Inverse Trigonometric Functions

• If $\sin y = x$, then $y = \sin^{-1} x$ (We read it as sine inverse x)

Here, $\sin^{-1}x$ is an inverse trigonometric function. Similarly, the other inverse trigonometric functions are as follows:

• If
$$\cos y = x$$
, then $y = \cos^{-1} x$

• If
$$\tan y = x$$
, then $y = \tan^{-1} x$

• If
$$\cot y = x$$
, then $y = \cot^{-1} x$

• If
$$\sec y = x$$
, then $y = \sec^{-1} x$

• If
$$\csc y = x$$
, then $y = \csc^{-1} x$

• The domains and ranges (principle value branches) of inverse trigonometric functions can be shown in a table as follows:

Function	Domain	Range (Principle value branches)
$y = \sin^{-1} x$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$y = \cos^{-1}x$	[-1, 1]	$[0,\pi]$
$y = \tan^{-1} x$	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
$y = \cot^{-1}x$	R	$(0,\pi)$
$y = \sec^{-1}x$	$\mathbf{R} - (-1, 1)$	$[0,\pi]$ $-\left\{\frac{\pi}{2}\right\}$
$y = \csc^{-1}x$	$\mathbf{R} - (-1, 1)$	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$

• Note that $y = \tan^{-1} x$ does not mean that $y = (\tan x)^{-1}$. This argument also holds true for the other inverse trigonometric functions.

• The principal value of an inverse trigonometric function can be defined as the value of inverse trigonometric functions, which lies in the range of principal branch.

Example 1: What is the principal value of $\tan^{-1}(-\sqrt{3}) + \sin^{-1}(1)$?

Solution:

Let
$$\tan^{-1}\left(-\sqrt{3}\right) = y$$
 and $\sin^{-1}(1) = z$

$$\Rightarrow \tan y = -\sqrt{3} = -\tan\left(\frac{\pi}{3}\right) = \tan\left(-\frac{\pi}{3}\right) \text{and } \sin z = 1 = \sin\frac{\pi}{2}$$

We know that the ranges of principal value branch of \tan^{-1} and \sin^{-1} are $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ respectively. Also, $\tan\left(-\frac{\pi}{3}\right) = -\sqrt{3}\sin\left(\frac{\pi}{2}\right) = 1$

Therefore, principal values of $\tan^{-1}\left(-\sqrt{3}\right) = \frac{-\pi}{3}$ and $\sin^{-1}\left(1\right) = \frac{\pi}{2}$

$$\therefore \tan^{-1}\left(-\sqrt{3}\right) + \sin^{-1} 1 = \frac{-\pi}{3} + \frac{\pi}{2} = \frac{\pi}{6}$$

• Graphs of the six inverse trigonometric functions can be drawn as follows:

• The relation $\sin y = x \Rightarrow y = \sin^{-1} x$ gives $\sin (\sin^{-1} x) = x$, where $x \in [-1, 1]$; and $\sin^{-1} (\sin x) = x$, where $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$

This property can be similarly stated for the other inverse trigonometric functions as follows:

$$\circ \cos(\cos^{-1}x) = x, x \in [-1, 1] \text{ and } \cos^{-1}(\cos x) = x, x \in [0, \pi]$$

•
$$\tan(\tan^{-1}x) = x, x \in \mathbf{R}$$
 and $\tan^{-1}(\tan x) = x, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

○ cosec (cosec⁻¹x) = x, x ∈ **R** – (-1, 1) and cosec⁻¹(cosec x) = x, x ∈
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 – {0}

•
$$\sec(\sec^{-1}x) = x, x \in \mathbf{R} - (-1, 1) \text{ and } \sec^{-1}(\sec x) = x, x \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$$

$$\circ$$
 cot (cot⁻¹x) = x, x \in **R** and cot⁻¹(cot x)= x, x \in (0, π)

• For suitable values of domains;

$$\circ \sin^{-1}\left(\frac{1}{x}\right) = \csc^{-1} x, x \in \mathbf{R} - (-1, 1)$$

$$\circ \cos^{-1}(\frac{1}{x}) = \sec^{-1} x, x \in \mathbf{R} - (-1, 1)$$

$$\cot^{-1}\left(\frac{1}{x}\right) = \begin{cases} \cot^{-1}x, & x > 0 \\ \cot^{-1}\pi, & x = 0 \end{cases}$$

$$\circ \csc^{-1} \left(\frac{1}{x} \right) = \sin^{-1} x, x \in [-1, 1]$$

$$\circ \sec^{-1}\left(\frac{1}{x}\right) = \cos x, x \in [-1, 1]$$

$$\circ \cot^{-1}\left(\frac{1}{x}\right) = \begin{cases} \tan^{-1}x, & x > 0 \\ \pi + \tan^{-1}x, & x < 0 \end{cases}$$

Note: While solving problems, we generally use the formulas $\tan^{-1}\left(\frac{1}{x}\right) = \cot^{-1}x$ and $\cot^{-1}\left(\frac{1}{x}\right) = \tan^{-1}x$ when the conditions for x (i.e., x > 0 or x < 0) are not given

• For suitable values of domains;

$$\circ \sin^{-1}(-x) = -\sin^{-1}x, x \in [-1, 1]$$

$$\circ \cos^{-1}(-x) = \pi - \cos^{-1}x, x \in [-1, 1]$$

$$\circ \tan^{-1}(-x) = -\tan^{-1}x, \ x \in \mathbb{R}$$

$$\circ$$
 cosec⁻¹ (-x) = -cosec⁻¹x, |x| \geq 1

$$\circ \sec^{-1}(-x) = \pi - \sec^{-1}x, |x| \ge 1$$

$$\circ \cot^{-1}(-x) = \pi - \cot^{-1}x, x \in \mathbf{R}$$

• For suitable values of domains;

$$\circ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}, x \in [-1, 1]$$

$$\circ \tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}, x \in \mathbf{R}$$

$$\circ \sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}, |x| \ge 1$$

• For suitable values of domains;

$$\cot^{-1} x + \tan^{-1} y = \begin{cases} \tan^{-1} \frac{x+y}{1-xy}, xy < 1 \\ \pi + \tan^{-1} \frac{x+y}{1-xy}, xy > 1 \end{cases}$$

$$\cot^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy}$$

Note: While solving problems, we generally use the formula $\tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x+y}{1-xy}$ when the condition for xy is not given.

• For
$$x \in [-1, 1]$$
, $2\tan^{-1}x = \sin^{-1}\frac{2x}{1+x^2}$

• For
$$x \in (-1, 1)$$
, $2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^2}$

• For
$$x \in [-1, 1]$$
, $2\tan^{-1}x = \sin^{-1}\frac{2x}{1+x^2}$
• For $x \in (-1, 1)$, $2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^2}$
• For $x = 0$, $2\tan^{-1}x = \cos^{-1}\frac{1-x^2}{1+x^2}$

Example: 2

For
$$x, y \in [-1, 1]$$
, show that: $\sin^{-1}x + \sin^{-1}y = \sin^{-1}(x\sqrt{1-y^2} + y\sqrt{1-x^2})$

Solution:

We know that $\sin^{-1} x$ and $\sin^{-1} y$ can be defined only for $x, y \in [-1, 1]$

Let
$$\sin^{-1} x = a$$
 and $\sin^{-1} y = b$

$$\Rightarrow x = \sin a \text{ and } y = \sin b$$

Also,
$$\cos a = \sqrt{1 - x^2}$$
 and $\cos b = \sqrt{1 - y^2}$

We know that, $\sin (a + b) = \sin a \cos b + \cos a \sin b$

$$\Rightarrow a + b = \sin^{-1} \left[x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right]$$

$$\Rightarrow \sin^{-1}x + \sin^{-1}y = \sin^{-1}\left[x\sqrt{1-y^2} + y\sqrt{1-x^2}\right]$$

Example: 3

If $\tan^{-1}\left(\frac{5}{6}\right) + \tan^{-1}\left(\frac{1}{11}\right) = x$, then find $\sec x$.

Solution:

We have
$$x = \tan^{-1}\left(\frac{5}{6}\right) + \tan^{-1}\left(\frac{1}{11}\right) = \tan^{-1}\left[\frac{\frac{5}{6} + \frac{1}{11}}{1 - \frac{5}{6} \times \frac{1}{11}}\right]$$

Using the identity
$$\tan^{-1}x + \tan^{-1}y \tan^{-1}\left(\frac{x+y}{1-xy}\right)$$
, where $x = \frac{5}{6}$ and $y = \frac{1}{11}$

$$\therefore x = \tan^{-1} \left[\frac{\frac{.55 + 6}{.66}}{\frac{.66 - 5}{.66}} \right]$$

$$= \tan^{-1} 1$$

$$=\frac{\pi}{\Delta}$$

$$\sec x = \sec \frac{\pi}{4} = \sqrt{2}$$

Example: 4

Show that:
$$3\tan^{-1}x = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right)$$
 where $x \in \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$

Solution:

We know that,

$$3\tan^{-1}x = \tan^{-1}x + 2\tan^{-1}x$$

$$= \tan^{-1} x + \tan^{-1} \frac{2x}{1-x^2}$$

$$= \tan^{-1} \left[\frac{x + \frac{2x}{1 - x^2}}{1 - x \times \frac{2x}{1 - x^2}} \right]$$

$$= \tan^{-1} \left[\frac{\frac{3x - x^3}{1 - x^2}}{\frac{1 - 3x^2}{1 - x^2}} \right]$$

$$= \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$$