Environmental Chemistry

Introduction

The environmental pollution may be defined as direct or indirect undesirable changes in our surrounding as a result of human activities that have harmful effects on plants, animals and human beings.

A substance, which causes pollution, is known as pollutant. Pollutants may be solid, liquid or gaseous substance present in greater concentration than in natural abundance and are produced due to human activities or due to natural happenings.

- (a) Pollutants can be fast degradable i.e. which rapidly break down by natural processes. For example, discarded vegetable.
- (b) Pollutants can be non-degradable. These remain in the environment in an unchanged form for many decades. For example dichloro diphenyltrichloroethane (DDT), plastic materials, heavy metals, nuclear wastes etc, if once released into environment are difficult to remove.

The process of environmental pollution involves :

(i) The origin of pollutant from different source

(ii) Transportation by air or water or dumping into soil by human being.

Atmosphere

It is a protective blanket of gases surrounding the earth. The atmosphere is held to the earth by the force of gravity. The total mass of atmosphere is about 5×10^{15} metric tones. The constituents which make up the atmosphere are gases, water vapours and aerosols.

Section (A) : Gaseous air pollutants

1. Tropospheric pollution :

It occurs due to the presence of undesirable solids or gaseous particles in the air.

1.1 Oxides of sulphur

Sulphur (from fossil fuel) $\xrightarrow{\text{Burn}}$ Oxides of sulphur (SO₂,SO₃)

Toxic effect : SO₂ is poisnous to both animals and plants.

(i) A low concentration of SO_2 causes respiratory diseases e.g. asthma, bronchitis, emphysema in human being.

(ii) It causes irritation to the eyes resulting in tears and redness.

(iii) High concentration of SO₂ is responsible for the **stiffness of flower buds** which eventually fall off from plants.

$$\begin{array}{l} 2SO_2(g) + O_2(g) & \xrightarrow{\text{Particulate}} 2SO_3 \\ SO_2(g) + O_3(g) & \longrightarrow SO_3(g) + O_2(g) \\ SO_2(g) + H_2O_2(\ell) & \longrightarrow H_2SO_4 \ (aq) \end{array}$$

The SO₂ present in the atmosphere is generally contaminated with SO₃. The SO₃ so formed gets converted into H_2SO_4 in the presence of moisture. This acid comes down from the atmosphere in form of sulphuric acid rain.

1.2 Oxides of nitrogen

 N_2 and O_2 at high altitudes combine to form oxides of nitrogen when lighting strikes. NO_2 is then oxidised to NO_3^- which is washed into soil, where it serves as a fertilizer.

In an automobile engine when fossil fuel (i.e. hydrocarbons) is burnt, N_2 and O_2 combine to give significant quantities of nitric oxide (NO) and NO₂.

$$\begin{array}{l} N_{2}(g) + O_{2}(g) \xrightarrow{1483 \ \text{K}} 2\text{NO}(g) \\ 2\text{NO}(g) + O_{2}(g) \longrightarrow 2\text{NO}_{2}(g) \text{ (slow reaction)} \\ \text{NO}(g) + O_{3}(g) \longrightarrow \text{NO}_{2}(g) + O_{2}(g) \\ \text{(faster reaction)} \end{array}$$

Toxic effect :

(i) The irritant **red haze** in the traffic and congested places is due to oxides of nitrogen.

(ii) Higher concentration of NO₂ damages the leaves of plants and retard the rate of photosynthesis. (iii) It is toxic to living tissues.

(iv) NO₂ is also harmful to various textile fibres and metals.

1.3 Hydrocarbons

They are formed by incomplete combustion of fuel used in automobiles.

Toxic effect :

(i) They are carcinogenic, i.e. they cause cancer.

(ii) In plants, they cause ageing, break down of tissues and shedding of leaves, flowers and twigs.

1.4 Oxides of carbon

(1) Carbon monoxide

Sources of carbon monoxide

(i) Incomplete combustion of carbon, coal, fire wood, petrol etc.

(ii) Automobile exhaust

*Toxic effect :

(i) Carbon monoxide is poisonous. It binds to haemoglobin to form carboxy haemoglobin which is about 300 times more stable than the oxygen-haemoglobin. This stable complex (when concentration reaches about 3 to 4%) reduces the oxygen carrying capacity of blood to greater extent. This oxygen deficiency causes headache, weak eyesight, nervousness and cardiovascular disorder.

(ii) In pregnant women increased CO level induces premature birth, spontaneous abortions and deformed babies.

(2) Carbon dioxide [CO₂] Sources of carbondioxide

(i) Respiration (exhaled air contains CO₂)

(ii) Burning of fossil fuels for energy.

(iii) Decomposition of lime stone during the manufacture of cement.

(iv) Volcanic eruptions.

It is found 0.03 percent by volume of the atmosphere and is confined to troposphere only.

Green plants require CO_2 for photosynthesis and they, in turn, release oxygen, thus maintaining the delicate balance. But deforestation and burning of fossil fuel increases the CO_2 level and disturbs the balance in the atmosphere. This increased amount of CO_2 in the air is mainly responsible for global warming.

1.5 Global warming and green house effect

*It has been found that about 75% of solar energy reaching the earth is absorbed by the earth's surface and, in turn, this increases the temperature of the earth. The remaining of the heat radiates back to the atmosphere. Some of the heat is trapped by gases such as carbondixoide, methane, ozone, chlorofluorocarbon compounds (CFCs) and water vapour in the atmosphere. Thus, they increases the temperature of the atmosphere. This causes, global warming.

*Just as the glass in a green house holds the sun's warmth inside, atmosphere traps the heat form the sun near the earth's surface and keeps it warm. This is called natural green house effect because it maintains the temperature and makes the earth perfect for life.

*In a green house, visible light passes through the transparent glass and heats up the soil and the plants. The warm soil and plants emit infrared radiations. Since glass is opaque to infrared radiations (heat), it partly reflects and partly absorbs these radiations. This process keeps the energy of the sun trapped in the green house.

Similarly, CO_2 molecules also trap heat as they are transparent to sun-light but not to the heat radiation. If the amount of carbon dioxide crosses the delicate proportion of 0.03%, the natural green house balance may get disturbed.

CO₂ is the major contributor to global warming. In addition to CO₂, other green house gases are methane, water vapour, nitrous oxide, CFCs and ozone.

Sources :

(a) Methane (CH₄) :

(i) CH₄ is liberated naturally when vegetation is burnt, digested or rotted in absence of oxygen.

(ii) Methane is released in paddy fields, coal mines, from rotting garbage dumps and by fossil fuels.

(b) CFCs : CFCs are man-made industrial chemicals used in air conditioning etc.

Note : CFCs are responsible for depletion of the ozone layer.

(c) N_2O : Nitrous oxide occurs naturally in the environment but in recent years it's quantities have increased significantly due to the use of chemical fertilizers and the burning of the fossil fuels.

Increase in the global temperature increases the incidence of infectious diseases like dengue, malaria, yellow fever, sleeping sickness etc.

1.6 Acid Rain

The pH of rain water is 5.6 due to the presence of H^+ ions formed by the reaction of rain water with carbon dioxide present in the atmosphere as per following reactions :

 $H_2O(\ell) + CO_2(g) \Longrightarrow H_2CO_3(aq)$:

 $H_2CO_3(aq) \longrightarrow H^+(aq) + HCO_3^-(aq)$

When the natural rain falls through polluted air, it comes in contact with chemicals such as gaseous oxides of sulphur (SOx), oxides of nitrogen (NO₂), mist of hydrochloric acid and phosphoric acid. These substances dissolves in falling rain making it more acidic than normal pH ranging between 5.6 and 3.5.

When the pH of rain water drops below 5.6, it is called acid rain. Nowadays, the term acid rain is used to describe the way in which acid from the atmosphere is deposited on the earth's surface.Oxides of nitrogen and sulphur which are acidic in nature can be blown by wind along with solid particles in the atmosphere and finally settle down either on the ground as dry deposition or in water, fog and snow as wet deposition.

Chemistry of acid rain :

 SO_2 and NO_2 after oxidation and reaction with water are major contributors to acid rain, because polluted air usually contains particulate matter that catalyses the oxidation. Following are the major sources of the oxides of sulphur and nitrogen.

(i) Burning of fossil fuels (which contain sulphur and nitrogeneous matter) such as coal and oil in power station and furnaces or petrol and diesel in motor engines.

(ii) Volcanic eruptions, forest fires and bacterial decomposition of organic matter.

 $2SO_2(g) + O_2(g) + 2H_2O \ (\ell) \longrightarrow 2H_2SO_4 \ (aq)$

 $4NO_2(g) + O_2(g) + 2H_2O(\ell) \longrightarrow 4HNO_3(aq)$

Beside these ammonium salts are also formed and can be observed as an atmospheric haze (Aerosol of fine particles).

Aerosol particles of oxides or ammonium salts in rain drops settle down as wet deposition. SO₂ is also absorbed directly on both solid and liquid ground surfaces and is thus deposited as dry-deposition.

Harmful effect of acid rain

(i) Acid rain is harmful for agriculture, plants and trees because it dissolves and washes away nutrients needed for their growth.

(ii) Acid rain affects plants and animal life in aquatic ecosystem.

(iii) It causes respiratory ailments in human beings and animals.

(iv) It corrodes water pipes resulting in the dissolution of heavy metals such as iron, lead and copper into the drinking water.

(v) Building materials such as stone, marble, dolomite, mortar, slate or metal are corroded and weakened on reaction with acid rain because of the formation of soluble compounds.

 $CaCO_3 + H_2SO_4 \longrightarrow CaSO_4 + CO_2 \uparrow + H_2O$

1.7 Particulate pollutants

Particulate refers to minute solid particles or liquid droplets in air. These are found in vehicle emissions, smoke particles from fires, dust particles and ash from industries. Particulates in the atmosphere may be viable or non-viable.

Viable Particulates : The viable particulates are minute living organisms that are dispersed in the atmosphere. Some examples are bacteria, fungi, molds, algae etc. They cause plant diseases and also produce allergic reactions to human beings.

Non-viable Particulates : Non-viable particulates may be classifed according to their nature and size as given below.

(a) Smoke particulates : They consist of solid or mixture of solid and liquid particles formed during combustion of organic matter. Examples are cigarette smoke, smoke from burning of fossil fuel, garbage and dry leaves, oil smoke etc.

(b) Dust : It consists of fine solid particles over 1µm in diameter produced during crushing, grinding and attribution of solid materials.

Examples are sand from sand blasting, saw dust from wood works, pulverized coal, cement and fly ash from factories, dust storms etc.

(c) Mists : They are produced by particles of spray liquids and by condensation of vapours in air. Examples are H_2SO_4 mist, herbicides and insecticides that miss their target and travel through air and form mists.

(d) Fumes : They are generally produced by the condensation of vapours during sublimation, distillation, boiling and several chemical reactions. Organic solvents, metals and metallic oxides form fume particles.

Air borne particles such as dust, fumes, mists etc are dangerous for human health.

Toxic effect :

(i) Particulate pollutants bigger than 5 microns are supposed to lodge in the nosal passage.

(ii) Particulate pollutants of about 1.0 micron enter into lungs easily.

(iii) Leaded petrol is the primary source of air-borne lead emission. Lead interferes with the development and maturation of red blood cells.

1.8 Smog

Word smog is obtained from the combination of the words smoke and fog. It is the one of the most common examples of air pollution that occurs in many cities through out the world. There are two types of smog as explained below.

Classical Smog

It is also known as sulphurous smog or London smog (as first occured in London). It occurs in cool and humid climate. It is a mixture of smoke, fog and sulphur dioxide. Because of the presence of SO₂ and carbon particles (soot), it is a reducing mixture and therefore it is also called as reducing smog. Photochemical Smog

It is also known as **Los Angles smog** (as first occured in Los Angles). It occurs in warm, dry and sunny climate. The main components of this smoot result from the action of sunlight on unsaturated hydrocarbons and nitrogen oxides produced by automobiles and factories. Photo chemical smog has high concentration of oxidising agents like NO₂ therefore called **oxidising smog.**

Mechanism of photochemical smog :

*Burning of fossil fuels yields variety of pollutants into the earth's troposphere. Most important pollutants are hydrocarbons (unburned fuels) and nitric oxide (NO).

*When the concentration of these pollutants increases to sufficiently high levels, a chain reaction occurs from their interaction with sunlight in which NO is converted into NO₂. This NO₂ in turn absorbs energy from sunlight and decomposes into NO and free oxygen atom.

(i)

$$NO_2(g) \xrightarrow{hv} NO(g) + O(g)$$

Oxygen atom being very reactive combines with atmospheric oxygen forming ozone.

 $O(q) + O_2(q) \Longrightarrow O_3(q)$ (ii) The ozone formed in the above reaction reacts rapidly with the NO(g) formed in the reaction (i) to regenerate NO₂. NO₂ is a reddish brown/brown gas and at sufficiently high level can contribute to haze.

$$NO(g) + O_3(g) \longrightarrow NO_2(g) + O_2(g)$$
 (iii)

*Like NO₂, O₃ is a toxic gas and both NO₂ and O₃ are strong oxidising agents : They can react with the unburnt hydrocarbons in the polluted air to produce compounds like formaldehyde, acrolein and peroxyacetyl nitrate (PAN).

 $3CH_4 + 2O_3 \longrightarrow 3CH_2 = O + 3H_2O$

CH₂=CHCH=O (acrolein)

CH₃COONO₂ (peroxyacetyl nitrate, PAN)

 $O_3 \longrightarrow O_2 + [O]$

O + hydrocarbons $\longrightarrow \text{RCO}$ (free radical) $\xrightarrow{O_2} \text{RCO}_3$ (peroxyl acyl free radical)

$$RCO_3 + hydrocarbons \longrightarrow CH_2 = O,$$

 $CH_2 = CHCHO, ketones etc.$

$$\begin{array}{cccccc} \mathsf{RCO}_3 + \mathsf{O}_2 & \longrightarrow & \mathsf{RCO}_2 + \mathsf{O}_3 \\ \mathsf{RCO}_3 + \mathsf{NO} & \mathsf{RCO}_2 & \longrightarrow & + \mathsf{NO}_2 \\ & & & & & \\ \mathsf{O} & & & & & \\ \mathsf{II} & & & & \\ \mathsf{R}-\mathsf{C}-\mathsf{O}-\mathsf{O} + \mathsf{NO}_2 & \longrightarrow & \mathsf{R}-\mathsf{C}-\mathsf{O}-\mathsf{O}-\mathsf{NO}_2 \end{tabular} (\mathsf{PAN}) \end{array}$$

Harmful/toxic effects of photochemical smog

(i) Components of photochemical smog, NO and O_3 , irritate the nose and throat and their high concentration causes headache, chest pain, dryness of the throat, cough and difficulty in breathing. (ii) Both ozone and PAN act as powerful eve irritants.

(iii) Photochemical smog leads to cracking of rubber and extensive damage to plant life.

PAN inhibits photo system, inhibits formation of chlorophyll and also spoils enzymes.

(iv) Photochemical smog also causes corrosion of metals, stones, building materials, rubber and painted surfaces.

Control of photochemical smog

(i) Certain chemical compounds are sprayed into atmosphere, which generate free radicals. These free radicals combine with those free radicals which are responsible for the formation of the component of photo chemical smog.

(ii) Using catalytic converters in the automobiles, which prevent the release of NO and hydrocarbons to the atmosphere.

(iii) By plantation of certain plants like pinus, juniparus, quercus, pyrus ant vitis which metabolise NO and thus help in the control of the formation of photochemical smog.

2. Stratospheric Pollution

Formation and break down of ozone

* The upper part of stratosphere consists of considerable amount of ozone (O₃). The ozone layer protects us from the harmful ultra violet (UV) radiations ($\lambda = 255$ nm) coming from the sun.

* These radiations cause skin cancer (melanoma) in human beings and, therefore, it is important to maintain and protect the ozone shield/layer.

* Ozone is produced as a result of the action of ultraviolet radiations on dioxygen as given below.

* The main reason of ozone layer depletion is believed to be the release of chlorofluorocarbon compounds (CFCs) which are also known as freons.

* The CFCs are non reactive, nonflammable, non-toxic organic molecules and, therefore, used in refrigerations, airconditioners, in the production of plastic foam and by the electronic industry for cleaning computer parts. Released CFCs come in contact with the normal atmospheric gases and eventually reach stratosphere where they cause depletion in ozone layer as described below.

$$\begin{array}{c} \mathsf{CF}_2\mathsf{Cl}_2(g) & \xrightarrow{\mathsf{UV}} & \overset{\circ}{\mathsf{Cl}} & (g) + \overset{\circ}{\mathsf{C}}\mathsf{F}_2\mathsf{Cl} & (g) \\ \overset{\circ}{\mathsf{Cl}}(g) + \mathsf{O}_3 & (g) & \longrightarrow & \mathsf{Cl} \overset{\circ}{\mathsf{O}}(g) + \mathsf{O}_2 & (g) \\ \overset{\circ}{\mathsf{Cl}}\overset{\circ}{\mathsf{O}}(g) + \mathsf{O} & (g) & \longrightarrow & \overset{\circ}{\mathsf{Cl}}(g) + \mathsf{O}_2 & (g) \end{array}$$

In this the chlorine radicals are continuously regenerated and cause the decomposition of ozone.

Hence, CFCs act as transporting agents for continuously generating chlorine radicals into the stratosphere and damaging the ozone layer.

Ozone Hole

In Antarctica, scientists reported about the depletion of ozone layer commonly known as ozone hole over the south pole. They reported that a unique set of conditions was responsible for the ozone hole.

Polar stratospheric clouds

(i) In summer season, nitrogen dioxide and methane react with chlorine monoxide and chlorine atom forming chlorine sinks and, thereby, preventing much ozone depletion.

In winter, special type of clouds called polar stratospheric clouds are formed over antarctica. These polar stratospheric clouds provide surface on which chlorine nitrate formed gets hydrolysed to form hypochlorous acid. It also reacts with HCl produced to give molecular chlorine.

 $\begin{array}{l} ClO(g) + NO_{2}(g) \longrightarrow CIONO_{2}(g) ;\\ \dot{C}l(g) + CH_{4}(g) \longrightarrow \dot{C}H_{3}(g) + HCl(g)\\ CIONO_{2}(g) + H_{2}O(g) \longrightarrow HOCl(g) + HNO_{3}(g)\\ CIONO_{2}(g) + HCl(g) \longrightarrow Cl_{2}(g) + HNO_{3}(g) \end{array}$

(ii) In spring, when sunlight returns to the Antarctica, the sun's warmth, break up the clouds and HOCl and Cl_2 are photolysed by sun light according to the following reactions.

HOCI (g) $\xrightarrow{h\nu}$ $\stackrel{\bullet}{OH}$ (g) + $\stackrel{\bullet}{CI}$ (g) ; Cl₂(g) $\xrightarrow{h\nu}$ 2 $\stackrel{\bullet}{CI}$ (g)

The chlorine radicals thus formed, initiate the chain reaction for ozone depletion.

Harmful effects of depletion of ozone layer :

(i) UV radiation lead to ageing of skin, cataract, sunburn, skin cancer, killing of many phytoplanktons, damage to fish productivity etc.

(ii) UV radiations affect the plant protein which eventually leads to the harmful mutation of cells.

(iii) UV radiations increase the evaporation of surface water through the stomata of the leaves and thus decreases the moisture content of the soil.

(iv) Increase in UV radiations damage paints and fibres, causing them to fade faster.

Ex-1. Explain tropospheric pollution in 100 words

Sol. Tropospheric pollution occurs due to the presence of undesirable gases and the solid particles in the air. The major gaseous and the particulate pollutants present in the troposphere are as follows :

• Gaseous air pollutants. These include mainly oxides of sulphur (SO₂, SO₃), oxides of nitrogen (NO, NO₂) and oxides of carbon (CO, CO₂) in addition to hydrogen sulphide (H₂S), hydrocarbons, ozone and other oxidants.

- Particulate pollutants. These include dust, mist, fumes, smoke, smog, etc.
- Ex-2. What is the composition of photochemical smog?
- **Sol.** Mixture of NO₂, O₃, peroxyacyl nitrates (PAN), aldehydes, ketones, hydrocarbons and CO.

Section (B) : Water pollution, soil pollution and waste management

3. Water pollution

Pollution of water originates from human activities :

(i) Point source pollution

Easily identified source of pollution is called as point source. Examples are municipal and industrial discharge pipes where pollutants enter the water source.

(ii) Non point source pollution

Non point sources of pollution are those where a source of pollution can not be identified. Examples are agriculture run off (from farm, animals and crop-lands), acid-rain storm water, drainage (from streets, parking lots and lawns) etc.

Water pollutants and their sources.

Pollutant	Source
(i) Micro-organisms	Domestic sewage
(ii) Organic wastes	Domestic sewage, animal excreta and waste, decaying animals and plants, discharge from food processing factories
(iii) Plant nutrients	Chemical fertilizers
(iv) Toxic heavy metals	Industries and chemical factories
(v) Sediments	Erosion of soil by agriculture and strip mining
(vi) Pesticides	Chemical used for killing insects, fungi and weeds
(vii) Radioactive substances	Mining of uranium containing minerals
(viii) Heat	Water used for cooling in industries.

3.1 Causes of water pollution :

(a) Pathogens :

Water pollutants which are the disease causing agents are called pathogens. Pathogens include bacteria and other organisms that enter water from domestic sewage and animal excreta.

Human excreta contains bacterias such as Escherichia coli and Streptococcus faecalis which cause gastrointestinal diseases.

(b) Organic waste :

Organic matter such as leaves, grass, trash etc. are major water pollutants. They pollute the water as a consequence of decay i.e. run off. Excessive phytoplankton growth within water is also a cause of water pollution. These wastes are biodegradable.

Biodegradable waste :

These are domestic wastes which can be rapidly decomposed under natural processes by microorganism.

Non-Biodegradable waste :

These are poisonous wastes which do not degrade or degrade very slowy in the ecosystem naturally. These are not recycled in the natural environment.

3.2 Dissolved Oxygen (DO) :

Bacteria present in large population causes the decomposition of organic matter present in water. They consume oxygen dissolved in water. The dissolved oxygen (DO) is limited in water. In winter i.e. in cold water, dissolved oxygen can reach a concentration up to 10 ppm. That is why even a moderate amount of organic matter when decompose in water can deplete the amount of dissolved oxygen in water.

If the concentration of dissolved oxygen in water is below 6 ppm, the growth of fish gets inhibited. Oxygen reaches to water (i) through atmosphere and (ii) from the process of photosynthesis carried out by many aquatic green plants during day light.

However during night, photosynthesis stops but the plants continue to respire, resulting in the reduction of dissolved oxygen. The dissolved oxygen is also used by the microorganism to oxidise organic matter. If too much of organic matter is added to water, all the available oxygen is consumed. This leads to the death of oxygen dependent aquatic life.

The concentration of dissolved oxygen in water is very important for aquatic life. Thus **anaerobic bacteria** (which do not require oxygen) begin to break down the organic matter/waste and produce chemicals that have foul smell and are harmful to human health. Aerobic (oxygen requiring) bacteria degrade these organic waste and keep the water depleted in dissolved oxygen.

3.3 Biochemical oxygen demand (BOD)

The amount of oxygen required by bacteria to break down the organic waste present in a certain volume of a sample of water is called biochemical oxygen demand (BOD).

Biochemical oxygen demand (BOD) is a measure of the amount of dissolved oxygen that would be needed by the microorganism to oxidise the organic compounds. 'Clean water' would have a BOD value of **less than 5 ppm** where as highly polluted water (river, lake, ponds etc.) could have a BOD value of **17 ppm or more**.

3.4 Chemical pollutants

Chemical pollutants include water soluble such as cadmium, mercury, nickel etc. All these metals are dangerous to human because our body can not excrete them. Over the time, the concentration of these metals crosses the tolerance limit and thus, these metals then can damage kidneys, central nervous system, liver, etc.

Acids (like H₂SO₄) from mine drainage and salts like sodium and calcium chloride which are used to melt snow and ice in the colder climates are water soluble chemical pollutants.

Organic pollutants include petroleum products (e.g. major oil spills in oceans), pesticides, various industrial chemicals (e.g. poly chlorinated biphenyls used as cleansing solvent), detergent and fertilizers PCBs (Polychlorinated biphenyl) are suspected to be carcinogenic. Detergents are biodegradable. However their use can create problem. The addition of fertilizer increases the amount of soluble phosphates in the water and this enhances the growth of algae. Such profuse growth of algae, covers the water surface and reduces the oxygen concentration in water. This leads to anaerobic conditions, commonly, with accumulation of abnoxious decay and death. Thus, bloom-infested water inhibits the growth of other living organism in the water body.

3.5 Eutrophication

The process in which nutrient enriched water bodies support a dense plant population, which kills animal life by depriving it of oxygen and results in subsequent loss of biodiversity is known as Eutrophication.

3.6 International standards for drinking water

(a) Fluoride : Drinking water should contain fluoride ions concentration up to **1 ppm** or 1 mg dm⁻³. Its deficiency in drinking water causes diseases such as tooth decay etc. The F⁻ ions make the enamel on teeth much harder by converting hydroxyapatite, $[3Ca_3(PO_4)_2.Ca(OH)_2]$, the enamel on the surface of the teeth, into much harder fluorapatite, $[3Ca_3(PO_4)_2.CaF_2]$.

However, F⁻ ion concentration above 2 ppm causes brown mottling of teeth. Similar excess fluoride (over 10 ppm) causes harmful effect to bones and teeth.

(b) Lead : The upper standard limit of lead concentration is about **50 ppb**. It can damage kidney, liver, reproductive system etc.

(c) Sulphate : Excessive concentration of sulphate (>500 ppm) causes laxative effect.

(d) Nitrate : The maximum of nitrate is **50 ppm** and excess nitrate in water can cause diseases such as methemoglobinemia ('blue baby' syndrome).

(e) Other metals :

Metal Maximum of concentration	
	(ppm or mg dm ⁻³)
Fe	0.2
Mn	0.05
AI	0.2
Cu	3.0
Zn	5.0
Cd	0.005

4. Soil pollution

Insecticides, pesticides and herbicides cause soil pollution.

(a) Pesticides :

Pesticides are synthetic toxic chemicals with ecological repercussions.

The repeated use of the same or similar pesticide give rise to pests that are resistant to that group of pesticides thus making the pesticide ineffective. Therefore, other organic toxins such as aldrin and dieldrin were introduced, as insect resistance of DDT increased.

Most of them are water insoluble and non-biodegradable. These high persistant toxins are, therefore, transferred from lower trophic level to higher trophic level through food chain.

Over the time, concentration of the toxins in higher animals reach a level which causes serious metabolic and physiological disorders.

(b) Herbicides :

Herbicides such as sodium chlorate (NaClO₃), sodium arsenite (Na₃AsO₃) and many other are now a days used to kill weeds. However because of their toxic effect to mammals their use have been restricted, some herbicides cause birth effect.

These days, organic compounds such as triazines are widely used as herbicides.

(c) **Insecticides :** These are used to control insects and thus help to curb diseases and protect crops. They include chlorinated hydrocarbons, DDT, BHC and malathon etc. However, due to adverse effects, use of DDT has been banned in india.

5. Industrial waste

(i) Biodegradable waste

Generated by cotton mills, food processing units, paper mills and textile factories.

(ii) Nondegradable waste

Generated by thermal power plants (fly ash); integrated iron and steel plants (blast furnace slag and steel melting slag); aluminium, zinc and copper manufacture (mud and tailings); Fertilizer industires (gypsum)

Disposal : Fly ash and slag from the steel industries are used in the cement industries.

Large quantities of toxic wastes are usually destroyed by controlled incineration, while small quantities are burnt along with factory garbage in open bins.

5.1 Waste Management

In addition to the improper disposal of the house hold wastes, disposal of medical, agriculture, industrial and mining wastes is one of the major causes of environmental degradation. Therefore, management of wastes is of utmost importance.

5.2 Collection and disposal :

Note : (i) Non-biodegradable waste like polythene bag, metal scraps, etc choke the sewers and if polythene bags are swallowed by cattle, it can cost their lives also. The poor waste management causes health problems leading to epidemics due to contamination of ground water.

(ii) The persons who are directly involved in the collection and disposal of waste should make the use of protective device such as gloves or water proof boots and gas masks.

6. Green chemistry

(i) Green chemistry is a way of thinking and is about utilising the existing knowledge and principles of chemistry and other services to reduce the adverse impact on environment.

(ii) Green chemistry is a continuous process that would bring about minimum pollution or deterioration to the environment.

(iii) The generation of by-products during a process if not used gainfully are not only environmental unfriendly but also cost-ineffective. In a chemical reaction, if reactants are fully converted by optimising reaction conditions into useful environment friendly medium then there would be no chemical pollutants introduced in the environment. It will be worth while to carry out the synthetic reactions in aqueous medium in place of organic solvents since water has high specific heat and low volatility. Water is cost effective, noninflammable and devoid of any carcinogenic effects.

Green chemistry in day-to-day life :

(i) Dry cleaning of clothes : Tetra chloroethene used for dry cleaning was found to contaminate the ground water and is also a suspected carcinogen. This compound has now been replaced by **liquefied** carbondioxide with a suitable detergent. This will result in less harm to ground water.

(ii) Bleaching of paper : Use of H_2O_2 with suitable catalyst has replaced the use of chlorine gas for bleaching paper.

(iii) Synthesis of chemicals :

 $CH_2 = CH_2 + O_2 \xrightarrow[Pd(II)/Cu(II) (in water)]{CH_3CHO} (90\%, one step method)$

Important : Green chemistry leads to reduction in

(i) material (ii) energy consumption and

(iii) waste generation.

MISCELLANEOUS SOLVED PROBLEMS

- 1. What would have happened if the greenhouse gases were totally missing in the earth's atmosphere ? Discuss.
- **Sol.** The solar energy radiated back from the earth surface is absorbed by the greenhouse gases (i.e. CO₂, CH₄, O₃, CFC's and water vapour) present near the earth's surface. They heat up the atmosphere near the earth's surface and keep it warm. As a result, they keep the temperature of the earth constant and help in the growth of plants and existence of life on the earth. If there were no greenhouse gases, there would have been no vegetation and life on the earth.
- **2.** A large number of fish are suddenly found floating dead on a lake. There is no evidence of toxic dumping but you find an abundance of phytoplankton. Suggest a reason for the fish kill.
- **Sol.** Excessive phytoplankton (organic pollutants such as leaves, grass, trash, etc.) present in water is biodegradable. A large population of bacteria decomposes this organic matter in water. During this process they consume the oxygen dissolved in water. Water has already limited dissolved oxygen (= 10 ppm) which is further depleted. When the level of dissolved oxygen falls below 6 ppm, the fish cannot servive. Hence, they die and float dead in water.
- **3.** How can domestic waste be used as manure ?
- **Sol.** Domestic waste comprises of two types of materials, biodegradable such as leaves, rotten food, etc., and non-biodegradable such as plastics, glass metal, scrap, etc. The non-biodegradable waste is sent to industry for recycling and the biodegradable waste should be deposited in the land fills. With the passage of time, it is converted into compost manure.
- **4.** For your agricultural field or garden, you have developed a compost producing pit. Discuss the process in the light of bad odour, files and recycling of wastes for a good produce.
- **Sol.** The compost producing pit should be set up at a suitable place or in a tin to protect ourselves from bad odour and files. It should be kept covered so that files cannot make entry into it and the bad odour is minimized. The recyclable material like plastics, glass, newspapers, etc. should be sold to the vendor who further sells it to the dealer. The dealer further supplies it to the industry involved in recycling process.
- 5. Answer the following subparts
 - (i) What is loam soil ?
 - (ii) What are asbestosis and silicosis ?
 - (iii) What are particulates and what is their approximate size ?
 - (iv) Name three natural sources of air pollution
 - (v) How are flue gases from industries feed from oxides of nitrogen and sulphur ?
- **Sol.** (i) Soil containing 34% air, 66% water along with humus is called loam soil. It is best for crops.
 - (ii) Asbestosis and silicosis are lung diseases caused by particulates.

(iii) Particulates are finely divided solid or liquid particles suspended in air. Their size varies from 2 \times 10⁻⁴ μ to 500 μ .

(iv) Volcanic erruptions, forest fires and pollen grains of flowers.

(v) The flue gases are subjected to scrubbing with conc. H_2SO_4 or with alkaline solutions such as $Ca(OH)_2$ or $Mg(OH)_2$ etc.

- 6. (i) Name two important sinks of CO₂.
 - (ii) What is marine pollution
 - (iii) What is humification ?

Sol.

Sol.

- (iv) What are viable and non-viable particulates ?
- (i) Oceans (which dissolve it) and plants (which use it for photosynthesis)

(ii) Pollution of sea water due to discharge of wastes into it is called marine pollution.

(iii) The decomposition of organic material (leaves, root etc.) in the soil by microorganism to produce humus is called humification.

(iv) Viable particulates are small size living organisms such as bacteria, fungi, moulds, algae, etc. Nonviable particulates are formed by disintegration of large size materials or condensation of small size particles or droplets e.g. mist, smoke, fume and dust.

7. (i) What is the composition of photochemical smog and classical smog ? How do the two differ in their behaviour ?

(ii) What should be the tolerable limit of fluoride ions in drinking water ? What happens if it is higher than 10 ppm ?

- Sol. (i) Photochemical smog is mixture of a number of irritation causing compounds like NO₂, O₃ aldehydes, peroxyacyl nitrates, ketones, hydrocarbons and CO. It is formed in summer months after sunrise. Classical smog is a mixture of oxides of sulphur and carbons (soot). It is formed in early hours of winter months. Photochemical smog is oxidising in nature whereas classical smog is reducing in nature. (ii) 1 ppm or 1 mg dm⁻³. Higher concentration is harmful to bones and teeth.
- 8. What do you understand by greenhouse effect ? What are the major gases ?
- **Sol.** The warming of the earth or global warming due to re-emission of sun's energy absorbed by the earth followed by its absorption by CO₂ molecules and H₂O vapour present near the earth's surface and then its radiation back to the earth is called greenhouse effect.

Though CO_2 is the main gas in the greenhouse effect, there are some other greenhouse gases like methane, chlorofluorocarbons, ozone, nitrous oxide and water vapours.

9. (i) Why does rain water normally have a pH of about 5.6? When does it become acid rain ?

(ii) Why is acid rain considered as a threat to Taj mahal?

(iii) Explain by giving reason "The presence of CO reduces the amount of haemoglobin available in the blood for carrying oxygen to the body cells."

(iv) State briefly the reactions causing ozone layer depletion in the stratosphere.

(i) Normally rain has a pH of about 5.6 due to dissolution of CO2 into the atmosphere

 $(CO_2 + H_2O \longrightarrow H_2CO_3 \implies 2H^+ + CO_3^{2-})$. When the pH of rain falls below 5.6, it becomes acid rain.

(ii) Taj mahal is made of marble. The acid rain contains H₂SO₄ which attacks the marble (CaCO₃) thereby pitting it, discolouring it and making it lustreless.

 $CaCO_3 + H_2SO_4 \longrightarrow CaSO_4 + CO_2 + H_2O.$

(iii) CO combines with haemoglobin of the red blood cells (RBCs) about 300 times more easily than oxygen to form carboxyhaemoglobin reversibly as follows.

 $Hb + CO \implies HbCO.$

Thus it is not able to combine with oxygen to form oxyhaemoglobin and transport of oxygen to different body cells cannot take place.

Exercise-1 =

PART - I : OBJECTIVE QUESTIONS

भाग - I : वस्तुनिष्ठ प्रश्न (OBJECTIVE QUESTIONS)

Section (A) : Gaseous air pollutants खण्ड (A) : गैसीय वायु प्रदूषक

(1) Nitrogen oxide (2) Nitric ox	ide (3)	Nitrous oxide	(4*) Sulphur dioxide
जीवाश्म ईंधन का दहन निम्न में से किस	प्रदूषक का मुख्य सं	ोत होता है ?	(At)
(1) नाइट्राजन आक्साइड। (2) नाइट्रिक	आक्साइड । (3)	नाइट्रस आक्साइड।	(4*) सल्फर डाइआक्साइड।
SO ₂ and NO ₂ produce pollution by in (1) alkalinity (2*) acidity SO ₂ तथा NO ₂ द्वारा उत्पन्न होने वाले प्रद (1) क्षारीयता। (2*) अम्लीयत	ncreasing : (3) रूषण में निम्न की वृ ा। (3)	neutrality रद्धि होती है : उदासीनता।	(4) buffer action (4) बफर क्रिया।
SO ₂ and NO ₂ after oxidation and r atmosphere in the form of H ₂ SO ₄ , H	eaction with wa	ater convert into acid	Is. Acids come down from the
SO2 तथा NO2 जल से क्रिया कर अम्ल आता है।	में परिवर्तित हो ज	नाते है। वातावरण से अग	ल H ₂ SO ₄ , HNO ₃ के रूप में नीचे
Air pollutants that produce photoche (1) CO ₂ , CO and SO ₂ (3) O ₂ , Cl ₂ and HNO ₃ . निम्न में से कौनसे वायु प्रदूषक प्रकाशरास	mical oxidants in (2*) (4) ।यनिक ऑक्सीकारव	nclude :) N₂O, NO and HNO₃ O₃, Cl₂ and SO₂ क बनाते है :	3
(1) CO ₂ , CO तथा SO ₂	(2*)) N2O, NO तथा HNO3	
(3) O ₂ , Cl ₂ तथा HNO ₃ .	(4)	O3, Cl2 तथा SO2	
Carbon monooxide is pollutant as it (1) inactivates nerves (3) combines with oxygen कार्बन मोनोऑक्साइड एक ऐसा प्रदूषक है (1) तंत्रिका को निष्क्रिय कर देता है। (3) ऑक्सीजन के साथ संयक्त होता है।	: (2) (4*) जो : (2) (4*)	inhibits glycolysis) combines with haer ग्लायकोलाइसिस को रोग) हीमोग्लोबिन के साथ र	noglobin क देता है। पंस्तन होना है।
Carbon monoxide combine to hae more stable than oxyhaemoglobin. This oxygen difficiency causes head	moglobin to forr This stable comp lach, weak eyesi	m carboxy haemoglo plex reduces the oxy ight nervousness and	bbin which is about 300 times gen carrying capacity of blood. d cardiovascular disorder.
कार्बन मोनोऑक्साइड हीमोग्लोबिन से संय् गुना ज्यादा स्थाई है। यह स्थाई संकुल र कमी सरदर्द, कम आँख दृष्टि आदि उत्पन्न	पुक्त होकर कार्बोकर क्त की ऑक्सीजन 1 करता है।	सीहीमोग्लोबिन बनाता है पहुँचाने की क्षमता को अ	जो कि ऑक्सीहीमोग्लोबिन से 300 खरूद्ध करता है। यह ऑक्सीजन की
Acid rains are produced by : (1*) excess NO ₂ and SO ₂ from burn (2) excess production of NH ₃ by inde (3) excess release of carbon monox (4) excess formation of CO ₂ by com अम्ल वर्षा उत्पन्न होती है : (1*) जीवाश्म ईंधन के दहन से प्राप्त NO ₂ (2) उद्योग एवम् कोयला गैस से प्राप्त NH (3) अपूर्ण दहन से प्राप्त होने वाली कार्बन (4) दहन एवम् जन्तु श्वसन से प्राप्त CO ₂	ing fossil fuels ustry and coal ga ide by incomplet bustion and anin तथा SO ₂ के आधि 3 के अधिक मात्रा में मोनोऑक्साइड की के अधिक मात्रा में	as te combustion nal respiration. धेक्य द्वारा। में उत्पादन द्वारा। अधिक मात्रा मुक्त होने निर्माण द्वारा।	पर ।
	(1) Nutlogen oxide (2) Nutle ox जीवाश्म ईंधन का दहन निम्न में से किस प्र (1) नाइट्रोजन ऑक्साइड। (2) नाइट्रिक ड SO ₂ and NO ₂ produce pollution by ir (1) alkalinity (2*) acidity SO ₂ तथा NO ₂ द्वारा उत्पन्न होने वाले प्रद (1) क्षारीयता। (2*) अम्लीयत SO ₂ and NO ₂ after oxidation and r atmosphere in the form of H ₂ SO ₄ , H SO ₂ तथा NO ₂ जल से क्रिया कर अम्ल आता है। Air pollutants that produce photocher (1) CO ₂ , CO and SO ₂ (3) O ₂ , Cl ₂ and HNO ₃ . निम्न में से कौनसे वायु प्रदूषक प्रकाशरासा (1) CO ₂ , CO तथा SO ₂ (3) O ₂ , Cl ₂ तथा HNO ₃ . Carbon monooxide is pollutant as it (1) inactivates nerves (3) combines with oxygen कार्बन मोनोऑक्साइड एक ऐसा प्रदूषक है (1) तंत्रिका को निष्क्रिय कर देता है। (3) ऑक्सीजन के साथ संयुक्त होता हैं। Carbon monoxide combine to hae more stable than oxyhaemoglobin. This oxygen difficiency causes head कार्बन मोनोऑक्साइड हीमोग्लोबिन से संयु गुना ज्यादा स्थाई है। यह स्थाई संकुल रक् कमी सरदर्द, कम आँख दृष्टि आदि उत्पन्न Acid rains are produced by : (1*) excess NO ₂ and SO ₂ from burni (2) excess production of NH ₃ by indu (3) excess release of carbon monox (4) excess formation of CO ₂ by com अन्ल वर्षा उत्पन्न होती है : (1*) जीवाश्म ईंधन के दहन से प्राप्त NO ₂ (2) उद्योग एवम् कोयला गैस से प्राप्त NH (3) अपूर्ण दहन से प्राप्त होने वाली कार्बन (4) दहन एवम् जन्तु श्वसन से प्राप्त CO ₂	(1) Nindgen oxide (2) Ninh oxide (3) जीवाश्म ईधन का दहन निम्न में से किस प्रदूषक का मुख्य रू (1) नाइट्रोजन ऑक्साइड। (2) नाइट्रिक ऑक्साइड। (3) SO ₂ and NO ₂ produce pollution by increasing : (1) alkalinity (2*) acidity (3) SO ₂ arel NO ₂ gitt उत्पन्न होने वाले प्रदूषण में निम्न की द (1) क्षारीयता। (2*) अम्लीयता। (3) SO ₂ and NO ₂ after oxidation and reaction with wa atmosphere in the form of H ₂ SO ₄ , HNO ₃ . SO ₂ and NO ₂ ore से क्रिया कर अम्ल में परिवर्तित हो ज आता है। Air pollutants that produce photochemical oxidants i (1) CO ₂ , CO and SO ₂ (2* (3) O ₂ , Cl ₂ and HNO ₃ . (4) निम्न में से कौनसे वायु प्रदूषक प्रकाशरासायनिक ऑक्सीकारक (1) CO ₂ , CO तथा SO ₂ (2* (3) O ₂ , Cl ₂ and HNO ₃ . (4) Carbon monooxide is pollutant as it : (1) inactivates nerves (2) (3) combines with oxygen (4* कार्बन मोनोऑक्साइड एक ऐसा प्रदूषक है जो : (1) तंत्रिका को निष्क्रिय कर देता है। (2) (3) ऑक्सीजन के साथ संयुक्त होता है। (4* Carbon monoxide combine to haemoglobin to for more stable than oxyhaemoglobin. This stable com This oxygen difficiency causes headach, weak eyes कार्बन मोनोऑक्साइड हीमोग्लोबिन से संयुक्त होकर कार्बोक युना ज्यादा स्थाई है। यह स्थाई संकुल रक्त की ऑक्सीजन कमी सरदर्द, कम आँख दृष्टि आदि उत्पन्न करता है। Acid rains are produced by : (1*) excess formation of CO ₂ by combustion and anir अन्ल वर्षा उत्पन्न होती है : (1*) जीवाश्म ईंधन के दहन से प्राप्त NO ₂ तथा SO ₂ के आरि (2) उद्योग एवम् कोयला गैस से प्राप्त NH ₃ के अधिक मात्रा य (3) अपूर्ण दहन से प्राप्त होने वाली कार्बन मोनोऑक्साइड की (4) दहन एवम् जन्तु श्वसन से प्राप्त CO ₂ के अधिक मात्रा म	(1) भागपुर्धा 0,0103 0,0105

- **Sol.** When fossil fuel burnt in automobile engines different oxides like NO, NO₂, SO₂, SO₃ are produced. In the presence of moisture these oxides convert in the acids. These acids comes down from the atmosphere in the form of rain, called acid rain.
- S (from fossil fuel) + $O_2 \longrightarrow SO_2$ $SO_2 + O_3 \longrightarrow SO_3 + O_2$ $SO_2 + H_2O_2 \longrightarrow H_2SO_4$ $SO_3 + H_2O \longrightarrow H_2SO_4$ $2NO_2 + H_2O \longrightarrow HNO_3 + HNO_2$ ऑटोमोबाइल इंजन में ईधन के जलने से विभिन्न ऑक्साइड जैसे NO, NO2, SO2, SO3 आदि उत्पन्न होते है। नमी की हल. उपस्थिति में ये ऑक्साइड. अम्ल में परिवर्तित हो जातेहै। ये अम्ल वर्षा के साथ वायमण्डल से नीचे आ जाते है. जिसे अम्लीय वर्षा कहते है। S (ईधन से) + $O_2 \longrightarrow SO_2$ $SO_2 + O_3 \longrightarrow SO_3 + O_2$ $SO_2 + H_2O_2 \longrightarrow H_2SO_4$ $SO_3 + H_2O \longrightarrow H_2SO_4$ $2NO_2 + H_2O \longrightarrow HNO_3 + HNO_2$ Spraying of DDT produces pollution of the type: A-6. (2) air and water (3) air and soil (4*) air, water and soil (1) air DDT के छिड़काव से निम्न प्रकार प्रदूषण उत्पन्न होता है : (2) वायवीय एवम जलीय (1) वायवीय (3) जलीय एवम मुदा (4*) वायवीय, जलीय एवम मुदा A-7. Chlorofluorocarbon releases which of the following chemical harmful to ozone : (3) nitrogen peroxide (4) sulphur dioxide (1) fluorine (2*) chlorine क्लोरोफ्लोरोकार्बन निम्न में से कौनसा रसायन मुक्त करते हैं, जो ओजोन को हानि पहुँचाता है ? (3) नाइट्रोजन परॉक्साईड। (4) सल्फर डाइऑक्साइड। (1) फ्लोरीन। (2*) क्लोरीन | Most hazardous metal pollutant of automobile exhausts is : A-8. (2) cadmium (1) mercurv (3*) lead (4) copper स्वचालित वाहनों का अत्यधिक विषैला धातू प्रदूषक हैं : (1) मरकरी। (2) कैडमियम। (3*) लैड। (4) कॉपर। A-9. Classical smog occurs in places of : (1) excess CO₂ (2*) cool and humid (3) warm, dry and sunny (4) excess NH₃ चिरसम्मित धूम्र-कोहरा किस जलवायू में बनता है ? (1) CO2 का आधिक्य। (2*) उण्डी एवम आर्द्र। (3) गर्म, शुष्क एवम् धूपमयी। (4) NH3 का आधिक्य। Sol. Classical smog contains smoke, fog and sulpher dioxide. It occurs in cool and humid climate. चिरसम्मित धूम्र–कोहरा में धूम्र, कोहरा तथा सल्फर डाइऑक्साइड होते है। यह ठण्डे एवम् आर्द जलवायू में पाया जाता है। हल. A-10. The aromatic compounds present as particulates is/are : (3) nitrobenzene (4*) polycyclic hydrocarbons (1) benzene (2) toluene निम्न में से कौनसा ऐरोमैटिक यौगिक कणिकीय प्रदूषक के रूप में पाया जाता है/हैं ? (1) बेन्जीन (3) नाइट्रोबेन्जीन (4*) पॉलीसाइक्लिक हाइड्रोकार्बन (2) टॉलईन
- **A-11.** Which of the following statements is true about photochemical smog ? (1) It is reducing in nature.
 - (2) it is formed in winter.
 - (3) It is a sulphurous smoq.
 - (4*) Components of the smog, NO and O₃, irritate the nose and throat and their high concentration causes headache, chest pain, dryness of the throat, cough and difficulty in breathing.

प्रकाशरासायनिक धूम्र–कोहरे के विषय में निम्न में से कौनसा कथन सत्य है ?

(1) यह अपचायक प्रकृति का होता है।

(2) यह सदी में बनता हैं।

(3) यह एक सल्फर युक्त धूम्र–कोहरा है।

(4*) प्रकाशरासायनिक धूम्र–कोहरे के घटक, NO तथा O3, नाक एवं गले में जलन पैदा करते हैं तथा इनकी उच्च सान्द्रता से सिरदर्द, छाती में दर्द, गले का शुष्क होना, खाँसी एवं श्वास में अवरोध हो सकता हैं।

- **Sol.** Photochemical somg is occures in warm, dry and sunny climate. It has high concentration of NO, NO₂ and O₃. Their low concentration causes irritation in nose and throat and their high concentration causes headache, chest pain, cough and diffculty in breathing.
- हल. प्रकाश रासायनिक धुआँ गर्म, सूखे तथा सूर्य के वातावरण में रहता है। इसमें NO, NO2 तथा O3 की उच्च सान्द्रता होती है। इनकी कम सान्द्रता नाक तथा गले में जलन पैदा करती है तथा अधिक सान्द्रता सरदर्द, सीने में दर्द, कफ तथा श्वास में तकलीफ पैदा करती है।
- A-12.Besides CO2, the other green house gas is :
CO2 के अलावा, अन्य हरितगृह गैस है :
(1*) CH4(2) N2(3) Ar(4) O2Sol.Green house gases are, CO2, CH4, O3 N2O and CFCS water vapours.
- हल. CO2, CH4, O3 N2O तथा CFCS जल वाष्प सभी हरितगृह गैसे है।
- A-13. Which of the following is not a part of green chemistry ?

 (1) Photochemistry
 (2) Sonochemistry
 (3*) Nuclear chemistry
 (4) Biochemistry
 (1) प्रकाशरसायन।
 (2) सोनोरसायन।
 (3*) नाभिकीय रसायन।
 (4) जैवरसायन।
- **Sol.** Green chemistry is the way by which the pollution or deterioration to the environment is minimises, nuclear chemistry is not the part of green chemistry.
- हल. हरित रसायन से वातावरण का प्रदूषण कम होता है,नाभिकीय रसायन, हरित रसायन का भाग नहीं है।
- A-14. Ultraviolet radiation from sun causes a reaction that produces :

 (1) fluorides
 (2) carbon monooxide
 (3) sulphur dioxide
 (4*) ozone
 (4*) ozone
 (1) पलोराइड।
 (2) कार्बन मोनोऑक्साइड।
 (3) सल्फर डाइऑक्साइड।
 (4*) ओजोन।

 Sol. Ultraviolet radiation from sum produces ozone.

(4) भुमण्डलीय तापवृद्धि ।

सूर्य की पराबैंगनी विकिरण ओजोन उत्पन्न करती है।

 $3O_2 \xrightarrow{UV} 2O_3.$

A-15. Ozone depletion in stratosphere shall result in : (1) forest fires (2*) increased incidence of skin burns and skin cancer (3) increase in biological oxygen demand (4) global warming

- (1) वनों में आग लगना। (2*) त्वचा का जलना तथा त्वचा कैंसर में वृद्वि।
- (3) जैविक ऑक्सीजन माँग में वृद्वि।
- **A-16.** Which of the following statements is true ?
 - (1) London smog is oxidising in nature.
 - (2) London smog contains H_2SO_4 droplets.
 - (3^{*}) London smog is mixture of smoke, fog and SO₂.
 - (4) London smog causes bronchitis.
 - निम्न में से कौनसा कथन सत्य है ?
 - (1) लन्दन धूम्र–कोहरा ऑक्सीकारक प्रकृति का होता है।
 - (2) लन्दन धूम्र–कोहरे में H2SO4 की बुंदिकायें (droplets) होती हैं।
 - (3*) लन्दन धूम्र–कोहरा धूम्र, कोहरा तथा SO2 का मिश्रण होता है।
 - (4) लन्दन धूम्र–कोहरे के कारण श्वास में अवरोध (bronchitis) नामक रोग हो जाता है।

A-17.	Which of the following processes does not incre (1) Decay of animals (2) Breathing निम्न में से किस प्रक्रिया द्वारा वायुमण्डल में CO2 की म	ase the amount of CO₂ i (3*) Photosynthesis ात्रा नहीं बढ़ती है ?	n atmosphere ? (4) Burning of petrol
Sol. हल.	(1) जन्तुओं का क्षय (2) श्वसन During photosynthesis CO2 is used by plants to प्रकाश संश्लेषण में पादपों में CO2 प्रयुक्त होती है जिसस्	(3*) प्रकाश संश्लेषण make food for their grow ने भोजन का निर्माण होता है	(4) पेट्रोल का दहन th. ।
A-18.	Consider the following statements and select the S ₁ : Dust is a non-viable particle. S ₂ : Particulates acquire negative charge and an S ₃ : O ₂ is a green house gas. S ₄ : Algae is a viable particulate. (1) S ₁ and S ₂ only (2) S ₁ , S ₂ and S ₃ only निम्नलिखित कथनों पर विचार कीजिये तथा सही विकल्प S ₁ : धूल अजैविक कण होते हैं S ₂ : कणिकीय प्रदूषक पर ऋणावेश होता है तथा यह धन S ₃ : O ₂ एक हरित गृह गैस है S ₄ : शैवाल एक जैविक कणिकीय प्रदूषक है (1) केवल S ₁ तथा S ₂	e correct option : re attracted by the positiv (3*) S1, S2 and S4 only ा का चयन कीजिऐ : नात्मक इलैक्ट्रोड द्वारा आकर्षि (2) केवल S4 S2 तथा S2	ve electrode. (4) S₂, S₃ and S₄ र्वत होते हैं ।
	(1) पंपूर्व 51 राजा 521 (3*) केवल S1, S2 तथा S4।	(2) केवल S ₂ , S ₃ तथा S ₄ (4) केवल S ₂ , S ₃ तथा S ₄	
A-19. Sol. हल.	Which of the following statements is true about of (1) It is harmful because ozone is dangerous to (2) It is beneficial because ozone cuts off the ul (3*) It is beneficial because ozone cuts off the ul (4) It is harmful because ozone cuts out the photosynthesis. आजोन परत के विषय में निम्न में से कौनसा कथन सत्य (1) यह हानिकारक होती है क्योंकि ओजोन जीवित प्राणि (2) यह लाभदायक होती है क्योंकि ओजोन की उपस्थिति (3*) यह लाभदायक होती है क्योंकि ओजोन सूर्य से आने (4) यह हानिकारक होती है क्योंकि ओजोन सूर्य से आने संश्लेषण के लिए जैविक रूप से उत्तरदायी होती है। Ozone layer absorbs the UV radition comming fu सूर्य से आने वाली UV किरणों को, ओजोन परत अवशोधि	pzone layer ? living organism. n proceed faster in the p ltra violet radiation of the e important radiation of a है ? यों के लिए खतरनाक होती है ा में ऑक्सीकरण अभिक्रिया अ ा वाली पराबैंगनी विकिरणों क वाली उन महत्वपूर्ण विकिरण rom the sum and save th षेत कर पृथ्वी को इससे बचा	resence of ozone. sun. of the sun which are vital for है। नधिक शीघ्रता से संपन्न होती है। नो रोक कर देती है। गों को समाप्त कर देती है, जो प्रकाश ne earth. ती है।
A-20.	Incomplete combustion of petrol or diesel oil in fuel gases for the presence of ?	automobile engines can	be best detected by testing the
Sol.	 (1) CO and water vapour (3) NO2 रचचालित इंजनों में पेट्रोल या डीजल तेलों के पूर्ण दहन (1) CO तथा जल वाष्प (2*) CO In fuel gases the presence of carbon monoxide 	(2*) CO (4) SO ₂ की जानकारी ईधन गैसों में (3) NO ₂ is tested for the conform	किसका परीक्षण करके की जाती है? (4) SO2 ation of complete combustion.
ଟେ. A 24	इधन गर्सा में कार्बन मानाआक्साइड को मात्रा का पराक्षण	। पूर्ण रूप से दहन का दशाल	מו צו
A-21.	(1*) PAN (2) PBN निम्न में से कौनसा धूम्र–कोहरे का मूलभूत घटक है :	(3) NO ₂	(4) All of these
A 00	(1 ⁻) PAN (2) PBN	(3) NO_2	(4) उपराक्त समा।
A-22.	 (1) Acrolein (3) SO₂ and SO₃ 	(2) peroxy acetyl nitrate (4*) chlorine nitrate	pouna : >

अण्टार्कटिका पर, ओजोन का अवक्षय निम्न में से किस यौगिक के निर्माण के कारण होता है : (1) एक्रोलीन (2) परॉक्सी एसिटिल नाइटेट (3) SO2 तथा SO3 (4*) क्लोरीन नाइटेट A-23. Pick up the correct statement : (1*) CO which is a major pollutant resulting from the combustion of fuels in automobiles plays a major role in photochemical smog. (2) Classical smog has an oxidizing character while the photochemical smog is reducing in character. (3) The photochemical smog occurs in day time whereas the classical smog occurs in the morning hours. (4) During formation of smog the level of ozone in the atmosphere goes down. निम्न में से कौनसा कथन सही है ? (1*) CO स्वचालित वाहनों में ईंधन के दहन के कारण प्राप्त होने वाला एक प्रमुख प्रदूषक हैं, जो प्रकाशरासायनिक धुम्र–कोहरे में महत्वपूर्ण भूमिका निभाता है। (2) चिरसम्मत धुम्र–कोहरा ऑक्सीकारक प्रकृति का होता है, जबकि प्रकाशरासायनिक धुम्र–कोहरा अपचायक प्रकृति का होता है। (3) प्रकाश रासायनिक धूम्र–कोहरा दिन के समय पाया जाता हैं लेकिन चिरसम्मत धूम्र–कोहरा सुबह के समय बनता हैं। (4) धम्र–कोहरे के निर्माण के दौरान वायमण्डल में ओजोन का स्तर कम हो जाता है। High concentration of fluoride is poisonous and harmful to bones and teeth at levels over A-24. निम्न में से किस स्तर से ज्यादा फ्लोराइड आयन की उच्च सान्द्रता अस्थियों एवं दाँतों के लिए विषाक्त एवं हानिकारक होती है : (1) 1 ppm (2) 3 ppm (3*) 5 ppm (4) 10 ppm Which of the following is not a green house gas? A-25. निम्न में से कौनसी गैस हरितगृह गैस नहीं है ? (1) CO₂ (2) CH₄ $(3) O_3$ (4*) CCI₂F₂ An object is located at a height of 5 km from the surface of the earth. The object is located in which part A-26. of the atmosphere. (3) Stratosphere (4*) Troposphere (1) Thermosphere (2) Mesosphere एक वस्तू धरती की सतह से 5 km की ऊँचाई पर स्थित है। तो वस्तू वातावरण के किस भाग में उपस्थित होगी ? (3) समतापमण्डल (4*) क्षोभमण्डल (1) बाहयवायमण्डल (2) मध्यमण्डल Which of the following is secondary pollutant? A-27. निम्न में से कौन दितीयक प्रदषक है ? (1) CO₂ (2) N₂O (3*) PAN (4) SO₂ Which of the following compounds helps in achieving equilibrium between O_2 and CO_2 in atmosphere? A-28. (1*) Chlorophyll (2) Vitamin-12 (3) Porphyrin (4) Ethyl salicylic acid निम्न में से कौनसा यौगिक वातावरण में O2 व CO2 के बीच साम्य अवस्था प्राप्त करने में मदद करता है ? (1*) क्लोरोफिल (4) एथिल सेलेसिलिक अम्ल (2) विटामिन-12 (3) पोरफिरीन Section (B): Water pollution, soil pollution and waste management खण्ड (B) : जल प्रदूषण, मृदा प्रदूषण तथा अपशिष्ट पदार्थ का प्रबंधन B-1. Which causes water pollution ? (1) Pathogens (2) Automobile exhausts (3) PCBs (4*) (1) and (3) निम्न में से किसके कारण जल प्रदुषण उत्पन्न होता हैं ? (1) रोगाण। (2) स्वचालित वाहन। (4*) (1) तथा (3) (3) PCBs

Sol. Pathogens include bacteria and other oganisms that enter water from domestic sewage and animal excreta. PCBs (Polyuchlorinated biphenyls) are used as a fluids in transformers and capacitators. The presence of these PCBs in water causes skin disorder in human. These act as carcinogenic.

- हल. घरेलु गंदे पानी एवं जन्तु के मलमूत्र द्वारा पानी में पेथोजन (Pathogens) जिसमें बैक्टीरिया तथा अन्य जीव होते है। PCBs (Polyuchlorinated biphenyls) का उपयोग ट्रांसफोर्मर एवं केपिसिटर में द्रव के रूप में किया जाता है। जल में PCBs की उपस्थिति जीवों में त्वचा के लिए नकसानदायक होती है। यह कैसर जनित है। B-2. Most abundant water pollutant is : (1*) detergents (2) pesticides (3) industrial wastes (4) ammonia सर्वाधिक जलीय प्रदुषक है : (1) अपमार्जक (2) पीडकनाशी (3*) औद्योगिक अपशिष्ट पदार्थ (4) अमोनिया Detergents are widely used by human population and these detergents are easily mixed with water Sol. through drains and domestic sewage. अधिकतर जनसंख्या डिटर्जेन्ट का बहतायात में उपयोग करते है ये अपशिष्ट नालियों (सिवेज) द्वारा पानी में मिश्रित हो हल. जाता है। B-3. Drained sewage has biological oxygen demand (BOD) : (1*) more than that of water (2) less than that of water (3) equal to that of water (4) none of the above नाली में पाये जाने वाले अपशिष्ट पदार्थ (sewage) के जैविक ऑक्सीजन माँग (BOD) का मान होता हैं : (1*) जल के BOD से ज्यादा। (2) जल के BOD से कम। (4) इनमें से कोई नहीं। (3) जल के BOD से बराबर। Sol. Drained sewags has BOD value more than 17 ppm while clean water has less than 5 ppm. निकलने वाले गंदे पानी का BOD मान 17 ppm से अधिक जबकि स्वच्छ जल का BOD मान 5 ppm से कम होता है। हल. B-4. Eutrophication causes reduction in : (1) dissolved hydrogen (2*) dissolved oxygen (3) dissolved salts (4) all the above सुपोषण के कारण निम्न में से किसमें कमी हो जाती है : (1) घुलित हाइड्रोजन। (2*) घुलित ऑक्सीजन। (3) घुलित लवण। (4) उपरोक्त सभी। The process in which nutrient enriched water, support a dense plant population, which kills animal life Sol. by depriving it of oxygen and results in subsequent loss of biodiversity is known as eutrophication. सुपोषण के कारण पेड पौधों की संख्या में अत्यधिक वृद्धि होने की वजह से घुलित ऑक्सीजन की कमी हो जाती है। जिसे हल. युट्रोफिकेशन (Eutrophication) कहते है। B-5. Which of the following will increase the BOD of water supply ? निम्न में से कौनसा जल के BOD को बढा देता हैं ? (1*) CO₂ $(2) O_3$ $(3) H_2O$ (4) C_2H_5OH CO₂ increase the BOD of water. Sol. CO2 जल का BOD बढा देता है। हल. B-6. Sewage water is purified by : (1*) microorganism (2) light (3) fishes (4) aquatic plants अपशिष्ट पदार्थ युक्त जल को निम्न के द्वारा परिशुद्ध किया जाता है : (1*) सुक्ष्मजीव । (2) प्रकाश। (3) मछली। (4) जलीय पादप। Micro-organisms oxidise the organic contents of sewage water. Thus sewage water becomes free from Sol. organic substances. गन्दें जल के कार्बनिक पदार्थ को सूक्ष्मजीव ऑक्सीकृत कर देते है। जिससे गन्दा जल कार्बनिक पदार्थी से मुक्त हो जाता हल. है । B-7. Which of the following is not a herbicide ? (1) Sodium chlorate (2) Sodium arsenate (3*) Phosphate (4) Triazines निम्न में से कौनसा एक शाकनाशी नहीं है ? (1) सोडियम क्लोरेट। (2) सोडियम आर्सिनेट। (3*) फॉस्फेट। (4) ट्राईऐज़ीन। Sol. Phospate is not a herbicide it is a fertiliser.
- हल. फॉस्फेट शाकनाशी नहीं होता है। यह एक उर्वरक है।

B-8.	Domestic waste mostly constitutes :	
	(1) non-biodegradable pollutants	(2*) biodegradable pollutants
	(3) effluents	(4) air pollution
	घरेलू अपशिष्ट पदार्थ मुख्यतः होते है :	
	(1) जैव अनिम्नीकरण प्रदूषक।	(2*) जैवनिम्नीकरण प्रदूषक।
	(3) प्रवाहित अपशिष्ट पदार्थ।	(4) वायु प्रदूषक।
Sol.	Domestic waste generally contains organic matt	er which is biodegradable.
हल.	घरेलु अपशिष्ट पदार्थ मुख्यतः कार्बनिक जैवनिम्नीकरण प्र	ादूषक होते है।
B-9.	Measurement of the rate of oxygen utilisation measure :	by a unit volume of water over a period of time is to
	(1) fermentation	(2) biogas generation
	(3) biosynthetic pathway	(4*) biological oxygen demand.
	एक समय अन्तराल में जल के इकाई आयतन द्वारा उप	भोग आक्सीजन, की दर का मापन निम्न के मापन के लिये दिया
	जाता है :	
	(1) किण्वन	(2) जैवगैस उत्पादन
	(3) जैवसंश्लेषित प्रक्रिया मार्ग	(4*) जैवरासायनिक ऑक्सीजन मॉंग
Sol.	The presence of fertilizers and household was cover the surface of water and reduces the o bodies due to the lack of oxygen gas.	tes in water enhances the growth of algae. This algae xygen concentration in water, thus fishes die in water
हल.	पानी में घरेल अपशिष्ट एवं उवर्रक, शैवाल की वृद्धि	में सहायक है। ये शैवाल पानी की सतह को घेर लेती है तथा
	ऑक्सीजन की सान्द्रता को घटाती है। जिससे मछलि	ायां मर जाती है। इसके लिये जैव रासायनिक ऑक्सीजन मांग
	(BOD) ज्ञात की जाती है।	
B-10.	Fishes die in water bodies polluted by sewage o	lue to :
	(1) pathogens (2*) reduction in evygen	(2) clogging of gills by silt
	(3) Teducion in oxygen जीवेज गटार्थ टाग गटांपित किरो गरो जन्म में मुफलियाँ व	(4) IOUI SITIEII की निम्न कारणा के मट्य हो जाती है :
	(1) जोग्राजनक	
		(2) गिल की दरार अवरूद होने।
	(3^) आक्साजन का कमा	(4) दुगध युक्त गध
B-11.	Which of the following statements is false?	
	(1) The industrial and domestic sewage dischart(2) Surface water contains a lot of organic matter	ge is the main reason for river water pollution. er and mineral nutrients.
	(3) Oil spill in sea water causes heavy damage	to fishery.
	(4*) Oil slick in sea water increases dissolved ov	kygen.
	ानम्न म स कानसा कथन असत्य ह ?	
	(1) आद्यागिक एवम् घरलू अपाशष्ट पदाथ का नादया म	विसंजन, नादया क प्रदूषण का मुख्य कारण ह।
	(2) सतही जल में बहुत अधिक मात्रा में कार्बनिक पदार्थ	एवम् खनिज पोषक तत्व उपस्थित होते है।
	(3) समुद्री जल में तेल बहाव के कारण भारी मात्रा में म	छलियों को नुकसान पहुँचता है।
	(4*) समुद्री जल में तेल का चिकनापन घुलित ऑक्सीजन	न की मात्रा को बढ़ा देता है।
Sol.	Oil slick in sea water disconect the water sur dissolved oxygen gas.	face of sea with atmosphere so there become lack of
हल.	समुद्री जल में तेल का चिकनापन वातावरण की ऑव	त्सीजन को समुद्री जल से पृथक रखता है अतः जल में घुलित
	आक्सीजन की मात्रा कम हो जाती है।	
B-12.	Which of the following statements is false?	
	(1) The lower the concentration of dissolved oxy	gen, the more polluted is the water sample.
	(2) The tolerable limit of lead in drinking water is	s 50 ppb

- (2) The tolerable limit of lead in drinking water is 50 ppb.
 (3) Water is considered pure if it has BOD less than 5 ppm.
 (4*) The safe limit of copper in drinking water is 10 ppm.

निम्न में से कौनसा कथन असत्य है ? (1) अधिक मात्रा में प्रदूषित जलीय नमूने में घुलित ऑक्सीजन की सान्द्रता अपेक्षाकृत कम होती है। (2) पेयजल में लैड की अधिकतम मात्रा 50 ppm होती है। (3) शुद्ध जल का BOD मान 5 ppm से कम होता है। (4*) पीने योग्य जल में ताँबे की सुरक्षित सीमा 10 ppm होती है। B-13. Phosphate pollution is caused by : (1) weathering of phosphate rock only (2) agriculture fertilizers only (3) phosphate rocks and sewage (4*) sewage and agricultural fertilizers. फॉस्फेट प्रदूषण मुख्य रूप से किस कारण से होता है : (1) केवल फॉस्फेट चट्टानों के मानसूनी विखण्डन द्वारा (2) केवल कृषि कार्य हेत् प्रयुक्त उर्वरक द्वारा (4*) सीवेज एवम् कृषि कार्य हेत् प्रयुक्त उर्वरक द्वारा (3) फॉस्फेट चट्टान एवम् सीवेज द्वारा Sewage consists food materials which contains phosphate and also agriculture fertilizers contain Sol. phosphate which are added in excess in corn fields. मुख्य रूप से सीवेज एवम् कृषि कार्य हेत् प्रयुक्त उर्वरक द्वारा फॉस्फेट प्रदूषण प्राप्त होता है। हल. B-14. Modes of controlliing pollution in large cities includes : (1) cleanliness and less use of insecticides (2) proper disposal of organic wastes, sewage and industrial effluents. (3) use of liquefied carbondioxide with a suitable detergent in place of tetrachloroethene for dry cleaning. (4*) all the above बडे शहरों में प्रदूषण को नियंत्रित किया जा सकता है : (1) स्वच्छता एवम कीटनाशी का कम उपयोग करके। (2) कार्बनिक अपशिष्ट पदार्थ, सीवेज तथा औद्योगिक अपशिष्ट पदार्थी का नियमित निस्तारण करके (3) शुष्क धूलाई के लिए टेट्राक्लोरोएथीन के स्थान पर द्रवित कार्बन मोनोऑक्साइड के साथ एक उचित अपमार्जक उपयोग करके (4*) उपरोक्त सभी Sol. In large cities pollution can be controlled by accepting green chemistry. हल. बडे शहरों में प्रदूषण को नियंत्रित करने के लिए हरित रसायन का उपयोग किया जा सकता है। B-15. Green chemistry means such reactions which (1) produce colour during reactions. (2*) reduce the use and production of hazardous chemicals. (3) are related to the depletion of ozone layer. (4) study the reactions in plants. हरित रसायन एक ऐसी अभिक्रिया है. जो (1) अभिक्रिया के दौरान रंग उत्पन्न करती है। (2*) हानिकारक रसायनों के उत्पादन एवं उपयोग से होने वाले प्रभाव को कम करती है। (3) ओजोन परत के अवक्षय से संबंधित है। (4) पादपों में अभिक्रिया का अध्ययन है। Sol. Green chemistry involves such reactions which reduce the use and production of hazardous or toxic chemical to reduce pollution from environment. हरित रसायन ऐसी अभिक्रिया है जिसमें वायुमण्डल से प्रदूषकों को कम करने के लिए हानिकारक सा विषैले रसायनों के हल. दुष्प्रभावों को कम करने के लिए किया जाता है। The process of 'eutrophication' is due to : B-16. (1) increase in concentration of insecticide in water. (2) increase in concentration of fluoride ion in water.

 (3^{\star}) the reduction in concentration of the dissolved oxygen in water due to phosphate pollution.

(4) attack of younger leaves of a plant by peroxyacetyl nitrate.

- 'सुपोषण'' की प्रक्रियाँ किसके द्वारा उत्पन्न होती है ?
- (1) जल में कीटनाशी की सान्द्रता में वृद्धि होने पर।
- (2) जल में फ्लोराइड आयन की सान्द्रता में वृद्धि होने पर।

(3*) फॉस्फेट प्रदूषण के कारण जल में घुलित ऑक्सीजन की सान्द्रता में कमी होने पर।

(4) परॉक्सीएसिटिल नाइट्रेट द्वारा पादप की तरूण पत्तियों पर आक्रमण करने पर।

PART - II : ASSERTION / REASONING भाग - II : कथन/कारण (ASSERTION/REASONING)

Assertion / Reason

This section contains reasoning type questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

- निर्देश : इस खण्ड में कथन–कारण प्रकार के प्रश्न है। प्रत्येक प्रश्न के 4 विकल्प (1), (2), (3) तथा (4) है, जिसमें से सिर्फ एक सही है।
 - (1) If both assertion and reason are true and reason is a correct explanation of assertion.
 - (2) If both assertion and reason are true but reason is not a correct explanation of assertion.
 - (3) If assertion is true but reason is false.
 - (4) If assertion and reason both are false.
 - (1) यदि कथन तथा कारण दोनो सही हैं तथा कारण कथन की सही व्याख्या करता है।
 - (2) यदि कथन तथा कारण दोनो सही हैं लेकिन कारण कथन की सही व्याख्या नहीं करता है।
 - (3) यदि कथन सही है तथा कारण गलत है।
 - (4) यदि कथन तथा कारण दोनों गलत हैं।
- Assertion : The pH of rain water is 5.6 Reason : H⁺ ions are formed by the reaction of rain water with carbondioxide present in the atmosphere कथन : अम्ल वर्षा की pH 5.6 होती है।
 कारण : वायमण्डल में उपस्थित कार्बनडाइऑक्साइड के साथ जल की अभिक्रिया के द्वारा H⁺ आयन बनते हैं।

Ans.

(3)

- Sol. $H_2O(l) + CO_2(g) \Longrightarrow H_2CO_3(aq)$ $H_2CO_3(aq) \Longrightarrow H^+(aq) + HCO_3^-(aq)$
- Assertion : Bacteria, fungi, molds and algae are viable particulates. Reason : Smoke particulates consist of solid or mixture of solid and liquid particles formed during combustion of organic matter.
 कथन : जीवाणु, कवक मोल्ड्स तथा शैवाल जीवित कणिकायें है।
 कारण : धूम्र कणिकाओं में ठोस अथवा ठोस–द्रव कणों के मिश्रण होते हैं, जो कार्बनिक द्रव्य के दहन के दौरान उत्पन्न होते हैं।

Ans. (2)

3. Assertion : Photochemical smog results from the action of sunlight on unsaturated hydrocarbons and nitrogen oxides liberated by automobiles and factories.

Reason : Classical smog is a mixture of smoke, fog and sulphurdioxide. कथन : प्रकाशरासायनिक धूम्र–कोहरा स्वचालित वाहनों एवं कल–कारखानों द्वारा निकलने वाले असंतृप्त हाइड्रोकार्बन तथा नाइट्रोजन ऑक्साइड पर सूर्य के प्रकाश की अभिक्रिया द्वारा उत्पन्न होता है।

कारण : चिरसम्मत धुम्र–कोहरा, धुम्र, कोहरा तथा सल्फर डाइऑक्साइड का मिश्रण है।

Ans. (2)

Assertion: In the stratosphere, ozone is produced by the action of UV radiations on dioxygen.
 Reason: UV radiations split the molecular oxygen into free oxygen (O) atoms which combine with molecular oxygen to form ozone.
 कथन: समतापमण्डल में, डाइऑक्सीजन पर UV विकिरणों की अभिक्रिया द्वारा ओजोन बनती है।
 कारण: UV विकिरण आण्विक ऑक्सीजन को मुक्त ऑक्सीजन (O) परमाणुओं में विखण्डित कर देती हैं, जो आण्विक ऑक्सीजन के साथ संयुक्त होकर ओजोन बनाती है।

Ans. (1)

Hint: $O_2(g) \xrightarrow{\cup \vee} O(g) + O(g)$

 $O(g) + O_2(g) \stackrel{uv}{\longleftarrow} O_3(g)$

 5. Assertion : The deficiency of fluoride in drinking water causes diseases such as tooth decay etc. Reason : The F⁻ ions make the enamel on teeth much harder by converting hydroxyapatite, the enamel on the surface of the teeth, into much harder fluorapatite. कथन : पेयजल में फ्लोराइड की कमी के कारण दंतक्षय जैसी बीमारी हो जाती है। कारण : F⁻ आयन दाँतों के इनामेल सतह में हाइड्रोक्सीऐपेटाईट को फ्लोरएपेटाइट में परिवर्तित करके कड़ा करते हैं।
 Ans. (1)

Hint: $[3(Ca_3(PO_4)_2, Ca(OH)_2] \xrightarrow{F} [3Ca_3(PO_4)_2, CaF_2]]$

 Assertion: Green plants maintain an appropriate level of CO2 in the atmosphere. Reason: Green plants require CO2 for photosynthesis and they, in turn, releases oxygen. कथन : हरे पादप वायुमण्डल में CO2 के औसत स्तर को बनाये रखते हैं। कारण : हरे पादप प्रकाशसंश्लेषण के दौरान CO2 का उपयोग करते हैं तथा इसके विपरीत ये ऑक्सीजन उत्सर्जित करते हैं।
 Ans. (1)

Exercise-2

PART - I : OBJECTIVE QUESTIONS भाग - I : वस्तुनिष्ठ प्रश्न (OBJECTIVE QUESTIONS)

Single choice type एकल विकल्पी प्रकार

1. Which of the following statement is correct ? (1) Lower stratosphere consists of considerable amount of ozone. (2*) Ozone layer protects humans living on earth from the harmful effect of ultraviolet radiations coming from sun. (3) Ozone is thermodynamically stable. (4) Smoke clouds play significant role in creating ozone over antarctica. निम्न में से कौनसा कथन सही है ? (1) समतापमण्डल के निचले भाग में ओजोन की प्रचुर मात्रा उपस्थित होती है। (2*) ओजोन परत सूर्य से आने वाली पराबेंगनी विकिरणों के हानिकारक प्रभाव से पृथ्वी पर रहने वाले जीव जन्तुओं की रक्षा करती है। (3) ओजोन ऊष्मागतिकीय रूप से स्थायी होती है। (4) धुम्र युक्त बादल अण्टार्कटिका पर ओजोन निर्माण में एक महत्वपूर्ण भूमिका निभाते हैं। Which of the following compound belong to the class of freons ? 2. निम्न में से कौनसा यौगिक फ्रिऑन से संबधित है ? (1) CCl₄ $(2) COCl_2$ $(3) C_3O_2$ (4*) CF₂Cl₂ Freons are gases named as chlorofluoro carbons CF₂Cl₂ etc. Sol. फ्रिऑन गैसे होती है जैसे क्लोरोफ्लोरो कार्बन CF2Cl2 आदि गैसे होती है। हल. 3. The extensive use of CFC'S as refrigerant fluids and in aerosol is because of : (1*) its high chemical stability (2) good absorber of UV radiation (3) its polar nature (4) high toxicity ऐरोसॉल में एवम प्रशीतलन तरल के रूप में CFC's का अधिक मात्रा में उपयोग होने का मुख्य कारण है : (2) UV विकिरण का अच्छा अवशोषक। (1*) इसका उच्च रासायनिक स्थायित्व। (3) इसकी ध्रुवीय प्रकृति। (4) उच्च विषाक्तता। CFS's are chemically most stable, colourless, adourless and harmless gases. Sol. CFS क्लोरोफ्लोरो कार्बन रासायनिक रूप से स्थायी, रंगहीन, गंधहीन तथा अहानिकारक गैसे होती है। हल.

4. In stratosphere, which of the following radical retards the formation of O₃? समतापमण्डल में, निम्न में से कौनसा मुलक O3 के निर्माण को रोकता है ? (2*) ĊI (1) Ċ H₃ (3) F (4) Cl₂ C I radical obtained from CFC's reacts with O₃ present in stratosphere. Sol. CFC से प्राप्त C | मुक्त मुलक ओजोन से क्रिया कर इसके निर्माण घटाता है | $CF_2Cl_2(g) \xrightarrow{UV} \dot{C}l(g) + CF_2\dot{C}l(g)$ $\dot{C} I(q) + O_3(q) \longrightarrow C \dot{I} O(q) + O_2(q)$ $Cl^{\circ}(q) + O(q) \longrightarrow \dot{C}l(q) + O_2(q).$ Which of the following helps in creating ozone over antractia ? 5. (2*) Polar stratospheric clouds (1) Radioactive clouds (3) Spring clouds (4) Smoke clouds निम्न में से कौनसा अण्टार्कटिक पर ओजोन के निर्माण में संहायक होता है ? (1) रेडियोएक्टिव बादल। (2*) ध्र्वीय समतापमण्डलीय बादल। (3) बंसत ऋत के बादल। (4) धुम्र युक्त बादल। Which are natural sinks for C IO radicals in other parts of stratosphere ? 6. (2) NO and NO₂ (1) SO_2 and NO_2 (3^*) CH₄ and NO₂ (4) CI_2 and F_2 समतापमण्डल के विभिन्न भागों में C IO मूलको के साथ निम्न में से कौन अभिक्रिया करता है ? (1) SO₂ तथा NO₂ (2) NO तथा NO2 (3*) CH4 तथा NO2 (4) Cl₂ तथा F₂ 7. Eutrophication is a source of water pollution. It occurs when water : (2*) is high in nutrients (1) is low in nutrients (3) has high temperature (4) has excess amount of organic matter सुपोषण जल प्रदुषण का एक स्रोत है। यह तब पाया जाता है जब : (1) जल में पोषक तत्वों की कमी हो जाती है। (2*) जल में पोषक तत्वों की वृद्धि हो जाती है। (3) जल का ताप उच्च होता है। (4) जल में कार्बनिक पदार्थ की अधिकतम मात्रा उपस्थित होती है। When water is high in nutrients like phosphates enhances the growth of algae, which cover the water Sol. surface and reduces the oxygen concentration in water which kills animal life and subsiguent loss of biodiversity is known as eutrofication. जल में पोषक तत्वों की वृद्धि हो जाती है तो शैवाल की वृद्धि से पानी की सतह घिर जाती है। जिससे ऑक्सीजन की हल. सान्द्रता में कमी हो जाती है तथा ऑक्सीजन की कमी से छोटे जीवों की (मछलियां) की मृत्यु हो जाती है। Which of the following statements is false ? 8. (1) Absorption of the terrestrially radiated heat by the carbondioxide is the main cause of global warming. (2) The global warming will increases the rate of melting of **polar ice caps** increasing the sea level. (3*) The global warming of the earth surface is mainly due to reforestation. (4) CO₂, NO, CH₄, O₃, CCl₄ and water vapour are green house gases. निम्न में से कौनसा कथन असत्य है ? (1) भूमण्डल पर विकरित ऊष्मा का कार्बन डाइऑक्साइड द्वारा अवशोषण भूमण्डलीय तापवृद्धि का मुख्य कारण है। (2) भूमण्डलीय तापवृद्धि के कारण ध्रुवीय बर्फ के पिघलन की दर बढ़ रही है, जिससे समुद्र स्तर भी बढ़ रहा है। (3*) पृथ्वी सतह पर भूमण्डलीय तापवृद्धि का मुख्य कारण पूनः वनीकरण है। (4) CO2, NO, CH4, O3, CCl4 तथा जल वाष्प हरितगृह गैसें है। Which of the following is the primary precursor of photochemical smog ? 9. (2) Ozone (1*) Hydrocarbon (3) PAN (4) Water vapour

निम्न में से कौनसा प्रकाशरासायनिक धुम्र–कोहरे का प्राथमिक कारक है ?

(1*) हाइड्रोकार्बन। (2) ओजोन। (3) PAN (4) जल वाष्प।

- **Sol.** Photo chemical smong result from the action of sunlight on unsaturated hydrocarbons and nitrogen oxides produced by automobiles and fuctories.
- हल. ऑटोमोबाइल तथा उद्योगों से प्राप्त असंतृप्त हाइड्रोकार्बन एवं नाइट्रोजनऑक्साइड प्रकाश की उपस्थिति में प्रकाश रासायनिक ध्रुम कोहरे का निर्माण करते है।
- **10.** Photochemical smog can be reduced by :
 - (1) using catalytic converter in the automobiles
 - (2) plantation of certain plants like pinus, juniperus, vitis etc.
 - (3*) both (1) and (2)
 - (4) None

प्रकाशरासायनिक धूम्र–कोहरे को किस प्रकार कम किया जा सकता है :

- (1) स्वचालित वाहनों में उत्प्रेरकीय परिवर्तक का उपयोग करके।
- (2) पाइनस, जूनीपेरस, विटिस इत्यादि जैसे कुछ निश्चित पादपों का रोपण करके।

(3*) (1) व (2) दोनों।

- (4) कोई नहीं।
- 11. In stratosphere CFCs gets broken down by the action of powerful UV radiation releasing : समतापमण्डल में CFC 's की अभिक्रिया शक्तिशाली UV विकिरणों के साथ होने पर निम्न में से कौनसा मूलक बनता है :
 - (1) $\dot{C} H_3$ (2) $\dot{C} I O$ (3*) $\dot{C} I$ (4) $\dot{C} F C I_2$
- **Sol.** CFC's gets broken by the action of UV radiation comming from the sun and produced I radicals.

CFC पराबेंगनी किरणों के प्रभाव में टूट कर CIमुक्त मूलक देते है।

 $CF_2Cl_2 \xrightarrow{UV} CF_2\dot{C}I + \dot{C}I$

12. Which of the following statements is false ?

(1) Over antarctica, the depletion of ozone layer is due to the formation of chlorine nitrate.

- (2) Both O₃ and NO₂ reacts with unburnt hydrocarbons in the polluted air to give PAN.
- (3) Classical smog consists of a mixture of smog, fog and sulphurdioxide.

(4*) Gaseous pollutants consist of oxide of carbon, sulphur and nitrogen along with dust, fumes smoke, smog etc.

निम्न में से कौनसा कथन असत्य है ?

- (1) अण्टार्कटिका पर, ओजोन परत का अवक्षय क्लोरीन नाइट्रेट के निर्माण के कारण होता है।
- (2) O3 तथा NO2 दोनों ही प्रदूषित वायू में उपस्थित अज्वलनशील हाइड्रोकार्बन के साथ क्रिया करके PAN बनाते है।
- (3) चिरसम्मत धूम्र–कोहरा धूम्र, कोहरा तथा सल्फर डाइऑक्साइड का मिश्रण है।

(4*) गैसीय प्रदूषक में कार्बन, सल्फर तथा नाइट्रोजन के ऑक्साइड एवं धूलकण, सधूम्र, धूम्र– कोहरा इत्यादि होते हैं।

13. Which of the following does not contribute to water pollution ?

(1) Pathogens	(2) Organic wastes	(3) chemical pollutants	(4*) none
निम्न में से कौनसा जल	प्रदूषण में सहायक नहीं हैं ?		
(1) रोगजनक		(2) कार्बनिक अपशिष्ट पदार्थ	
(3) रासायनिक प्रदूषक		(4*) कोई नही	

- **14.** Which of the following is false.
 - (1) Green house gases are carbondioxide, methane, water vapours, nitrous oxide, CFCs and ozone.
 - (2) CO is highly poisonous to living beings because of its ability to block the delivery of oxygen to the organs and tissues.
 - (3^{\star}) The troposphere contains dinitrogen, dioxygen, ozone and little water.
 - (4) The primary source of air borne lead emission is leaded-petrol

निम्न में से कौनसा कथन असत्य है? (1) हरित गृह गैसें कार्बनडाइऑक्साइड, मेथेन, जल वाष्प, नाइट्रस ऑक्साइड, CFCs तथा ओजोन होती है। (2) CO सजीवों के लिए अत्यंत विषैली होती है, क्योंकि यह अंगों तथा ऊतकों तक पहुँचने वाली ऑक्सीजिन के परिवहन को अवरूद्ध कर देती हैं। (3*) क्षोभमण्डल में डाइनाइट्रोजन, डाइऑक्सीजन, ओजोन तथा सूक्ष्म मात्रा में जल होता है। (4) वाय धारित लैड-उत्सर्जन का प्रमुख स्त्रोत लैडयुक्त पेट्रोल है। 15. Which of the following is false. (1*) Photochemical smog has high concentration of reducing agents and is, therefore, called as reducing smog. (2) Non-viable particulates consist of smoke, dust, mist, fumes etc. (3) Classical smog occurs in cool humid climate and it is mixture of smoke, fog and sulphurdioxide. (4) Ozone reacts with unburnt hydrocarbons in polluted air to produce peroxyacetyl nitrate (PAN). निम्न में से कौनसा कथन असत्य है? (1*) प्रकाश रासायनिक धुम्र–कोहरा जिसमें अपचायक पदार्थ की उच्च सान्द्रता होती हैं, उसे अपचायक धुम्र–कोहरा कहते हैं। (2) अजीवित कणिकायें धूम्र (smoke), धूल कण, मिस्ट, संधूम्र (fumes) इत्यादि होती है। (3) चिरसम्मित धूम्र–कोहरा ठण्डी एवं आर्द्र जलवायू में पाया जाता हैं तथा यह धूम्र (smoke), कोहरा (fog) व सल्फरडाइऑक्साइड का मिश्रण होता है। (4) ओजोन, प्रदूषित वायू में उपस्थित अज्वलनशील हाइड्रोकार्बन के साथ क्रिया करके परॉक्सीऐसिटिल नाइट्रेट (PAN) उत्पन्न करती है। 16. Which of the following is incorrect about the size of particulates ? (1) Soot particles have diameter of about 5 nm. (2) H₂SO₄ fog particles have size of 500–1000 nm. (3) Fly ash particles have diameter of 5×10^5 nm. (4*) All particulates have same size. कणिकीय प्रदूषक के विषय में निम्न में से कौनसा कथन गलत हैं ? (1) कालिख (काजल) कणों का व्यास लगभग 5 nm होता है। (2) H2SO4 फोग कणों का आकार 500–1000 nm होता है। (3) उडन राख कणों का व्यास 5 × 10⁵ nm होता है। (4*) सभी कणिकीय प्रदूषकों का आकार समान होता है। **PART - II : COMPREHENSION** भाग - II : अनुच्छेद (COMPREHENSION)

Read the following comprehension carefully and answer the questions :

निम्न अनुच्छेद को ध्यान से पढिए और प्रश्नों के उत्तर दीजिए :

Comprehension #1

Ozone is an unstable, dark blue diamagnetic gas. It strongly absorbs the UV radiation, thus protecting the people on the earth from the harmful UV radiation from the sun. The use of chlorofluorocarbon (CFC) in aerosols and refrigerators, and their subsequent escape into the atmosphere, is blamed for making holes in the ozone layer over the Antarctic and Arctic.

Ozone acts as a strong oxidising agent in acidic and alkaline medium. For this property ozone is used as a germicide and disinfectant for sterilising water and improving the atmosphere of crowded places.

अनुच्छेद # 1

ओजोन एक अस्थायी प्रतिचुम्बकीय, गहरे नीले रंग की गैस है। यह UV विकिरण को तीव्रता से अवशोषित करती है। इस प्रकार यह सूर्य से आने वाली हानिकारक UV विकिरणों से पृथ्वी पर रहने वाले व्यक्तियों को सुरक्षा प्रदान करती है। एरोसोल तथा शीतलकों में क्लोरोफ्लोरो कार्बन (CFC) के उपयोग तथा इनके वायुमण्डल में वितरण, अंटार्कटिक तथा आर्कटिक क्षेत्रों के ऊपर ओजोन परत में छिद्र बनने का कारण है। ओजोन, अम्लीय तथा क्षारीय माध्यम में प्रबल ऑक्सीकारक अभिकर्मक के रूप में व्यवहार करती है। ओजोन के इस गुण के कारण इसका उपयोग कीटनाशक, तथा विसंक्रमणकारी के रूप में जल के निर्जीवीकरण के लिए तथा सघन भीड़ भाड़ वाले स्थानों के वातावरण को स्वच्छ बनाने के लिए उपयोग में लाया जाता है।

1. CFCs damage ozone laver by reactions :

	••••••••••••••••••••••••••••••••••••••	
	(1) $O_3 + hv \longrightarrow O + O_2$	(2) $\dot{CI} + O_3 \longrightarrow \dot{CIO} + O_2$
	(3) ClO + O→ Cl + O₂ CFCs, ओजोन परत को निम्न में से किस अभिक्रिया द्वा	(4*) all of the above रा विघटित करते हैं :
	(1) $O_3 + hv \longrightarrow O + O_2$	(2) $\dot{C}I + O_3 \longrightarrow \dot{C}IO + O_2$
Sol. हल.	 (3) CIO + O → CI + O₂ All reactions are responsible for the depletion of सभी अभिक्रियाऐं ओजोन परत के विघटन के लिए उत्तर 	(4*) उपरोक्त सभी ⁱ ozone layer. दायी हैं।
2.	Identify the incorrect statement with respect to c (1) Ozone is formed in the upper atmosphere by (2) Ozone protects the earth's inhabitants by ab (3) Ozone can also be made by heating O ₂ over (4*) Chlorine gas is preferred over ozone for the swimming pools. ओजोन के संदर्भ में कौनसा कथन असत्य है ?	ozone ? / a photochemical reaction involving dioxygen. sorbing UV radiations. · 2500 ^o C and quenching e purification of drinking water and for water treatment in
	(1) ओजोन, ऊपर के वातावरण में डाईऑक्सीजन के प्रव	गशरासायनिक अभिक्रिया के द्वारा बनती है।
	(2) ओजोन UV विकिरणों को अवशोषित करके पृथ्वी के	जीव जन्तुओं की सुरक्षा करती है।
	 (3) O₂ को 2500°C ताप पर गर्म करके तथा तापाघात (4*) पीने के पानी के शुद्धिकरण के लिए तथा तरणतात 	(quenching) द्वारा भी ओजोन को बनाया जा सकता है। न में जल उपचार के लिए ओजोन के स्थान पर क्लोरीन गैस को
	प्राथमिकता दी जाती है।	
Sol.	(4) Its (i.e.,ozone) advantage over chlorine is the	at it avoids the unpleasant smell and taste of chlorine.
	(3) Irue, $O_2 \xrightarrow{2000} 20$; $O + O_2 \xrightarrow{4000} 0$)3. ਸਭ ਤਰਦੇ ਸਿਤ ਤੀ ਅਤਾ ਇਤਰਾ ਸੰਘ ਤੁਆਸ ਤੁਗਤ ਦੇ ਤੁਰਿਤ ਹੈ।
	(4) आजान, का क्लारान के सापक्ष यह उपलाब्ध है कि	यह पलारान का अफायकर गंध तथा स्वाद स राहत ह।
	$(3) \exists t \exists 1, O_2 \xrightarrow{2500\%} 20; O + O_2 \xrightarrow{t \exists equal} O_3$	
3.	Which of the following statement is correct ?	
	(1) The dark blue colour of ozone is due to inter	ise absorption of green light.
	(2) Oxides of nitrogen and the halogen cannot c	lamage the O ₃ layer.
	(3) Ozone oxidises dry iodine to 1205 . (4*) Ozone forms orange coloured compound K निम्न में से कौनसा कथन सत्य है ?	O ₃ with potassium hydroxide.
	(1) ओजोन का गहरा नीला रंग, हरे प्रकाश के तीव्र अव	शोषण के कारण होता है।
	(2) नाइट्रोजन के ऑक्साइड तथा हैलोजन, O3 परत को	क्षतिग्रस्त नहीं कर सकते हैं।
	(3) ओजोन शुष्क आयोडीन को I2O5 में ऑक्सीकृत करत	गे है।
	(4*) ओजोन, KOH के साथ नारंगी रंग का यौगिक KO	3 बनाती है।
Sol.	(1) The dark blue colour of ozone is due to inter	se absorption of red light.
	(2) Oxides of nitrogen and the halogen can dam	age the O ₃ layer.
	$(3) 2 I_2 + 9[O_3] \longrightarrow I_4O_9 + 9O_2$	
	$(4) 2 \text{ KOH} + 5 \text{ O}_3 \longrightarrow 2 \text{ KO}_3 + 5 \text{ O}_2 + \text{H}_2\text{O}$	X X X X
हल :	(1) ओजोन का गहरा नीला रंग लाल प्रकाश के तीव्र अ	रशोषण के कारण होता है।
	(2) नाइट्रोजन के ऑक्साइड तथा हैलोजन O3 परत को	क्षतिग्रस्त कर सकते है।
	$(3) 2 I_2 + 9[O_3] \longrightarrow I_4O_9 + 9O_2$	
	$(4) 2 \text{ KOH} + 5 \text{ O}_3 \longrightarrow 2 \text{ KO}_3 + 5 \text{ O}_2 + \text{H}_2\text{O}$	

Comprehension # 2

Pesticides are synthetic toxic chemicals which are used in agriculture to control the damages caused by insects, rodents, weeds and various crop diseases. Their repeated use gives rise to pests that are resistant to that group of pesticides. As a result, these pesticides become ineffective for those pests. Examples are DDT, aldrin, dieldrin etc.

Herbicides are the chemicals used to control weeds, earlier inorganic compounds such as sodium chlorate, and sodium arsenite were used but arsenic compounds being toxic to mammals, are no longer preferred instead organic compounds such as triazines, are now considered as better herbicides, especially for the corn-fields.

अनुच्छेद #2

पीडकनाशी संश्लेषित रासायनिक यौगिक होते हैं, जो विषैली प्रकृति के होते हैं तथा इनका उपयोग विभिन्न प्रकार के फसलीय रोगों तथा कीट, रदनक, खरपतवारों जैसे पीडकों से फसलों एवं पादपों को बचाने के लिए कृषि कार्य में किया जाता है। यह पाया जाता है कि पीडकनाशियों का उपयोग बार–बार करने पर, इन पीडकनाशियों के प्रति कीटों में प्रतिरोधक क्षकता उत्पन्न हो जाती है। जिसके फलस्वरूप ये पीडकनाशी इन कीटों के प्रति प्रभावहीन प्रतीत होते हैं। उदाहरण DDT, ऐल्ड्रीन, डाइऐल्ड्रीन इत्यादि।

शाकनाशी ऐसे रासायनिक पदार्थ होते हैं जिनका उपयोग खरपतवार को नष्ट करने के लिये किया जाता हैं। पूर्वार्द्ध में, अकार्बनिक यौगिक जैसे सोडियम क्लोरेट तथा सोडियम आर्सेनेट का उपयोग किया जाता था लेकिन आर्सेनिक यौगिक, स्तनियों के लिए विषेले होते है, इसलिए इनका उपयोग लम्बे समय तक नहीं किया जा सका। इनके स्थान पर आजकल ट्राईऐजीन नामक कार्बनिक यौगिकों का उपयोग शाकनाशी के रूप में किया जाने लगा है जो सर्वोत्तम शाकनाशी है, जिसका मक्का के खेतों में छिड़काव किया जाता है।

4. Which of the following is a biodegradable pesticide ?				
	(1) DDT	(2) Aldrin	(3) Dieldrin	(4*) None of these
	निम्न में से कौनसा	एक जैवनिम्नीकरण पीडकनार्श	ो है ?	
	(1) DDT	(2) ऐल्ड्रीन ।	(3) डाइऐल्ड्रीन।	(4*) कोई नहीं।
5.	Which of the foll	owina compounds belonas	s to herbicides (Weedisid	es)?

5.	Which of the following compounds belongs to herbicides (Weedisides) ?			
	(1) Sodium arsenite	(2) Sodium chlorate	(3) Triazines	(4*) All of these
	निम्न में से कौनसा यौगिक	शाकनाशी (Weedisides) है	?	
	(1) सोडियम आर्सिनेट	(2) सोडियम क्लोरेट	(3) ट्राईऐज़ीन	(4*) उपरोक्त सभी

6. Which of the following statements is false ?

(1) The fly ash and slag of steel industry is being used by the cement industries

(2) Industrial wastes, agricultural pollutants and radioactive pollutants are the sources of soil pollutants.

(3) The recycling of material such as paper, glass and some kinds of plastics would help in the conservation of natural sources.

(4*) BHC, malathon and chlorinated hydrocarbon are herbicides.

निम्न में से कौनसा कथन असत्य है ?

(1) इस्पात उद्योग से प्राप्त धातुमल एवं उड़न राख (fly ash) का उपयोग सीमेन्ट उत्पादन उद्योग में किया जाता है।

(2) औद्योगिक अपशिष्ट, कृषि प्रदूषक तथा रेडियोएक्टिव प्रदूषक मृदा प्रदूषण के स्त्रोत है।

(3) पेपर, काँच तथा कुछ प्रकार की प्लास्टिक जैसे पदार्थो का पुर्नचक्रण करके प्राकृतिक स्त्रोतों को संरक्षित किया जा सकता है।

(4*) BHC, मेलाथोन तथा क्लोरीनीकृत हाइड्रोकार्बन शाकनाशी है।

PART - III : MATCH THE COLUMN भाग - III : कॉलम को सुमेलित कीजिए (MATCH THE COLUMN)

1.	Match the entries of column-I with appropriate enteries of column-II. Each entry in column-I may have		
	one or more than one correct option(s) from column-II.		
	Column-I	Column-II	
	(1) Acid rain	(p) Oxides of nitrogen	
	(2) Green house effect	(q) Oxides of sulphur	
	(3) Ozone hole	(r) Carbon dioxide	
	(4) Eutrophication	(s) Phosphate fertilizer i.e. plant nutrient (excess).	
		(t) Chlorofluorocarbon (CFCs)	
	स्तम्भ-। की प्रविष्टियों को स्तम्भ-।। के साथ सुमेलित की	जेए। स्तम्भ-। में दी गई प्रविष्टि, स्तम्भ-।। में दिये गये एक या एक	
	से अधिक सही विकल्पों के साथ सुमेलित हो सकती है।		
	स्तम्भ-।	स्तम्भ-॥	
	(1) अम्ल वर्षा	(p) नाइट्रोजन के ऑक्साइड	
	(2) हरित गृह प्रभाव	(q) सल्फर के ऑक्साइड	
	(3) ओजोन छिद्र	(r) कार्बन डाइऑक्साइड	
	(4) सुपोषण	(s) फॉस्फेट उर्वरक अर्थात् पादप पोषक तत्व	
		(t) क्लोरोफ्लोरोकार्बन (CFCs)	
Ans.	(1 - p,q); $(2 - r)$; $(3 - p,t)$; $(4 - s)$		
2.	Match the entries of column-I with appropriate	enteries of column-II. Each entry in column-I may have	
	one or more than one correct option(s) from colu	ımn-II.	
	Column-I	Column-II	
	(1) Classical smog	(p) SO ₂	
	(2) Photochemical smog	(q) NO ₂	
	(3) Particulate Pollutants	(r) bacteria	
	(4) Gaseous pollutants	(s) smoke	
	स्तम्भ-। की प्रतिष्टिगों को स्तम्भ-॥ के साथ समेलित की	(t) Fe3O4 जेए । स्वास्थन। में दी गई प्रतिष्टि स्वास्थना। में दिये गये एक या एक	
	ये अधिक यही विकर्चों के याश यमेचित हो यकती है।		
	त जायक तहा विकल्पा के ताथ सुनालत हा तकता ह।		
	براہر ا	K (H) − I	
	(1) चिरसम्मित धूम्र–कोहरा	(p) SO ₂	
	(2) प्रकाशरासायनिक धूम्र–कोहरा	(q) NO ₂	
	(3) कणिकीय प्रदूषक	(r) जीवाणु	
	(4) गैसीय प्रदुषक	(s) ध्रुम्र	

(1-p); (2-q); (3-r,s,t); (4-p,q)Ans.

Exercise-3

JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS) JEE (MAIN) / AIEEE (पिछले वर्षो) के प्रश्न

(t) Fe₃O₄

JEE(MAIN) OFFLINE PROBLEMS

1. The smog is essentially caused by the presence of :		[AIEEE 2004, 3/225]	
	(1) O ₂ and O ₃	(2) O ₂ and N ₂	
	(3*) Oxides of sulphur and nitrogen	(4) O_3 and N_2	
	धूम्र–कोहरा मुख्य रूप से किसकी उपस्थिति के	कारण उत्पन्न होता है :	[AIEEE 2004, 3/225]
	(1) O ₂ तथा O ₃	(2) O ₂ तथा N ₂	
	(3*) सल्फर एवं नाइट्रोजन के ऑक्साइड	(4) O3 तथा N2	
Sol.	Photochemical smog is caused by oxide	es of sulphur and nitrogen.	
ਵਕ	धम कोट्य एकाष्ण्यस्याम्बिक सन्नहर और नाट	रोजन के शाकपाटर के कांग्रण रोता है।	

धूम्र–कोहरा प्रकाशरासायनिक सल्फर और नाइट्रांजन के आक्साइड के कारण होता है। हल.

2. Identify the wrong statement in the following : [AIEEE 2008, 3/105] (1*) Ozone layer does not permit infrared radiation from the sun to reach the earth. (2) Acid rain is mostly because of oxides of nitrogen and sulphur. (3) Chlorofluorocarbons are responsible for ozone layer depletion. (4) Green house effect is responsible for global warming. अद्योलिखित में से असत्य कथन की पहचान कीजिए : [AIEEE 2008, 3/105] (1*) सर्य से आने वाली अवरक्त विकिरणों को ओजोन परत पथ्वी सतह तक नहीं पहँचने देती है। (2) अम्लवर्षा में मुख्यतया नाइट्रोजन एवं सल्फर के ऑक्साइड होते है। (3) क्लोरोफ्लोरोकार्बन ओजोन परत के अवक्षय के लिए उत्तरदायी होते है। (4) हरितगह प्रभाव, भमण्डलीय तापवद्धि के लिए उत्तरदायी होता है। 3. Identify the incorrect statement from the following [AIEEE 2011, 4/120] (1) Ozone absorb the intense ultraviolet radiation of the sun. (2) Depletion of ozone layer is because of its chemical reaction with chlorofluro carbon. (3*) Ozone absorbs infrared radiation (4) Oxides of nitrogen in the atmosphere can cause the depletion of ozone layer निम्न में से गलत कथन को पहचाने ? [AIEEE 2011, 4/120] (1) ओजोन सूर्य की तीव्र पराबेंगनी विकिरण को शोषित करती है। (2) ओजोन सतह का क्षरण इसकी क्लारोफ्लोरो एल्केन के साथ रासायनिक अभिक्रिया के फलस्वरूप होता है। (3*) ओजोन अवरक्त विकिरण को शोषित करती है। (4) वातावरण में उपस्थित नाइट्रोजन के ऑक्साइड ओजोन सतह का क्षरण कर सकते है। The concentration of fluoride, lead, nitrate and iron in a water sample from an undergroud lake was 4. found to be 1000 ppb, 40 ppb, 100 ppm and 0.2 ppm, respectively. This water is unsuitable for drinking due to high concentration of : [JEE(Main) 2016, 4/120] (4) Fluoride (1) Lead (2*) Nitrate (3) Iron भूमिगत झील से प्राप्त जल प्रतिर्दा में फ्लोराइड, लेड, नाइट्रेट तथा आयरन की सान्द्रता क्रमाः 1000 ppb, 40 ppb, 100 ppm तथा 0.2 ppm पाई गई। यह जल निम्न में से किसकी उच्च सान्द्रता से पीने योग्य नहीं है ? [JEE(Main) 2016, 4/120] (1) लेड (2*) नाइट्रेट (3) आयरन (4) फ्लोराइड Highest concentration is of nitrate (100 pm). नाइट्रेट की उच्चतम सान्द्रता (100 pm) है। Sol. 5. A water sample has ppm level concentration of following anions [JEE(Main) 2017, 4/120] $F^{-} = 10$; $SO_{4}^{2-} = 100$; $NO_{3}^{-} = 50$ The anion/anions that make/makes the water sample unsuitable for drinking is/are: (1) both SO_4^{2-} and NO_3^{-} (2*) only F-(3) only SO_4^{2-} (4) only NO_{3}^{-} एक जल प्रतिर्दा मे पी.पी.एम (ppm) स्तर की निम्न ऋणायनों की सान्द्रता है। $F^{-} = 10$; $SO_{4}^{2-} = 100$; $NO_{3}^{-} = 50$ वह/वे ऋणायन जो जल प्रतिर्दा को पीने के लिए अनुपयुक्त बनाता है/बनाते हैं, है/हैं [JEE(Main) 2017, 4/120] (1) SO₄²⁻ तथा NO₃ दोनों (2*) मात्र F-(3) 제코 SO₄²⁻ (4) मात्र NO₃ Sol. Acceptable level F⁻ upto 1PPM NO₃⁻ upto 50 PPM SO₄²⁻ upto 500 PPM अनुकुल स्तर Sol. F-1PPM तक NO₃ 50 PPM तक SO₄²⁻ 500 PPM तक

6. The recommended concentration of fluoride ion in drinking water is up to 1 ppm as fluoride ion is required to made teeth enamel harder by converting [3Ca₃(PO₄)₂·Ca(OH)₂] to: [JEE(Main)2018, 4/120] पेयजल में फ्लोराइड आयन की अनुशांसित सान्द्रता 1 ppm तक है। चूँकि दाँत एनामेल को कठोर बनाने में फ्लोराइड आयन की आवश्यकता होती है जो [3Ca₃(PO₄)₂·Ca(OH)₂] को निम्न में बदलकर करती है:[JEE(Main)2018, 4/120] (1*) [3Ca₃(PO₄)₂·CaF₂] (2) [3{Ca(OH)₂}·CaF₂] (3) [CaF₂] (4) [3(CaF₂)·Ca(OH₂]

JEE(MAIN) ONLINE PROBLEMS

1. Which of the following statements about the deletion of ozone layer is correct ? [JEE(Main) 2014 Online (11-04-14), 4/120] (1) The problem of ozone depletion is less serious at poles because NO₂ solidifies and is not available for consuming CIO[•] radius. (2*) The problem of ozone depletion is more serious at poles because ice crystable in the clouds over poles act as catalyst for photochemical reactions involving the decomposition of ozone by CI[•] and CIO[•] radicals. (3) Freons, chlorofluorocarbons, are inert chemically, they do not react with ozone in stratosphere. (4) Oxides of nitrogen also do not react with ozone in stratosphere. आजोन स्तर के घटने सम्बन्धी निम्न कथनों में से कौन सा सही है ? (1) धवी क्षेत्रों में ओजोन घटने की समस्या कम महत्व रखती है क्योंकि NO2 जमकर ठोस बन जाती है और CIO• मलकों को हटाने के लिये उपलब्ध नहीं होती। (2*) ध्रवी क्षेत्रों में ओजोन के घटने की समस्या अधिक महत्व रखती है क्योंकि ध्रवों पर बादलों में बर्फ के क्रिस्टलों के होने से CI• और CIO• रेडिकलों द्वारा उत्प्रेरित आजोन वियोजन को प्रकाश–रासायनिक अभिक्रियाएँ हो सकती है। (3) फ्रिआनें (क्लोरोफ्लोरो कार्बन) रासायनिक रूप में अधिक होती हैं। वे ऊपरी वायमण्डल में उपस्थित ओजोन से क्रिया नहीं करतीं। (4) ऊपरी वायुमण्डल की ओजोन से नाइट्रोजन के ऑक्साइड भी क्रिया नहीं करते। 2. [JEE(Main) 2014 Online (12-04-14), 4/120] Global warming is due to increase of : (1) methane and nitrous oxide in atmosphere (2*) methane and CO₂ in atmosphere (3) methane and O_3 in atmosphere (4) methane and CO in atmosphere संसारिक उत्तापन्न का कारण होता है वायमण्डल में बढना : [JEE(Main) 2014 Online (12-04-14), 4/120] (1) मीथेन और नाइट्रस ऑक्साइड का। (2*) मीथेन और CO2 का। (3) मीथेन और O3 का। (4) मीथेन और CO का। Addition of phosophate fertilisers to water bodies causes : [JEE(Main) 2015 Online (11-04-15), 4/120] 3. (1) increase in amount of dissolved oxygen in water (2) deposition of calcium phosphate (3) increase in fish population (4*) enhanced growth of algae फॉस्फेट युक्त उर्वरकों के मिलाने से जलाशयों में : [JEE(Main) 2015 Online (11-04-15), 4/120] (1) जल में विलीन ऑक्सीजन की मात्रा बढती है। (2) कैल्सियम फॉस्फेट का निक्षेपण होता है। (3) मछलियों की जीव संख्या में वृद्धि होती है। (4*) शैवालों की मात्रा में अत्याधिक वृद्धि होती है। 4. Which one of the following substances used in dry cleaning is a better strategy to control environmental pollution? [JEE(Main) 2016 Online (10-04-16), 4/120] (1) Nitrogen dioxide (2) Sulphur dioxide (3) Tetrachloroethylene (4*) Carbon dioxide. ड़ाईक्लीनिंग में प्रयुक्त निम्न पदार्थों में से किसका प्रयोग वातावरण प्रदुषण के नियंत्रण की बेहतर कार्य नीति है? [JEE(Main) 2016 Online (10-04-16), 4/120] (1) नाइट्रोजन डाइऑक्साइड (2) सल्फर डाइऑक्साइड (3) टेट्राक्लोरोएथिलीन (4*) कार्बन डाइऑक्साइड All other gases are itself environmental pollutant. Sol. 5. Identify the pollutant gases largely responsible for the discoloured and lustreless nature of marble of the Taj Mahal. [JEE(Main) 2017 Online (08-04-17), 4/120] (3) O_3 and CO_2 (1*) SO₂ and NO₂ (2) SO_2 and O_3 (4) CO₂ and NO₂

	वह प्रदूषक गैसें पहचानियें जो ताजमहल के संगमरमर के मलिन व दीप्तिहीन होने के लिए मुख्य	तः उत्तरदायी है।
	[JEE(Main) 2017 Online (1*) SO = THE (JEE (Main) 2017 Online (1) SO = THE (JEE (Main) 2017 Online (1) SO = THE (JEE (Main) 2017 Online	e (08-04-17), 4/120]
Sol.	$O_2 = O_2 = O_2 = O_2 = O_2 = O_3 = O_3 = O_3 = O_2 $	ाया NO 2
6. Sol.	Which of the following is a set of green house gases? [JEE(Main) 2017 Online निम्न में से कौनसा ग्रीन हाउस गैसों का समुच्चय है? [JEE(Main) 2017 Online (1*) CO ₂ , CH ₄ , N ₂ O, O ₃ (2) O ₃ , NO ₂ , SO ₂ , Cl ₂ (3) CH ₄ , O ₃ , N ₂ , SO ₂ (4) O ₃ , N ₂ , CO ₂ , NO ₂ Green house gases are water vapour, CO ₂ , CH ₄ , N ₂ O and O ₃ .	e (09-04-17), 4/120] e (09-04-17), 4/120]
7.	The correct match between items of List-I and List-II is : [JEE(Main) 2018 Online	e (15-04-18), 4/120]
	List-IList-II(A)Coloured impurity(P)Steam distillation(B)Mixture of o-nitrophenol and p-nitrophenol(Q)Fractional distillation(C)Crude Naphtha(R)Charcoal treatmed(D)Mixture of glycerol and sugars(S)Distillation underसूची-I तथा सूची-II के मदों के बीच सही सुमेलित हैः[JEE(Main) 2018 Onlineसूची-Iसूची-IIसूची-II	tion ent reduced pressure ne (15-04-18), 4/120]
	(A) रंगीन अपद्रव्य (P) वाष्प आसवन	
	(B) p-नाइट्रोफेनॉल और O- नाइट्रोफेनॉल का मिश्रण (Q) प्रभाजी आसवन	
	(C) क्रूड नैफ्था (R) चारकोल उपचार	
	(D) गिलसराल और शर्कराओं का मिश्रण (S) समानीत दाब पर अ	ासवन
	$(1) (A)-(R), (B)-(S), (C)-(P), (D)-(Q) $ $(2) (A)-(P), (B)-(S), (C)-(R), (D)-(G) $ $(3^*) (A)-(R), (B)-(P), (C)-(Q), (D)-(S) $ $(4) (A)-(R), (B)-(P), (C)-(S), (D)-(G) $	ス) (人
8. ` Sol.	Biochemical oxygen Demand (BOD) value can be a measure of water pollution of matter. Which of the following statements is correct ?[JEE(Main) 2018 Online (1) Aerobic bacteria decrease the BOD value (2) Anaerobic bacteria increase the BOD value (3) Clean water has BOD value higher than 10 ppm. (4*) Polluted water has BOD value higher than 10 ppm जैव रासायनिक ऑक्सीजन आवश्यकता (BOD) का मान कार्बनिक पदार्थों द्वारा किये गये र सकता है। निम्न कथनों में से कौन सा सही हैं?[JEE(Main) 2018 Online (1) वायुजीवी बैक्टीरिया BOD का मान घटाते हैं। (2) अवायवीय बैक्टीरिया BOD का मान बढ़ाते हैं। (3) साफ जल के BOD का मान 10 ppm से ज्यादा होता है। (4*) प्रदूषित जल के BOD का मान 10 ppm से ज्यादा होता है।	caused by the organic e (15-04-18), 4/120] नल प्रदूषण का मापन हो e (15-04-18), 4/120]
0	साफ जल के लिए BOD 10 ppm से कम होता है तथा प्रदूषित जल के लिए यह 10 ppm से	ज्यादा होता है।
9.	A water sample has ppm level concentration of the following metals : [JEE(Main) 2019 Online Fe = 0.2; Mn = 5.0; Cu = 3.0; Zn = 5.0. The metal that makes the water sample is : एक जल के प्रतिदर्श में निम्नलिखित धातुओं के ppm सान्द्रता का स्तर है : Fe = 0.2; Mn = 5.0; Cu = 3.0; Zn = 5.0. धातु जिसके कारण जल प्रतिदर्श पीने योग्य नहीं है [JEE(Main) 2019 Online	(09-01-19) S1, 4/120] unsuitable for drinking हे वह है : (09-01-19) S1, 4/120]
	(1) Fe (2) Zn (3) Cu (4*) Mn	(00-01-13/01, 4/120]
Sol.	Presence of Mn with Concentration 0.05 ppm and higher makes water un [Reference -NCERT]	suitable for drinking.
Sol	re = 0.2 ppm, IVIN = 0.05 ppm, Uu = 3.0 ppm, Zn = 5.0 ppm Mn का सान्द्रण 0.05 ppm या अधिक होने से जल पीने योग्य नही रहता है। IReferen	ce -NCERTI
001.	Fe = 0.2 ppm, $Mn = 0.05$ ppm, $Cu = 3.0$ ppm, $Zn = 5.0$ ppm	

10. Which of the following conditions in drinking water causes methemobinemia? [JEE(Main) 2019 Online (09-01-19) S2, 4/120] (1) > 100 ppm of sulphate(2) > 50 ppm of lead $(3^*) > 50$ ppm of nitrate (4) > 50 ppm of chloride पीने के पानी से मेथेमोग्लोबिनेमिया होने के कारण की शर्त है: [JEE(Main) 2019 Online (09-01-19) S2, 4/120] (1) > 100 ppm सल्फेट (2) > 50 ppm लेड (3*) > 50 ppm नाइट्रेट (4) > 50 ppm क्लोराइड [JEE(Main) 2019 Online (09-01-19) S2, 4/120] 11. The pH of rain water, is approximately : वर्षा के पानी की pH लगभग है: [JEE(Main) 2019 Online (09-01-19) S2, 4/120] (1)7.0(3)7.5(4*) 5.6 (2) 6.512. Water filled in two glasses A and B have BOD values of 10 and 20, respectively. The correct statement [JEE(Main) 2019 Online (10-01-19) S1, 4/120] regarding them, is : (1) A is more polluted than B. (2) Both A and B are suitable for drinking. (4*) B is more polluted than A (3) A is suitable for drinking, whereas B is not. दो गिलासों A तथा B. में भरे हुए पानी के BOD का मान क्रमशः 10 तथा 20 है। सही कथन को पहचानिये– [JEE(Main) 2019 Online (10-01-19) S1. 4/120] (1) A, B की तुलना में ज्यादा प्रदूषित है। (2) A तथा B, दोनों ही पीने के लिए उपयुक्त हैं। (3) A पीने के लिए उपयक्त है जबकि B नहीं है। (4*) B. A की तलना में ज्यादा प्रदषित है। Sol. Clean water would have BOD value of less than 5 ppm whereas highly polluted water could have a BOD value of 17 ppm or more. स्वच्छ जल में BOD का मान 5 ppm से कम होगा जबकि अत्यधिक प्रदुषित जल में BOD का मान 17 ppm या उससे अधिक हो सकता है। 13. The reaction that is **NOT** involved in the ozone layer depletion mechanism in the stratosphere is: [JEE(Main) 2019 Online (10-01-19) S2, 4/120] समतापमंडल में ओजोन परतों के अवक्षय में जो अभिक्रिया नहीं सम्मिलित होती है, वह है: [JEE(Main) 2019 Online (10-01-19) S2, 4/120] (2) $CF_2Cl_2(g) \xrightarrow{h_{\cup}} Cl(g) + CF_2Cl(g)$ (1) HOCI(g) $\xrightarrow{h_{\upsilon}} OH(g) + CI(g)$ (3) $\overrightarrow{C}IO(q) + O(q) \longrightarrow \overrightarrow{C}I(q) + O_2(q)$ $(4^*) CH_4 + 2O_3 \longrightarrow 3CH_2 = O + 3H_2O$ Factual (वास्तविक) Sol. 14. Peroxyacetyl nitrate (PAN), an eye irritant is produced by: [JEE(Main) 2019 Online (11-01-19) S1, 4/120] (1) Classical smog (2) Organic waste (3*) Photochemical smog (4) Acid rain पराक्सीएसीटाइल नाइट्रेट (PAN), एक नेत्र उत्तेजक, निम्नलिखित में से किसमें उत्पन्न होता है ? [JEE(Main) 2019 Online (11-01-19) S1, 4/120] (1) चिरसम्मत धूमकुहा (2) कार्बनिक अपशिष्ट (3*) प्रकाश रासायनिक धुमकुहा (4) अम्ल वर्षा Based on Fact. Sol. 15. The concentration of dissolved oxygen (DO) in cold water can go upto: [JEE(Main) 2019 Online (11-01-19) S1, 4/120] टंडे जल में घलित ऑक्सीजन (DO) के सान्द्रता की ऊपरी सीमा हो सकती है : [JEE(Main) 2019 Online (11-01-19) S1, 4/120] (1) 8 ppm (2) 16 ppm (3) 14 ppm (4*) 10 ppm 16. The higher concentration of which gas in air can cause stiffness of flower buds? [JEE(Main) 2019 Online (11-01-19) S2, 4/120] हवा में किसकी उच्च सान्द्रता फूल की कलियों में सख्तपन ला सकती है ? [JEE(Main) 2019 Online (11-01-19) S2, 4/120] (2) CO (3*) SO₂ (1) NO₂ (4) CO₂ Fact based Sol. The higher concentration of SO₂ gas in air can cause stiffness of flower bonds.

	तथ्यात्मक					
	वायु में SO2 गैस की उच्च सान्द्रता के कारण पुष्प कलिकाओं में कठोरता आ सकती है।					
17.	Taj Mahal is being slowly disfigured and discoloured. This is primarily due to : [JEE(Main) 2019 Online (11-01-19) S2. 4/120					
	(1) water pollution ताजमहल धीरे–धीरे विरूप	(2*) acid rain तथा बेरंग होता जा रहा है।	(3) soil यह मख्य	pollution रूप से इस कारण	(4) global warming से है :	
	[JEE(Main) 2019 Online (11-01-19) S2, 4/120					
	(1) जल प्रदूषण	(2) अम्ल वर्षा	(3) मृदा	प्रदूषण	(4) ग्लोबल वार्मिग	
Sol.	Fact based तथ्यात्मक।					
18.	Water samples with values of 4 ppm and 18 ppm, respectively, are :					
		[JEE(Main) 2019 Online (12-01-19)				
	(1) Highly polluted and Clean		(2) Clean and Clean			
	(3) तापुतापु pointied and rightly pointied (4) Clean and rightly point 4 ppm तथा 18 ppm BOD (बी.ओ.डी.) मान वाले जल के नमने क्रमशः होंगे :				oliuted	
	[JEE(Main) 2019 Online (12-01-19) S1. 4/120]					
	(1) अत्यधिक प्रदूषित तथा	स्वच्छ	(2) स्वच	छ तथा स्वच्छ		
	(3) अत्यधिक प्रदूषित तथा अत्यधिक स्वच्छ (4*) स्वच्छ तथा अत्यधिक प्रदूषित					
Sol.	'Clean water' would ha	ighly polluted water (river, lake,				
	ponds etc.) could have					
	स्वच्छ जल 5 ppm स क	दा, झाल, तालाब इत्यादि) 17 ppm या				
	इसस आहेक BOD माने रख संकता है।					
19.	The molecule that has minimum/no role in the formation of photochemical smog is :					
	उस अण को बताइये जिसकी प्रकाश रासायनिक धमकहा के बनने में कम से कम/कछ नहीं भमिका होती है:					
	[JEE(Main) 2019 Online (12-01-19) S1, 4/12					
	(1) $CH_2 = O$	(2) NO	(3*) N ₂		(4) O ₃	
Sol.	Fact (तथ्य।)					
20.	The compound that is NOT a common component of photochemical smog is:					
	[JEE(Main) 2019 Online (12-01-19) S2, 4/120]					
	प्रकाश रासायनिक धूमकुहा का जो सामान्य संघटक नहीं है, वह यौगिक है :					
		$(2) \cap $	(2*) CE	[JEE(Main) 201	19 Online (12-01-19) S2, 4/120	
		(2) 03	(3) 01	2012		
Sol	U Fact (तथ्य ।)					
501.						
21.	The upper stratosphere consisting of the ozone layer protects us from the sun's radiation that falls in the wavelength region of : [JEE(Main) 2019 Online (12-01-19) S2, 4/120]					
	ऊपरी समतापमंडल जिसमें उपस्थित ओजोन परत हमें सूर्य के विकिरण से बचाती है, उसका तरंगदैर्ध्य क्षेत्र है :					
				[JEE(Main) 201	9 Online (12-01-19) S2, 4/120]	
	(1) 0.8 – 1.5 nm	(2) 400 – 550 nm	(3*) 20	00 – 315 nm	(4) 600 – 750 nm	

Sol. Fact (तथ्य।)