



# **OPTIONAL NUMERICAL VALUE QUESTIONS (NVQs)**

### **PHYSICS PART - II**

- **OP21.** If the radius of curvature of the path of two particles of same masses are in the ratio 1 : 2, then in order to have constant centripetal acceleration, their velocity, should be in the ratio of \_\_\_\_\_.
- **OP22.** A refrigerator is to maintain eatables kept inside at 7°C. The coefficient of performance of refrigerator if room temperature is 38°C is \_\_\_\_\_.
- **OP23.** A capillary tube of radius r is immersed vertically in a liquid such that liquid rises in it to height h (less than the length of the tube). Mass of liquid in the capillary tube is m. If radius of the capillary tube is increased by 50%, then mass of liquid that will rise in the tube, is \_\_\_\_\_ times.
- **OP24.** 1/2 mole of helium is contained in a container at STP. How much heat energy is needed to double the pressure of the gas, (volume is constant). Heat capacity of gas is  $3 \text{ jg}^{-1} \text{ K}^{-1}$ .
- **OP25.** Velocity of sound waves in air is 330 m/s. For a particular sound wave in air, a path difference of 40 cm is equivalent to phase difference of  $1.6 \pi$ . The frequency of this wave Hz.

## **CHEMISTRY PART - II**

- **OC46.** HCl is added to  $MnO_2$ , PbO<sub>2</sub> and BaO. How many would not give  $H_2O_2$ ?
- **OC47.** The  $\gamma$ -form of iron has *fcc* structure (edge length 386 pm) and  $\beta$ -form has *bcc* structure (edge length 290 pm). The ratio of density of  $\gamma$ -form and  $\beta$ -from is \_\_\_\_\_.
- **OC48.** Dry air was passed successively through a solution of 5 g of a solute in 80 g of water and then through pure water. The loss in weight of solution was 2.50 g and that of pure solvent 0.04 g. What is the molecular weight of the solute

- **OC49.** The frequency of radiation emitted when the electron falls from n=4 to n=1 in a hydrogen atom is  $x \times 10^{15} \text{ s}^{-1}$  will be. (Given ionization energy of  $H = 2.18 \times 10^{-18} J$  atom<sup>-1</sup> and  $h = 6.625 \times 10^{-34} Js$ )
- **OC50.** If 0.50 mol of  $CaCl_2$  is mixed with 0.20 mol of  $Na_3PO_4$ , the maximum number of moles of  $Ca_3(PO_4)_2$  which can be formed, is \_\_\_\_\_.

## **MATHEMATICS PART - II**

**OM71.** A biased coin with probability p, 0 , of heads to tossed until a head appears for the first time. If the probability that the number of tosses required is even 2

is 
$$\frac{2}{5}$$
, then  $p =$ \_\_\_\_\_.

**OM72.** The plane denoted by  $P_1: 4x + 7x + 4z + 81 = 0$  is rotated through a right angle about its line of intersection with the plane  $P_2: 5x + 3y + 10z = 25$ . If the plane in its new position be denoted by P, and the distance of this plane from the origin is d, then the value of  $\lfloor d/2 \rfloor$  (where  $\lfloor k \rfloor$  represents greatest integer less then or equal to k) is \_\_\_\_\_.

**OM73.** The value of 
$$\int_{0}^{\infty} |x-5| dx$$
 is \_\_\_\_\_.

**OM74.** 
$$\lim_{x \to \infty} \left( \sqrt{x^2 + 8x + 3} - \sqrt{x^2 + 4x + 3} \right) = \underline{\qquad}$$

**OM75.** A batsman scores runs in 10 innings 38, 70, 48, 34, 42, 55, 63, 46, 54, 44, then the mean deviation about median is

C-15

# SOLUTIONS

# **MOCK TEST 15**

### PHYSICS PART - II

**OP21.** (0.70) The centripetal acceleration,  $a = \frac{v^2}{r} \Rightarrow r = \frac{v^2}{a}$   $\therefore r \propto v^2$  or  $v \propto \sqrt{r}$  (if *a* is constant),  $\Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{r_1}{r_2}} = \sqrt{\frac{1}{2}}$  **OP22.** (9.03) Here,  $T_1 = 38^{\circ}C = 38 + 273 = 311 \text{ K}$   $T_2 = 7^{\circ}C = 7 + 273 = 280 \text{ K}$   $\therefore$  coefficient of performance of the refrigerator,  $= \frac{T_2}{r_2} = \frac{280}{r_2} = 9.03$ 

$$T_1 - T_2 = 311 - 280$$

C-32

OP23. (1.5) 
$$h = \frac{2T\cos\theta}{r\rho g} \Rightarrow h \propto \frac{1}{r} \Rightarrow \frac{h_2}{h_1} = \frac{r_1}{r_2} = \frac{2}{3}$$
  
 $\left(\because r_1 = r, r_2 = r + 50\% \text{ of } r = \frac{3}{2}r\right)$   
New mass  $m_2 = \pi r_2^2 h_2 \rho = \pi \left(\frac{3}{2}r_1\right)^2 \left(\frac{2}{3}h_1\right) \rho$   
 $= \frac{3}{2} \left(\pi r_1^2 h_1\right) \rho = \frac{3}{2}m$   
OP24. (1638) Here,  $n = \frac{1}{2}, c_V = 3 \text{ J g}^{-1} \text{ K}^{-1}, M = 4 \text{g mol}^{-1}$   
 $\therefore C_V = Mc_V = 4 \times 3 = 12 \text{ J mol}^{-1} \text{ K}^{-1}$   
At constant volume  $P \propto T$ .  
 $\therefore \frac{P_2}{P_1} = \frac{T_2}{T_1} = 2, T_2 = 2T_1$   
Rise in temperature  $\Delta T = T_2 - T_1 = 2T_1 - T_1 = T_1 = 273 \text{ K}$   
Heat required,  $\Delta Q = nC_V \Delta T = \frac{1}{2} \times 12 \times 273 = 1638 \text{ J}$   
OP25. (660) From  $\Delta x = \frac{\lambda}{2\pi} \Delta \phi$ ,  
 $\lambda = 2\pi \frac{\Delta x}{\Delta \phi} = \frac{2\pi(0.4)}{1.6\pi} = 0.5 \text{ m}$ 

$$\Delta \phi = \frac{1.6\pi}{1.6\pi}$$
 f =  $\frac{v}{\lambda} = \frac{330}{0.5} = 660$  Hz

#### CHEMISTRY PART - II

- **OC46.** (3)  $MnO_2$ ,  $PbO_2$  and BaO will not give  $H_2O_2$  with HCl.  $MnO_2$  and  $PbO_2$  will give  $Cl_2$  and BaO will react with HCl to give BaCl<sub>2</sub> and water.
- **OC47.** (0.8481)  $\gamma$ -form fcc Z = 4 a = 386 pm  $\beta$ -form bcc Z = 2 a = 290 pm

$$\frac{\rho_{\gamma}}{\rho_{\beta}} = \frac{4M / N_{A} (386)^{3}}{2M / N_{A} (290)^{3}} = \frac{2(290)^{3}}{(386)^{3}} = 0.8481$$

OC48. (70.31)

OC49. (3.08) 
$$E_{\text{ionisation}} = E_{\infty} - E_n = \frac{13.6Z_{eff}^2}{n^2} eV$$
  
 $= \left[\frac{13.6Z^2}{n_2^2} - \frac{13.6Z^2}{n_1^2}\right]$   
 $E = hv = \frac{13.6 \times 1^2}{(1)^2} - \frac{13.6 \times 1^2}{(4)^2}; hv = 13.6 - 0.85$   
 $\therefore h = 6.625 \times 10^{-34}$   
 $v = \frac{13.6 - 0.85}{6.625 \times 10^{-34}} \times 1.6 \times 10^{-19} = 3.08 \times 10^{15} \text{ s}^{-1}.$ 

Mock Test

**OC50.** (0.1) 
$$3\text{CaCl}_2 + 2\text{Na}_3\text{PO}_4 \rightarrow \text{Ca}_3(\text{PO}_4)_2 + 6\text{NaCl}$$

$$\therefore 2 \text{ Moles of } Na_3PO_4 = 3 \text{ mole of } CaCl_2$$
$$= 1 \text{ mole } Ca_3(PO_4)_2$$

 $\therefore \quad 0.2 \text{ mole of Na}_3 \text{PO}_4 = 0.3 \text{ mole of CaCl}_2$  $= 0.1 \text{ mole of Ca}_3(\text{PO}_4)_2$ 

### **MATHEMATICS PART - II**

OM71. (0.33) Let X denotes the number of tosses required. Then  $P(X = r) = (1 - p)^{r - 1}$ . p, for r = 1, 2, 3..... Let *E* denote the event that the number of tosses required is even. Then  $P(E) = P[(X = 2) \cup (X = 4) \cup (X = 6) \cup \dots]$  $P(E) = P(X = 2) + P(X = 4) + P(X = 6) + \dots$  $P(E) = (1-p)p + (1-p)^{3}p + (1-p)^{5}p + \dots = \frac{1-p}{2-p}$ But we are given that  $P(E) = \frac{2}{5}$ , then we get  $p = \frac{1}{3}$ . **OM72.** (7) 4x + 7y + 4z + 81 = 0...(i) 5x + 3y + 10z = 25...(ii) Equation of plane passing through their line of intersection is  $(4x + 7y + 4z + 81) + \lambda(5x + 3y + 10z - 25) = 0$ or  $(4+5\lambda)x + (7+3\lambda)y + (4+10\lambda)z + (81-25\lambda) = 0$ ...(iii) plane (iii)  $\perp$  to (i), so  $4(4+5\lambda) + 7(7+3\lambda) + 4(4+10\lambda) = 0 \implies \lambda = -1$ From (iii), equation of plane is -x + 4y - 6z + 106 = 0...(iv) Distance of (iv) from (0, 0, 0)106 106 6

$$= \frac{1}{\sqrt{1+16+36}} = \frac{1}{\sqrt{53}} \approx 14.$$
$$\therefore \left[\frac{14.6}{2}\right] = [7.3] = 7.$$

OM73. (17)

OM74. (2) 
$$\lim_{x \to \infty} \frac{4x}{\left(\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}\right)}$$
 (On rationalization)  
$$= \lim_{x \to \infty} \frac{4}{\left(\sqrt{1 + \frac{8}{x} + \frac{3}{x^2}} + \sqrt{1 + \frac{4}{x} + \frac{3}{x^2}}\right)} = 2$$

**OM75. (8.6)** Arrange the given data in ascending order, We have 34, 38, 42, 44, 46, 48, 54, 55, 63, 70

Here, median 
$$= M = \frac{46 + 48}{2} = 47$$
  
(::  $n = 10$ , median is the mean of 5<sup>th</sup> and 6<sup>th</sup> term)  
 $\therefore$  Mean deviation  $= \frac{\Sigma |x_i - M|}{n} = \frac{\Sigma |x_i - 47|}{10}$   
 $= \frac{13 + 9 + 5 + 3 + 1 + 1 + 7 + 8 + 16 + 23}{10} = 8.6.$