator with K_{acid} (indicator) = 1.0×10^{-5} changes colour when the concentration of the indicator is 1×10^{-3} M.
 - $(1) 5 \pm 1$
- (2) 11 ± 1 (3) 3 ± 1

			ANSWER KEY			Exercise-I				
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	1	2	3	3	2	3	4	4	3	4
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	2	2	3	3	2	3	2	2	4	4
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	3	3	2	4	3	3	3	3	1	1

PREVIOUS YEARS' QUESTIONS

EXERCISE-II

- The pH of 0.1 M solution of the following salts 1. increases in the order [JEE 1999]
 - (1) NaCl < NH₄Cl < NaCN < HCl
 - (2) HCl < NH₄Cl < NaCl < NaCN
 - (3) NaCN < NH₄Cl < NaCl < HCl
 - (4) HCl < NaCl < NaCN < NH₄Cl
- 2. The solubility of $Mg(OH)_2$ is x mole/lit. then its solubility product is-[AIEEE-2002]
 - (1) x^3
- (2) $5x^3$
- $(3) 4x^3$
- $(4) 2x^2$
- 3. A solution which is 10^{-3} M each in Mn²⁺, Fe²⁺, Zn²⁺ and Hg^{2+} is treated with $10^{-16}M$ sulphide ion. If $K_{\rm sp}$, MnS, FeS, ZnS and HgS are 10^{-15} , 10^{-23} , 10^{-20} and 10^{-54} respectively, which one will precipitate first?

[JEE 2003]

- (1) FeS
- (2) MnS
- (3) HgS
- (4) ZnS
- 4. The solubility in water of a sparingly soluble salt AB₂ is 1.0×10^{-5} mol L⁻¹. Its solubility product will be

[AIEEE-2003]

- (1) 1×10^{-15}
- (2) 1×10^{-10}
- (3) 4×10^{-15}
- $(4) 4 \times 10^{-10}$
- The molar solubility in mol L^{-1} of a sparingly soluble 5. salt MX_4 is 's'. The corresponding solubility product is K_{SP} . 's' is given in terms of K_{SP} by relation :

[AIEEE-2004]

- (1) $s = (K_{SP} / 128)^{1/4}$ (2) $s = (128K_{SP})^{1/4}$
- (3) $s = (256K_{SD})^{1/5}$ (4) $s = (K_{SD}/256)^{1/5}$
- 6. The solubility product of a salt having general formula MX_2 , in water is : 4×10^{-12} . The concentration of M^{2+} ions in the aqueous solution of the salt is -[AIEEE-2005]
 - (1) $1.0 \times 10^{-4} \text{ M}$
 - (2) $2.0 \times 10^{-6} \text{ M}$
 - (3) 4.0×10^{-10} M
 - (4) $1.6 \times 10^{-4} \text{ M}$
- 7. Hydrogen ion concentration in mol/L in a solution of pH = 5.4 will be -[AIEEE-2005]
 - (1) 3.88×10^6
 - (2) 3.98×10^8
 - (3) 3.98×10^{-6}
 - $(4) \ 3.68 \times 10^{-6}$

8. In a saturated solution of the sparingly soluble strong electrolyte AglO₃ (molecular mass = 283) the equilibrium which sets in is -[AIEEE-2007]

$$AglO_3 = Ag^+_{(aq)} + IO^-_{3(aq)}$$

If the solubility product constant K_{sn} of $AgIO_3$ at a given temperature is 1.0×10^{-8} , what is the mass of AgIO₃ contained in 100 ml of its saturated solution?

- (1) 28.3×10^{-2} g (2) 2.83×10^{-3} g
- (3) 1.0×10^{-7} g
- (4) 1.0×10^{-4} g
- The pK_a of a weak acid, HA, is 4.80. The pK_b of a weak base, BOH, is 4.78. The pH of an aqueous solution of the corresponding salt. BA, will be -

[AIEEE-2008]

- (1) 9.58
- (2) 4.79
- (3) 7.01
- (4) 9.22
- 10. Solid Ba(NO₃)₂ is gradully dissolved in a 1.0×10^{-4} M Na₂CO₃ solution. At what concentration of Ba²⁺ will a precipitate begin to form?

 $(K_{SP} \text{ for Ba } CO_3 = 5.1 \times 10^{-9})$

[AIEEE-2009]

- (1) $8.1 \times 10^{-8} \text{ M}$
- (2) $8.1 \times 10^{-7} \text{ M}$
- (3) 4.1×10^{-5} M
- (4) 5.1×10^{-5} M
- Solubility product of silver bromide is 5.0×10^{-13} . 11. The quantity of potassium bromide (molar mass taken as 120 g mol⁻¹) to be added to 1 litre of 0.05 M solution of silver nitrate to start the precipitation of AgBr is :-[AIEEE-2010]
 - (1) 5.0×10^{-8} g (2) 1.2×10^{-10} g (3) 1.2×10^{-9} g (4) 6.2×10^{-5} g
- **12**. In aqueous solution the ionization constants for carbonic acid are

$$K_1$$
 = 4.2×10^{-7} and K_2 = 4.8×10^{-11}

Select the correct statement for a saturated 0.034 M solution of the carbonic acid: - [AIEEE-2010]

- (1) The concentration of H^+ is double that of CO_3^{2-}
- (2) The concentration of CO_3^{2-} is 0.034 M
- (3) The concentration of CO_3^{2-} is greater than that of HCO₃
- (4) The concentrations of H^+ and HCO_3^- are approximately equal

13. At 25° C, the solubility product of $Mg(OH)_2$ is 1.0×10^{-11} . At which pH, will Mg^{2+} ions start precipitating in the form of $Mg(OH)_2$ from a solution of 0.001 M Mq^{2+} ions ? [AIEEE-2010]

f 0.001 M Mg $^{2+}$ ions ? [AIEEE-201

- (1) 8
- (2) 9
- (3) 10
- (4) 11
- **14.** The K_{sp} for $Cr(OH)_3$ is 1.6×10^{-30} . The molar solubility of this compound in water is :-

[AIEEE-2011]

(1)
$$\sqrt[2]{1.6 \times 10^{-30}}$$

(2)
$$\sqrt[4]{1.6 \times 10^{-30}}$$

(3)
$$\sqrt[4]{1.6 \times 10^{-30} / 27}$$

(4)
$$1.6 \times 10^{-30}/27$$

15. An acid HA ionises as

The pH of 1.0 M solution is 5. Its dissociation constant would be :- [AIEEE-2011]

- (1) 1×10^{-10}
- (2)5
- (3) 5×10^{-8}
- (4) 1×10^{-5}
- **16.** If K_{sp} of CaF_2 at $25^{\circ}C$ is 1.7×10^{-10} , the combination amongst the following which gives a precipitate of CaF_2 is :- [JEE-MAIN(online)-2012]
 - (1) 1×10^{-2} M Ca²⁺ and 1×10^{-5} M F
 - (2) 1×10^{-4} M Ca²⁺ and 1×10^{-4} M F
 - (3) 1×10^{-3} M Ca²⁺ and 1×10^{-5} M F
 - (4) 1×10^{-2} M Ca²⁺ and 1×10^{-3} M F
- 17. The pH of a 0.1 molar solution of the acid HQ is3. The value of the ionization constant, Ka of this acid is:-[AIEEE-2012]
 - (1) 1×10^{-7} (2) 3×10^{-7} (3) 1×10^{-3} (4) 1×10^{-5}
- **18.** How many litres of water must be added to 1 litre of an aqueous solution of HCl with a pH of 1 to create an aqueous solution with pH of 2?[AIEEE-2013]
 - (1) 0.1 L
- (2) 0.9 L
- (3) 2.0 L
- (4) 9.0 L
- **19.** Solid Ba(NO₃)₂ is gradually dissolved in a 1.0×10^{-4} M Na₂CO₃ solution. At which concentration of Ba²⁺, precipitate of BaCO₃ begins to form ? (K_{sp} for BaCO₃ = 5.1×10^{-9})

[JEE-MAIN(Online)-2013]

- (1) $5.1 \times 10^{-5} \text{ M}$
- (2) 8.1×10^{-7} M
- (3) $4.1 \times 10^{-5} \text{ M}$
- (4) 7.1×10^{-8} M

20. NaOH is a strong base. What will be pH of 5.0×10^{-2} M NaOH solution ? (log2 = 0.3)

[JEE-MAIN(Online)-2013]

- (1) 13.70 (2)
- (2) 13.00
- (3) 14.00
- (4) 12.70
- **21.** Which one of the following arrangements represents the correct order of solubilities of sparingly soluble salts Hg_2Cl_2 , $Cr_2(SO_4)_3$, $BaSO_4$ and $CrCl_3$ respectively? [JEE-MAIN(Online)-2013]

$$\text{(1)} \ \left(\frac{K_{sp}}{4}\right)^{\!\!\frac{1}{3}}, \ \left(\frac{K_{sp}}{108}\right)^{\!\!\frac{1}{5}}, \ \left(K_{sp}\right)^{\!\!\frac{1}{2}}, \ \left(\frac{K_{sp}}{27}\right)^{\!\!\frac{1}{4}}$$

(2)
$$\left(K_{sp}\right)^{\frac{1}{2}}$$
, $\left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}}$, $\left(\frac{K_{sp}}{27}\right)^{\frac{1}{4}}$, $\left(\frac{K_{sp}}{108}\right)^{\frac{1}{5}}$

(3)
$$\left(K_{sp}\right)^{\frac{1}{2}}$$
, $\left(\frac{K_{sp}}{108}\right)^{\frac{1}{5}}$, $\left(\frac{K_{sp}}{27}\right)^{\frac{1}{4}}$, $\left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}}$

(4)
$$\left(\frac{K_{sp}}{108}\right)^{\frac{1}{5}}$$
, $\left(\frac{K_{sp}}{27}\right)^{\frac{1}{4}}$, $\left(K_{sp}\right)^{\frac{1}{2}}$, $\left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}}$

22. What would be the pH of a solution obtained by mixing 5 g of acetic acid and 7.5 g of sodium acetate and making the volume equal to 500 mL?

[JEE-MAIN(Online)-2013]

$$(Ka = 1.75 \times 10^{-5}, pKa = 4.76)$$

- (1) 4.76 < pH < 5.0
- (2) pH < 4.70
- (3) pH of solution will be equal to pH of acetic acid
- (4) pH = 4.70
- **23.** Zirconium phosphate $[Zr_3(PO_4)_4]$ dissociates into three zirconium cations of charge +4 and four phosphate anions of charge -3. If molar solubility of zirconium phosphate is denoted by S and its solubility product by K_{sp} then which of the following relationship between S and K_{sp} is correct?

$[{\it JEE-MAIN} (Online) - 2014]$

- (1) $S = \{K_{sp}/144\}^{1/7}$
- (2) $S = \{K_{sp}/(6912)^{1/7}\}$
- (3) $S = (K_{sp}/6912)^{1/7}$
- (4) $S = \{K_{sp}/6912\}^7$
- **24.** pK_a of a weak acid (HA) and pK_b of a weak base (BOH) are 3.2 and 3.4, respectively. The pH of their salt (AB) solution is [JEE-MAIN(Offine)-2017]
 - (1) 7.2
- (2) 6.9
- (3) 7.0
- (4) 1.0

25. Addition of sodium hydroxide solution to a weak acid (HA) results in a buffer of pH 6. If ionisation constant of HA is 10⁻⁵, the ratio of salt to acid concentration in the buffer solution will be:

[JEE-MAIN(Online)-2017]

(1) 4 : 5

 $(2) 1 : 10 \quad (3) 10 : 1$

(4) 5 : 4

50 mL of 0.2 M ammonia solution is treated with **26**. 25 mL of 0.2 M HCl. If pK_b of ammonia solution is 4.75, the pH of the mixture will be:-

[JEE-MAIN(Online)-2017]

(1) 8.25

(2) 4.75

(3) 9.25

(4) 3.75

An aqueous solution contains 0.10 M $\rm H_2S$ and 0.20 M HCl. If the equilibrium constants for the formation of HS^- from H_2S is 1.0×10^{-7} and that of S^{2-} from HS^{-} ions is 1.2×10^{-13} then the concentration of S^{2-} ions in aqueous solution is :

[JEE-MAIN(Offine)-2018]

(1) 3×10^{-20}

(2) 6×10^{-21}

(3) 5×10^{-19}

 $(4) 5 \times 10^{-8}$

28. A aqueous solution contains an unknown concentration of Ba2+. When 50 mL of a 1 M solution of Na₂SO₄ is added, BaSO₄ just begins to precipitate. The final volume is 500 mL. The solubility product of BaSO₄ is 1×10^{-10} . What is the original concentration of Ba2+?

[JEE-MAIN(Offine)-2018]

(1) $2 \times 10^{-9} \text{ M}$

(2) $1.1 \times 10^{-9} \text{ M}$

(3) $1.0 \times 10^{-10} \text{ M}$

(4) $5 \times 10^{-9} \text{ M}$

Following four solutions are prepared by mixing different volumes of NaOH and HCl of different concentrations, pH of which one of them will be equal to 1? [JEE-MAIN(Online)-2018]

(1)
$$75\text{mL}\frac{M}{5}\text{HCl} + 25\text{mL}\frac{M}{5}\text{NaOH}$$

(2)
$$100 \text{mL} \frac{M}{10} \text{HCl} + 100 \text{mL} \frac{M}{10} \text{NaOH}$$

(3)
$$55\text{mL}\frac{M}{10}\text{HCl} + 45\text{mL}\frac{M}{10}\text{NaOH}$$

(4)
$$60 \text{mL} \frac{M}{10} \text{HCl} + 40 \text{mL} \frac{M}{10} \text{NaOH}$$

30. The minimum volume of water required to dissolve 0.1 g lead (II) chloride to get a saturated solution $(K_{sp} \text{ of } PbCl_2 = 3.2 \times 10^{-8} \text{ ; atomic mass of }$ Pb = 207 u is :[JEE-MAIN(Online)-2018]

(1) 0.36 L

(2) 0.18 L

(3) 17.98 L

(4)1.798 L

PREVIOUS YEARS QUESTIONS			ANSWER KEY			Exercise-II				
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	3	3	3	4	1	3	2	3	4
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	3	4	3	3	1	4	4	4	1	4
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	1	3	2	3	3	1	2	1	2