Chapter 10

Animal Kingdom (General Accounts & Non-Chordates)

Solutions

SECTION - A

Objective Type Questions

(Metazoa, Basis of Classification)

- 1. Which of the following groups of animals have closed circulatory system?
 - (1) Cockroach, locust, molluscs
 - (2) Non-cephalopod molluscs, cockroach
 - (3) Cephalopod molluscs and earthworm
 - (4) Hemichordates and non-cephalopod molluscs

Sol. Answer (3)

In closed circulatory system, blood circulates through a series of blood vessels of varying diameter i.e. arteries, veins and capillaries, without coming in direct contact with body cells. Closed circulatory system is found in Annelids, cephalopod molluscs, chordates.

Earthworm belongs to phylum annelida.

2. Which of the following groups of animals has tube in tube body plan?

(1) Sponges (2) Coelenterates

(3) Aschelminthes (4) Platyhelminthes

Sol. Answer (3)

Sponges – Diploblastic, assymetric or radially symmetric

Coelenterates (cnidaria) – Diploblastic, radially symmetric

Aschelminthes – Triploblastic, bilaterally symmetric

Ctenophores – Diploblastic, radially symmetric

3. Coelom derived from blastocoel is known as

(1) Pseudocoelom (2) Schizocoel

(3) Haemocoel (4) Enterocoelom

Sol. Answer (1)

In pseudocoleomate, body cavity is not completely lined by mesoderm. There are scattered pouches of mesoderm between ectoderm and endoderm.

- 4. Schizocoelomates and enterocoelomates are
 - (1) Acoelomates (2) True coelomates
 - (3) Vertebrates (4) Echinoderms only

Sol. Answer (2)

Eucoelomates are true coelomates, where body cavity is lined by mesoderm on both sides.

Based on mode of formation of coelom, eucoelomates are of two types:

- a. Schizocoelom: Body cavity develops by splitting of mesoderm. It is found in annelids and arthropods.
- b. **Enterocoelom :** Mesoderm arises from wall of embryonic gut or enteron as hollow outgrowths. It occurs in echinoderms and chordates.
- 5. Which one of the following can't be taken as the character of non-chordates?
 - (1) Absence of notochord
 - (2) Heart is ventral
 - (3) Gill slits are absent
 - (4) Chitinous exoskeleton present

Sol. Answer (2)

Characteristic of chordates are:

- a. Absence of notochord in non-chordates, notochord is absent
- b. Heart is present in dorsal in position in non-chordates
- c. Gills slits are absent
- d. In some non chordate e.g. arthropod, chitin exoskeleton is present

Heart is dorsal, not ventral in non chordates.

6. Column II below consists of brief descriptions of organisms in column I. Which of the following is incorrect match between column I and column II?

 Column I
 Column II

 (1) Millipede
 - A terrestrial organism with two pairs of jointed appendages attached to each of its many body segments and respires through trachea.

 (2) Nereis
 - Numerous setae on lateral appendages called parapodia.

 (3) Taenia solium
 - Body is covered with cuticle, alimentary canal absent.

 (4) Ctenophores
 - Radially symmetrical, devoid of cnidoblasts, polyp stage present in their life cycle.

Sol. Answer (4)

Option (4) is in correctly matched as correct match will be

in their life cycle

- (1) Millipede

 Terrestrial organism with two pairs of Class diplopoda phylum arthropoda appendages attached to each of its many body segments and respire through trachea
- (2) Nereis Numerous setae on lateral appendages Class polychaeta phylum annelida called parapodia
- (3) Taenia solium Body is covered with cuticle alimentary Class cestoda phylum platyhelminthes canal is absent
- (4) Ctenophores Radially symmetric animals, devoid of Phylum ctenophora cnidoblast, no polyp like stage is present

 The appropriate sequence of numbered animals from column II matching with the sequence of larvae in column I is

column I

a. Planula (i) Mussell

b. Glochidium (ii) Crab

c. Nauplius (iii) Obelia

d. Cysticercus (iv) Nereis

(v) Taenia solium

(1) a(iv), b(i), c(ii), d(v) (2) a(ii), b(i), c(v), d(iii) (3) a(iii), b(i), c(ii), d(v) (4) a(i), b(iii), c(ii), d(v)

Sol. Answer (3)

Appropriate match is

a. Planula larva – *Obelia* (cnidaria)

b. Glochidium larva – Mussel (class pelecypoda) (phylum mollusca)
 c. Nauplius larva – Crab (class crustacea) (phylum arthropoda)

d. Cysticercus larva – Taenia solium (class cestoda) (phylum platyhelminthes)

- 8. Which of the following statement is **incorrect**?
 - (1) Receptors for taste are located in the feet of insects
 - (2) The development of echinoderms includes a free-swimming dipleura larva
 - (3) Flame cells in flatworms are for excretion and osmoregulation
 - (4) Alternation of asexual and sexual phases in life cycle of Hydra is called metagenesis

Sol. Answer (4)

Correct statement would be -

There is no alternation of asexual and sexual phases called metagenesis in life cycle of Hydra.

(Classification of Animals)

[Phylum : Porifera]

- 9. Canal system of porifera is **not** connected with
 - (1) Food gathering

(2) Respiratory gas exchange

(3) Removal of waste

(4) Locomotion

Sol. Answer (4)

Poriferans are sessile organisms and remain attached to substratum. Poriferans do not show locomotion. In sponges canal system performs function of food gathering, gas exchange during respiration, removal of waste product. Canal system does not help in locomotion.

10. Statement-1: Choanocytes are characteristic cells of porifera.

Statement-2: In sycon type canal system, both radial and incurrent canals are lined by choanocytes.

- (1) Both statement (1) and (2) are correct
- (2) Statement (1) is correct and (2) is incorrect
- (3) Statement (1) is incorrect and (2) is correct
- (4) Both statements (1) and (2) are incorrect

Sol. Answer (2)

11.	Which of the following s	tate	ements is without e	xception for	sponges?					
	(1) They all have calcar	eou	us spicules	(2)	They have high	n regenerat	ive power			
	(3) They are found only	in	marine water	(4)	They are all ra	idially sym	metric			
Sol.	Answer (2)									
IDb.	Sponge may undergo from into complete sponge. Sponge regroup to form sponge.	Spo	nges possess high	-		-		-		
[Pny	rlum : Coelenterata, Ct	end	opnoraj							
12.	In Hydra, waste material	s a	fter digestion and ni	trogenous w	genous waste materials are removed from					
	(1) Mouth only			(2)	Body wall only					
	(3) Mouth and body wa	ll re	espectively	(4)	Mouth and ten	tacles resp	ectively			
Sol.	Answer (3)									
Cnidarians are ammonotelic and have incomplete digestive system, having single opening for entry and of substances. Excretion in cnidarian occurs through mouth and through body surface via diffusion.								•		
13.	Which of the following c	ells	are present only in	nis of <i>Hydra?</i>						
	(A) Interstitial cells			(B)	Cnidoblasts					
	(C) Sensory cells			(D)	Germ cells					
	(1) B and C		(2) B only	(3)	B and D	(4)	A, B, C	and D		
Sol.	Answer (3)									
	Interstitial cells	-	Totipotent cells whi cnidarians	ch give rise	to all different c	ells of bod	y in epide	rmis layer of		
	Cnidoblast -	-	Are stinging cells, in feature of cnidarians	=	layer of cnidaria	ans cnidob	last in cha	aracteristic		
	Sensory cells	-	Scattered through of other phyla	out epidermis	s, but sensory c	ells are als	so observe	ed in animals		
14.	Obelia is characterised	by								
	A. Ciliated free swimmi	ng	planula larva							
	B. Metagenesis									
	C. Absence of cnidocy	tes								
	D. Statocysts present i	n n	nedusoid stage							
	(1) A and B			(2)	B only					
	(3) A, B & D			(4)	A, B, C & D					
Sol.	Answer (3)									
	Obelia (sea fur) belong larva-planula is formed. bear true velum. Such n	Obe	elia show alternation	of generation	ns or metagene			_		
15.	Jelly fish :	_ : :	Devil Fish : Molluse	ca						
	Complete the analogy									
	(1) Cnidaria			(2)	Echinodermata	1				
	(3) Annelida			(4)	Molluca					

Sol. Answer (1)

Jellyfish like Aurelia belongs to phylum cnidaria/coelenterata.

- 16. Biradial symmetry and lack of cnidoblasts are the characteristics of
 - (1) Hydra and Aurelia

(2) Aurelia and Adamsia

(3) Ctenoplana and Pleurobrachia

(4) Aurelia and Paramoecium

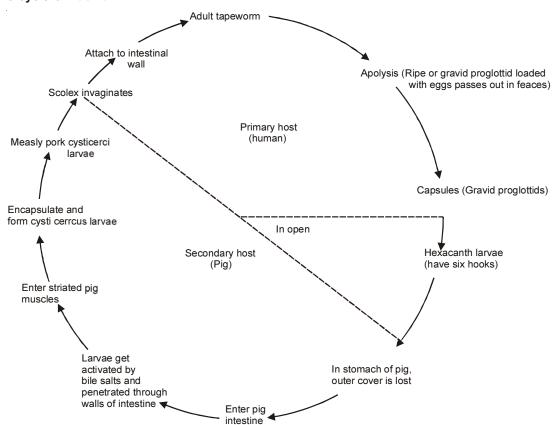
Sol. Answer (3)

Biradial symmetry and lack of cnidoblast is feature of ctenophora phylum. *Ctenoplana* and *Pleurobrachia* belong to class ctenophora.

[Phylum: Platyhelminthes]

- 17. The presence of a special sense organ statocyst at the opposite end of mouth that is (aboral end) is the characteristic of
 - (1) Cnidarians
- (2) Platyhelminthes
- (3) Ctenophora
- (4) Nematodes

Sol. Answer (3)


Ctenophora have special sense organs called statocyst at opposite end of mouth (aboral end), is characteristic feature of phylum ctenophora.

- 18. Cysticercus larva of Taenia develops in
 - (1) Man

- (2) Goat
- (3) Sheep
- (4) Pig

Sol. Answer (4)

Life cycle of Taenia

So cysticerci larva of taenia develops in pig and is infective stage for humans.

19.	Free swimming ciliated larva of liver fluke is								
	(1) Redia	(2)	Miracidium						
	(3) Metacercaria	(4)	Cercaria						
Sol.	Answer (2)								
	Miracidium larva is free-swimming larvae of Fasciola and have ciliated epidermis.								
	Miracidium larva is infective stage for secondary host	.e. sı	nail during life cycle of Fasciola.						
20.	One example of animals having a single opening to this	he ou	utside that serves both as mouth as well as anus						
	(1) Fasciola	(2)	Ancylostoma						
	(3) Asterias	(4)	Ascidia						
Sol.	Answer (1)								
	Animals having single opening to outside that function system. Platyhelminthes have incomplete digestive s <i>Asterias</i> (Echinodermata), Ascidia (Urochordate) have mouth and anus.	syste	m e.g Fasciola Ancyclostoma (Aschelminthes),						
21.	In contrast to Annelids, the Platyhelminthes show								
	(1) Absence of body cavity	(2)	Bilateral symmetry						
	(3) Radial symmetry	(4)	Presence of pseudocoel						
Sol.	Answer (1)								
	Platyhelminthes does not have body cavity lined with schizocoelomate, true coelomate, body cavity is lined								
22.	Which of the following is not a digenetic worm?								
	(1) Fasciola	(2)	Wuchereria						
	(3) Enterobius	(4)	Taenia						
Sol.	Answer (3)								
	Digenetic worms are worms having two hosts to comp	lete i	its life cycle						
	• Fasciola, primary host is sheep and goat and second	ondar	ry host is snail (Limnaea) and (Planorbis)						
	• Wuchereria, primary host is human and secondary	/ hos	t is Culex mosquito						
	• Enterobius, (Pin worm) is monogenetic, i.e. compl	ete li	fe cycle in single host which is humans						
	Taenia, primary host is human and secondary host	t is p	ig or cow, buffalo, sheep						
23.	The characteristics of a tapeworm are								
	A - Large, quadrate scolex, without rostellum and hool	ks							
	B - Primary host man, and secondary host cattle								
	C - Length 5 to 10 metres								
	Identify the tapeworm								
	(1) Taenia solium	(2)	Taenia saginata						
	(3) Echinococcus	(4)	Hymenolepsis nana						
Sol.	Answer (2)								
	Taenia saginata commonly known as beef tapeworm. Intermediate host is cow, buffalo and sheep. In 7 saginata rostellum and hooks are absent. Taenia saginata is longest tapeworm (5-10 m) and it is most contained.								

tapeworm of man.

[Phy	lum	n : Aschelminthes, Anne	elida]								
24.	The	e secondary host of Wuch	hereria, that transmits filar	iasis	is						
	(1)	Anopheles		(2)	Sand fly						
	(3)	Tse tse fly		(4)	Culex						
Sol.	Ans	swer (4)									
	Cul	lex mosquito is vector of t	filariasis, which is caused	by И	/uchereria.						
25.	. Which of the following is not a characteristic feature of phylum Nemathelminthes?										
	(1) Bilateral symmetry, triploblastic, pseudocoelomate.(2) They are possibly most abundant amongst the animals										
	(3)	The false body cavity allo	ws body wall muscles and	diges	tive tract muscles to	act ind	ependently of each othe				
	(4)	The bodywall has longitu	ıdinal muscles, circular mu	ıscles	and an elastic cutic	le					
Sol.	Ans	swer (4)									
	-	ohylum Nemathelminthes/ absent.	'Aschelminthes only longit	tudina	al muscle fibres are	preser	nt, circular muscle fibres				
26.	Syr	ncytial epidermis is prese	nt in								
	(1)	Aurelia (2	2) Ascaris	(3)	Asterias	(4)	Antedon				
Sol.	Ans	swer (2)									
	-	cytial epidermis. Syncytial	ent in <i>Ascaris</i> (Aschelmint I epidermis have fused cel	,	•		-				
27.		n The	nfected pool or coming in larva stick to the surfa								
	(1)	Ancylostoma, IInd Juvenil	e	(2)	Bilharzia, Cercaria						
	(3)	Schistosoma, Metacerca	ıriae	(4)	Bilharzia, Redia						
Sol.	Ans	swer (2)									
	par		a is a disease caused by ed from fresh water snail.				•				
	Cai	rcaria larva, develop durir	ng life cycle of Schistosom	na, inf	ect humans by attac	ching a	and penetrating skin.				
28.	Wh	ich of the following stater	ments are correct about t	the lif	e cycle of <i>Ascaris lu</i>	ımbric	oides?				
	A.	Infective agent - Embryon	nated egg with II Juvenile								
	В.	Fertilised eggs containing	g the unsegmented ovum	are p	assed with faeces						
	C.	Four moultings of the lar	va occur two outside in so	oil wit	hin the egg-shell, on	e in lu	ings and one in intestine				
	D.	Site of location of worm	- small intestine.								
	(1)	A and B		(2)	A only						
	(3)	A, B & D		(4)	A, B, C & D						
Sol.	Ans	swer (3)									
	Sta	tement C is incorrect as									

1st molting of *Ascaris* occurs in soil, 2nd molting occur in lung alveoli, 3rd molting also takes place in lung alveoli, 4th molting occurs in intestine.

29.	Excretory structures of Pheretima are							
	(1) Nephridia	(2)	Malpighian tubules					
	(3) Flame cells	(4)	Choanocytes					
Sol.	Answer (1)							
	Annelids have specialized structure called nephridia	for exc	retion.					
[Phy	ylum : Arthropoda]							
30.	Antennary glands of prawn are involved in							
	(1) Digestion	(2)	Sensory perception					
	(3) Respiration	(4)	Excretion					
Sol.	Answer (4)							
	Elimination of nitrogenous wastes is the function of a	antenna	al glands of crustaceans such as prawn.					
	Depending on location if green glands are present in antenna then they are antennary gland and if present in appendages they are called coxal glands.							
	Malpighian tubules are present at junction of midgut	and hi	ndgut and open in alimentary canal.					
31.	Term hexapoda can be associated with							
	(1) Butterfly	(2)	Scorpion					
	(3) Spides	(4)	Prawn					
Sol.	. Answer (1)							
	Insects such as butterfly have three pairs of legs.							
32.	Johnston's organ present in mosquitoes, are to detect	t vibrati	ons. They are present in					
	(1) Antenna	(2)	Appendages					
	(3) Anal cerci	(4)	Mouth parts					
Sol.	Answer (1)							
	Johnston's organs are present on antennae of mosqu	uitoes.						
33.	Match the following (w.r.t. type of metamorphosis invol	ved)						
	Column I		Column II					
	a. Paurometabolous	(i)	Silk worm					
	b. Hemimetabolous	(ii)	Grasshopper					
	c. Holometabolous	(iii)	Silver fish					
	d. Ametabolous	(iv)	Dragon fly					
	(1) a(ii), b(iv), c(i), d(iii)	(2)	a(i), b(iii), c(iv), d(ii)					
	(3) a(ii), b(iii), c(i), d(iv)	(4)	a(ii), b(iv), c(iii), d(i)					
Sol.	Answer (1)							
	a. Paurometabolous – Grasshopper – Gradual met	amorpl	nosis life history includes egg, nymph and adult.					
	b. Hemimetabolous – Dragonflies – Incomplete me	tamorp	hosis life history includes egg, naiad, imago					
	c. Holometabolous – Silk worm – Complete metam	orphos	is life history includes egg, larva, pupa, imago					
	d. Ametabolous – Silverfish – Without metamorpho	sis life	history includes egg, young and imago					

34.	In w	vhich of the following arthropods the eggs hat	ch w	ithin the	female body and they bring forth the young alive?					
	(1)	Araneus		(2)	Macrobrachium					
	(3)	Buthus		(4)	Lepisma					
Sol.	Ans	Answer (3)								
		thus are scorpions and scorpions are ovovivi young alive.	ipar	ous whe	re eggs hatch with in female body and bring forth					
35.	In which of the following arthropods the development is paurometabolous? The young hatched from eggs resemble the adult and often occupy the same habitat and they grow by moulting									
	(1)	Bombyx		(2)	Apis					
	(3)	Anopheles		(4)	Periplaneta					
Sol.	Ans	swer (4)								
	Periplaneta (Cockroach) undergoes paurometabolous development with gradual metamorphosis. The young resembles the adult in its mode of life but differs in structure.									
36.	In h	noneybees and butterflies the gustatory and o	olfad	ctory rec	eptors are located, respectively on					
	(1)	Mouth parts, Antennae		(2)	Feet, Antennae					
	(3)	Proboscis, Legs		(4)	Mandibles, Antennae					
Sol.	Ans	swer (2)								
	Gustatory receptors are sense receptors which help in tasting of food and olfactory receptors help in smelling. In honey bees and butterflies gustatory receptors are present on feet and olfactory receptors on antennae.									
37.	Wh	ich set includes Arthropods of economic imp	orta	ince pro	viding useful products to man?					
	(1)	Anopheles, Culex, tse-tse fly		(2)	Apis, Bombyx, Laccifer					
	(3)	Limulus, Peripatus		(4)	Locusta, Grasshopper					
Sol.	Ans	swer (2)								
	Api	, - ,	-		oney which is used as food as well as medicines, ich is used in paints and cosmetics.					
	Bor	mbyx (silk worm) – Provides silk for i	mak	ing shav	vls, sarees and other garments					
	Lac	ecifer (Lac insect) - Provides lac, which	ch a	acts as s	ealing wax and used in making bangles, toys, etc.					
38.		ich of the following is an important distinguis	hing	g feature	of butterfly and not moth?					
		Stout body; noctural Wings are not folded in sitting position								
		Antennae are long with globose end, and di	urns	al						
		Antennae are short, with tapering ends and			d nocturnal					
Sol	` '	swer (3)	ICai	uiciy aii	a noctamai					
001.		tion (3) is a distinguishing feature of butterfly.	Dif	ferences	s between butterfly and moth					
	Opt	Butterfly		Moth	botwoon buttorny and moun					
	i.	•	i.		cturnal (active during night)					
	ii.		ii.		often robust					
	iii. Antennae are knobbed distally iii			-	ae taper distally					
	iv.		iv.		s at rest, keeps the wings held out horizontally					

[Phylum: Mollusca, Echinodermata, Hemichordata]

39. Eye of which molluscan group resembles vertebrate eye?

(1) Bivalvia (2) Gastropoda

(3) Pelecypoda (4) Cephalopoda

Sol. Answer (4)

Cephalopod molluscs have simple eyes which are analogous to vertebrate eyes *i.e.* similar in function to vertebrate eyes.

- 40. Radula is
 - (1) Larval form of cnidarians
 - (2) File like rasping organ of molluscs
 - (3) Larval form of annelids
 - (4) Uncovered structure present with echinoderms

Sol. Answer (2)

Radula is file-like rasping organ in mouth of mollusc which bears transverse rows of chitinous teeth.

Radula is meant for feeding.

41. In which group of molluscs torsion is a very important event in the life history?

(1) Gastropods

(2) Bivalves

(3) Cephalopods

(4) Monoplacophora

Sol. Answer (1)

In gastropod molluscs, early embryo is symmetrical with anterior mouth and posterior anus but during development the body twists, bringing anus near mouth showing torsion. So adult gastropod become asymmetric.

- 42. Which one of the following class of phylum mollusca is incorrectly matched with its general characteristics?
 - (1) Gastropoda Larvae are bilaterally symmetrical; but in adult, the twisting of viscera makes them lose this symmetry. Some, like land snail and slug (a shell-less form), live on land.
 - (2) Bivalvia They are sedentary filter feeders.
 - (3) Cephalopoda They are at the apex of invertebrate evolution in terms of learned behaviour they exhibit. The eyes are image forming, same what similar to ours.
 - (4) Pelecypoda They have sensory tentacles and their foot is reduced into a tongue-shaped structure which helps them to burrow into sea floor.

Sol. Answer (4)

Pelecypoda (Bivalvia) have no head, tentacles, eyes, jaws and radula. Foot is often hatchet shaped and extends between mantle lobes. They are mostly filter feeders, marine but scaphopoda class of molluscs has prehensile sensory tentacles on head. Foot is conical shaped and is used for digging.

43. Tube feet are characteristic structures of

(1) Star fish (2) Jelly fish

(3) Devil fish (4) Cuttle fish

Sol. Answer (1)

Water vascular system is characteristic feature of echinoderm. Tube feet is a part of water vascular system in echinoderm. Star fish is a member of phylum echinodermata.

- 44. Which of the following is **not** a character of phylum Hemichordata?
 - (1) Presence of stomochord which is mesodermal in origin
 - (2) Excretory organ is proboscis gland
 - (3) Circulatory system is open
 - (4) Respiration takes place through gills

Sol. Answer (1)

Stomochord in hemichordata is not mesodermal in origin, hence they are grouped in non-chordates. From roof of buccal cavity, arises blind projection called buccal diverticulum or stomochord. Earlier stomochord was considered equivalent to notochord but is not a notochord.

SECTION - B

Previous Years Questions

Match the following genera with their respective phylum :

[NEET-2019]

(a) Ophiura

(i) Mollusca

(b) Physalia

(ii) Platyhelminthes

(c) Pinctada

(iii) Echinodermata

(d) Planaria

(iv) Coelenterata

Select the correct option:

- (1) (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
- (2) (a)-(iv), (b)-(i), (c)-(iii), (d)-(ii)
- (3) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
- (4) (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)

Sol. Answer (3)

- (a) Ophiura is an Echinoderm commonly known as brittle star.
- (b) Physalia is coelenterate (Cnidarian) commonly known as portuguese man of war.
- (c) Pinctada is pearl oyster belonging to taxon bivalve molluscs.
- (d) Planaria belongs to platyhelminthes (flatworms).
- 2. Which of the following animals are true coelomates with bilateral symmetry?

[NEET-2019]

- (1) Annelids
- (2) Adult Echinoderms
- (3) Aschelminthes
- (4) Platyhelminthes

Sol. Answer (1)

- Annelids exhibit bilateral symmetry with metameric segmentation where external segments correspond to internal segments.
- Aschelminthes are pseudocoelomates and platyhelminthes are acoelomates.
- Adult echinoderms are bilaterally symmetrical.

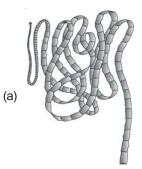
3.	Coi	nsider follo	owing feat	ures		[NEET-2019]				
	(a)	Organ sy	stem leve	el of organi	sation					
	(b)	Bilateral	symmetry	/						
	(c)	True coe	elomates v	vith segme	ntation of body					
	Sel	ect the co	orrect opt	ion of anin	nal groups which p	ossess	all the above characteristics			
	(1)	Annelida	, Arthropo	da and Ch	ordata	(2)	Annelida, Arthropoda and Mollusca			
	(3)	Annelida, Mollusca and Chordata								
Sol.	Sol. Answer (1)									
	True segmentation is present in Annelida, Arthropoda and Chordata. They also have organ system level of organisation, bilateral symmetry and are true coelomates									
4.	Ма	tch the fo	llowing or	ganisms w	ith their respective	charact	teristics:			
	(a)	Pila				(i)	Flame cells			
	(b)	Bombyx				(ii)	Comb plates			
	(c)	Pleurobr	achia			(iii)	Radula			
	(d)	Taenia				(iv)	Malpighian tubules			
	Sel	ect the co	rrect opti	on from the	e following:			[NEET-2019]		
		(a)	(b)	(c)	(d)					
	(1)	(iii)	(ii)	(i)	(iv)					
	(2)	(iii)	(iv)	(ii)	(i)					
	(3)	(ii)	(iv)	(iii)	(i)					
	. ,	(iii)	(ii)	(iv)	(i)					
Sol.		swer (2)								
	. ,					-	ng organ for feeding called radula.			
	. ,	-		-	-	-	ace through malpighan tubules.	In Code - In order - Co-		
	(C)	locomoti	on.		•		ternal rows of ciliated comb plates,	·		
	(d)	Taenia is excretion		nelminth w	ith specialised ce	lls calle	d flame cells which help in osmore	egulation and		
5.	Wh	ich of the	following	animals do	oes not undergo m	etamorp	phosis?	[NEET-2018]		
	(1)	Earthwor	m			(2)	Tunicate			
	(3)	Starfish				(4)	Moth			
Sol.	Ans	swer (1)								
	Me	tamorpho	sis refers	to transfor	mation of larva into	adult.				
	Ani	mal that p	erform m	etamorpho	sis are said to have	e indired	ct development.			
	In e	earthworm	n developr	ment is dire	ect which means no	larval s	stage and hence no metamorphosis.			
6.	In o	case of po	oriferans t	he spongo	coel is lined with fla	agellate	d cells called	[NEET-2017]		
	(1)	Ostia				(2)	Oscula			
	(3)	Choanoo	cytes			(4)	Mesenchymal cells			
Sol.	Ans	swer (3)								
	Choanocytes (collar cells) form lining of spongocoel in poriferans (sponges). Flagella in collar cells provide circulation to water in water canal system.									

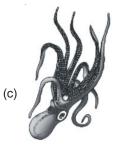
7.	An important characteristic that Hemichordates share with Chordates is								[NEET-2017]	
	(1)	Abse	ence	of no	tochor	ď		(2)	Ventral tubular nerve cord	
	(3) Pharynx with gill slits (4) Pharynx w						Pharynx without gill slits			
Sol.	Ans	swer ((3)							
			_				ent in hemichordates as vord is characteristic feature		as in chordates. Notochord is non-chordates.	s present in chordates
8.	Mat belo		olum	n-l w	ith Co	lum	n-II for housefly classificat	ion a	and select the correct option [NI	using the codes given EET (Phase-2) 2016]
Column-II Column-II										
	a.	Fam	ily			(i)	Diptera			
	b.	Orde	er			(ii)	Arthropoda			
	C.	Clas	S			(iii)	Muscidae			
	d.	Phyl	um			(iv)	Insecta			
	Cod	des:								
		а	b	С	d					
	(1)	(iii)	(i)	(iv)	(ii)					
	(2)	(iii)	(ii)	(iv)	(i)					
	(3)	(iv)	(iii)	(ii)	(i)					
	(4)	(iv)	(ii)	(i)	(iii)					
Sol.	Ans	swer ((1)							
	Ηοι	usefly	belo	ngs t	0					
	(i) F	Phylu	m - A	rthro	ooda					
	(ii)	Clas	s - Ir	secta	a					
	(iii)	Orde	er - D	iptera	1					
	(iv)	Fam	ily - I	Musc	idae					
9.	Wh	ich o	f the	follow	ing fe	atur	es is not present in the Ph	nylun	n-Arthropoda?	[NEET-2016]
	(1)	Joint	ted ap	pend	dages					
	(2)	Chiti	nous	exos	keleto	n				
	(3)	Meta	ameri	c seg	menta	ation				
	(4)	Para	podia	a						
Sol.	Ans	swer ((4)							
	Par	apod	ia are	e pres	sent in	aqu	uatic annelids like <i>Nerei</i> s a	and h	nelps in swimming.	
10.	Me	tagen	esis	refers	s to:					[Re-AIPMT-2015]
		-				ente	d body and parthenogenet	ic m	ode of reproduction	-
	(2)	Pres	ence	of di	fferent	mo	rphic forms		·	
	(3)	Alter	natio	n of g	genera	ition	between asexual and sex	ual p	phases of an organism	
	(4)	Occi	urren	ce of	a dras	stic o	change in form during post	t-emb	oryonic development	
Sol.	Ans	swer ((3)							
	In d	coele	ntera	tes, ı	metag	enes	sis is alternation of gener	ratior	n between polyp and medu	sa. Polyp reproduces

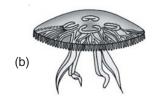
asexually by budding to form medusa and medusa reproduces sexually to form polyp.

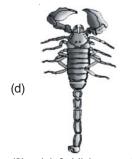
11.	Body having meshwork of cells, internal cavities lined with food filtering flagellated cells and indirect development are the characteristics of phylum: [Re-AIPMT-2015]							
	(1) Protozoa	(2)	Coelenterata	(3)	Porifera	(4)	Mollusca	
Sol.	Answer (3)							
	In poriferans, the body is leavith food filtering flagellate				,			nals are lined
12.	Which of the following char	acter	istics is mainly respon	sible	for diversification of	insect	s on land?[AIPMT-2015]
	(1) Eyes	(2)	Segmentation	(3)	Bilateral symmetry	(4)	Exoskelet	on
Sol.	Answer (4)							
13.	Which of the following endo	opara	sites of humans does	show	viviparity?		1	[AIPMT-2015]
	(1) Ascaris lumbricoides			(2)	Ancylostoma duode	enale		
	(3) Enterobius vermicularis	S		(4)	Trichinella spiralis			
Sol.	Answer (4)							
14.	Select the Taxon mentione	d tha	t represents both mari	ne ar	nd fresh water speci	es	I	[AIPMT-2014]
	(1) Echinoderms	(2)	Ctenophora	(3)	Cephalochordata	(4)	Cnidaria	
Sol.	Answer (4)							
	Echinoderms, ctenophores and cephalochordates are exclusively marine.							
15.	Which one of the following	livin	g organisms completel	y lac	ks a cell wall?		[4	AIPMT-2014]
	(1) Cyanobacteria	(2)	Sea-fan(Gorgonia)	(3)	Saccharomyces	(4)	Blue-greei	n algae
Sol.	Answer (2)							
16.	Planaria possess high cap	acity	of				I	[AIPMT-2014]
	(1) Metamorphosis			(2)	Regeneration			
	(3) Alternation of generation	n		(4)	Bioluminescence			
Sol.	Answer (2)							
	Planaria possess high capa	acity	of regeneration.					
17.	Which group of animals be	long	to the same phylum?					[NEET-2013]
	(1) Earthworm, Pinworm, 7	apev	/orm	(2)	Prawn, Scorpion, L	ocust	а	
	(3) Sponge, Sea anemone	, Sta	fish	(4)	Malarial parasite, A	Amoek	oa, Mosquit	0
Sol.	Answer (2)							
	Prawn, Scorpion and Locus	sta a	I belong to phylum arti	nropc	oda.			
18.	One of the representatives	of Pl						[NEET-2013]
	(1) Silverfish	(2)	Pufferfish	(3)	Flying fish	(4)	Cuttlefish	
Sol.	Answer (1)							
19.	Which of the following are		-	spec	t to their taxonomic	classi	fication?	[NEET-2013]
	(1) Flying fish, cuttlefish,							
	(2) Centipede, millipede, s	-	•					
	(3) House fly, butterfly, tse			odor-	noto			
Sol	(4) Spiny anteater, sea urAnswer (3)	CHIII,	sea cucumber -ECHING	Jueir	ııaıa			
33	(3)							

20. In which one of the following, the genus name, its two characters and its phylum are not correctly matched, whereas the remaining three are correct? [AIPMT(Prelims)-2012]


	Genus Name		Two Characters	Phylum	
(1)	Sycon	(a)	Pore bearing	Porifera	
(.,	Cy co	(b)	Canal System		
(2)	Dorinlanata	(a)	Jointed Appendages	Arthropoda	
(2)	Periplaneta	(b)	Chitinous Exoskeleton	7 www.opodd	
(3)	Pila	(a)	Body segmented	Mollusca	
(3)	Fila	(b)	Mouth with Radula		
(4)	A -4i	(a)	Spiny skinned	Echinoder-	
(4)	Asterias	(b)	Water vascular System	mata	


Sol. Answer (3)


Pila (apple snail) belongs to phylum mullusca, class gastropoda. In Pila, radula bearing chitinous teeth is present in mouth but molluscs does not have segmented body almost all molluscs have unsegmented body.


21. The figure shows four animals (a), (b), (c) and (d). Select the correct answer with respect to a common characteristics of two of these animals.

[AIPMT(Mains)-2011]

- (1) (a) & (d) have cnidoblasts for self-defence
- (3) (a) & (d) respire mainly through body wall
- (2) (c) & (d) have a true coelom
- (4) (b) & (c) show radial symmetry

Sol. Answer (2)

- (a) is tapeworm, belong to phylum platyhelminthes, are acoelomate
- (b) is jelly fish (Aurelia), belonging to phylum cnidaria/coelentrata. These are also acoelomate
- (c) is octopus belonging to phylum mollusca, they are schizocoelomate
- (d) is scorpion belonging to phylum arthropoda, they are also schizocoelomate

Both (c) & (d) i.e. Octopus and scorpion have true coelom i.e. schizocoelomate.

22.	One example of animals h	naving a single ope	ening to the outs	side that serves b	oth as m	outh as well as anus is [AIPMT (Prelims)-2010]
	(1) Fasciola	(2) Octopus	(3)	Asterias	(4)	Ascidia
Sol.	Answer (1)					
	Organisms having single	opening to outside	that serves bot	h mouth as well a	as anus l	nave incomplete digestive
	system.	- ditit	(Diet. de elecciette	>		
	 Fasciola – incomplete Octopus – (Mollusca) 		•	es)		
	 Asterias – (Echinoder 		-			
	❖ Ascidia – (Urochordat	, .				
23.	Which one of the following	,		c?		[AIPMT (Prelims)-2010]
20.	(1) Corals	(2) Flat worms	-	Sponges	(4)	Ctenophores
Sol.	Answer (2)	,	()	. 0	()	·
	Triploblastic refers to orga	anisms having thre	e germ layers-	ectoderm, mesod	erm and	endoderm.
	(1) Corals (Cnidarians) –	Diploblastic organ	nisms			
	(2) Flatworms (Platyhelm	ninthes) – Triplobla	stic			
	(3) Sponges (Porifera) –	-				
	(4) Ctenophores – Diplob	olastic				
24.	Which one of the following	_	_	animals is corre d	ct?	[AIPMT (Prelims)-2010]
	(1) Flat worms (Platyheln	•				
	(2) Round worms (Asche		ıdocoelomates			
	(3) Molluscs are acoelom(4) Insects are pseudoco					
Sol	Answer (2)	eiomates				
00	(1) Flatworms are acoelo	mates (not coelon	nates)			
	(2) Roundworms/Aschem	•	•			
	(3) Molluscs are schizoco	oelomates (not ac	oelomates)			
	(4) Insects are schizocoe	elomates (not pseu	idocoelomates)			
25.	Which one of the followin	ng groups of anima	als is bilaterally	symmetrical and	l triplobla	astic?
						[AIPMT (Prelims)-2009]
	(1) Aschelminthes (Round	dworms)	(2)	Ctenophores		
	(3) Sponges		(4)	Coelenterates (Cnidariar	ns)
Sol.	Answer (1)					
	 Sponges – Asymmetr 		-			
	Coelentrates (cnidariaAschelminthes (round	,	-			
	 Ctenophores – Radia 	,		Jobiastio		
26.	If a live earthworm is prici			face without dom	anina ita	aut the fluid that comes
۷٠.	out is	nou with a fieetile	OIT ILS OULET SUI	iaoe willioul udill	ayırıy its	[AIPMT (Prelims)-2009]
	(1) Coelomic fluid	(2) Haemolym	oh (3)	Slimy mucus	(4)	Excretory fluid
Sol.	Answer (1)					

27. Which one of the following groups of three animals each is correctly matched with their one characteristic morphological feature? [AIPMT (Prelims)-2008]

Animals

Morphological feature

(1) Cockroach, Locust, Taenia

- Metameric segmentation
- (2) Liver fluke, Sea anemone, Sea cucumber
- Bilateral symmetry
- (3) Centipede, Prawn, Sea urchin
- Jointed appendages

(4) Scorpion, Spider, Cockroach

Ventral solid central nervous system

Sol. Answer (4)

Scorpion, Spider and Cockroach all belong to phylum arthropoda and nervous system in arthropoda is solid, ventral, ganglionated central nervous system.

28. Ascaris is characterized by

[AIPMT (Prelims)-2008]

- (1) Presence of true coelom and metamerism (metamerisation)
- (2) Absence of true coelom but presence of metamerism
- (3) Presence of neither true coelom nor metamerism
- (4) Presence of true coelom but absence of metamerism

Sol. Answer (3)

Ascaris belong to phylum Aschelminthes. Aschelminthes are pseudocoelomate *i.e.* false coelom is present and have unsegmented body. Thus, metamerism is absent in Ascaris.

29. Which one of the following is **not** a characteristic of phylum Annelida?

[AIPMT (Prelims)-2008]

- (1) Ventral nerve cord
- (2) Closed circulatory system
- (3) Segmentation
- (4) Pseudocoelom

Sol. Answer (4)

Annelida phylum belong to non-chordate hence have ventral nerve cord. Annelid possesses closed circulatory system and true segmentation. Annelid possess true coelom hence are eucoelomate. Annelids are not pseudocoelomate.

30. What is **true** about *Nereis*, Scorpion, Cockroach and Silver fish?

[AIPMT (Prelims)-2007]

- (1) They all belong to the same phylum
- (2) They all have jointed paired appendages
- (3) They all possess dorsal heart
- (4) None of them is aquatic

Sol. Answer (3)

31. Which one of the following pairs is **mismatched**?

[AIPMT (Prelims)-2007]

- (1) Bombyx mori Silk
- (2) Pila globosa Pearl
- (3) Apis indica Honey
- (4) Kenia lacca Lac

Sol. Answer (2)

Pinctada (Pearl oyster) is famous for pearl formation.

32.	Which one of the following is a	matching set of a phylum	n ai	nd its three examples?	[AIPMT (Prelims)-2006]				
	(1) Cnidaria – Bonellia	a, Physalia, Aurelia							
	(2) Platyhelminthes – Planaria	a, Schistosoma, Enterobiu	IS						
	(3) Mollusca – Loligo, Teredo, Octopus								
	(4) Porifera – Spongil	lla, Euplectella, Pennatula							
Sol.	Answer (3)								
	i. Spongilla - Porifera, Eupled	ctella – Porifera, <i>Pennatula</i>	a –	Cnidaria					
	ii. Bonellia viridis – Annelida, i	Physalia – Cnidaria, Aureli	ia -	- Cnidaria – <i>Annelida</i>					
	iii. Planaria - Platyhelminthes,	, <i>Schistosoma</i> – Platyhelm	nint	hes, <i>Enterobius</i> – Asch	elminthes				
iv. Loligo - Mollusca, Teredo - Mollusca, Octopus - Mollusca									
33.	Metameric segmentation is the	characteristic of			[AIPMT(Prelims)-2006]				
	(1) Platyhelminthes and arthrop	ooda (2))	Echinodermata and anno	elida				
	(3) Annelida and arthropoda	(4))	Mollusca and chordata					
Sol.	Answer (3)								
	Metameric segmentation (true segmentation) is characteristic feature of Annelid and arthropoda. Body of arthropods is segmented.								
34.	Biradial symmetry and lack of	cnidoblasts are the charac	cter	ristics of	[AIPMT (Prelims)-2006]				
	(1) Starfish and sea anemone	(2))	Ctenoplana and Beroe					
	(3) Aurelia and Paramecium	(4)		Hydra and starfish					
Sol.	Answer (2)								
	Presence of cnidoblast is characterophores are radially symm			•	ng to phylum Ctenophora.				
35.	Two common characters found in centipede, cockroach and crab are [AIPMT (Prelims)-2006]								
	(1) Compound eyes and anal of	cerci (2))	Jointed legs and chitino	us exoskeleton				
	(3) Green gland and tracheae	(4))	Book lungs and antenna	ie				
Sol.	Answer (2)								
	Centipede, Cockroach and Craexoskeleton.	ab belong to Arthropoda.	Ar	thropodes bear jointed	legs and have chitinous				
36.	From the following statements	select the wrong one			[AIPMT (Prelims)-2005]				
	(1) Millipedes have two pairs o	f appendages in each seg	gme	ent of the body					
	(2) Prawn has two pairs of ante	ennae							
	(3) Animals belonging to phylui	m-Porifera are exclusively	ma	arine					
	(4) Nematocysts are character	istic of the phylum- Cnidar	ria						
Sol.	Answer (3)								
	Animals belonging to phylum parameters Spongilla (fresh water sponge).	porifera are mostly marine	es l	but some members live	in fresh water also e.g.				
37.	In contrast to annelids the platy	yhelminths show			[AIPMT (Prelims)-2005]				
	(1) Radial symmetry	(2))	Presence of pseudocoel					
	(3) Bilateral symmetry	(4)		Absence of body cavity					
Sol.	Answer (4)	,							

38.	. Which one of the following groups of animals reproduce only by sexual means?								
	(1) Ctenophora (2) Cr	nidaria (3)	Porifera	(4)	Protozoa				
Sol	. Answer (1)								
	Ctenophores reproduce exclusively by sexual means only but sponges, cnidarians and protozoans undergo asexual means of reproduction also (fragmentation, budding, fission respectively)								
39.	Tube feet are the characteristic str	ucture of							
	(1) Star fish (2) Je	elly fish (3)	Cray fish	(4)	Cuttle fish				
Sol	. Answer (1)								
	Water vascular system is characteristicat end of lateral canals in water vasc	• •	, ,						
40.	Among the following organisms po	oint out a completely non	-parasitic form						
	(1) Tape worm (2) Mo	osquito (3)	Sea anemone	(4)	Leech				
Sol	. Answer (3)								
	Tapeworm, Mosquito, Leech all throof cnidaria phylum. These are not p		· ·	ia) be	elongs to class anthozoa				
41.	Which of the following is an examp	ple of platyhelminthes?							
	(1) Plasmodium (2) So	chistosoma (3)	Trypanosoma	(4)	Wuchereria				
Sol	. Answer (2)								
	(1) Plasmodium – Protozoa								
	(2) Schistosoma – Platyhelmir	nthes							
	(3) Trypanosoma – Protozoa								
	(4) Wuchereria - Aschelmint	thes							
42.	Radial symmetry is usually exhibite	ed in animals which							
	(1) Are attached to the substratun	n (2)	Have one opening of	of alim	nentary canal				
	(3) Live in water	(4)	Have ciliary mode o	f feed	ling				
Sol	. Answer (1)								
	Radial symmetry is advantageous food from all sides and also repel		ixed to substratum as	it hel	ps the animals to gather				
43.	One of the special character of phy	ylum coelenterata only is	s the occurrence of						
	(1) Polymorphism (2) Fla	ame cells (3)	Hermaphroditism	(4)	Nematocysts				
Sol	. Answer (4)								
	Presence of cnidoblast is characteristic feature of phylum coelentrata. Cnidoblast cells bear a nucleus which is present near its base and a stinging capsule called nematocyst. Nematocyst is filled with a poisonous fluid called hypnotoxin which is injected with the help of thread tube.								
44.	Which of the following does not ha	ave an open circulatory s	system?						
	(1) Frog's tadpole (2) Pr	rawn (3)	Chelifer	(4)	Cockroach				
Sol	. Answer (1)								
	Prawn, Chelifer, Cockroach belong	g to phylum <i>arthropoda</i> h	aving open circulatory	y syst	tem.				
	Frog's tadpole belong to vertebrates having closed circulatory system.								

45.	The neurogenic heart is the ch	naracteristic feature of						
	(1) Human (2)	Invertebrates	(3)	Rabbit	(4)	Rat		
Sol.	Answer (2)							
	Vertebrates (human, rabbit and rat) have myogenic heart which is two, three or four-chambered. Invertebrates have neurogenic heart.							
46.	In silkworm, silk is the produc	silkworm, silk is the product of						
	(1) Salivary gland of the larva		(2)	Salivary gland of th	e adu	lt		
	(3) Cuticle of the larva		(4)	Cuticle of the adult				
Sol.	Answer (1)							
	Silkworm (<i>Bombyx</i>), silk is product of salivary gland of larvae.							
47.	The organisms attached to the	e substratum, generally,	poss	ess				
	(1) One single opening of the	digestive canal	(2)	Cilia on the surface		eate water current		
	(3) Radial symmetry		(4)	Asymmetrical body	′			
Sol. Answer (3)						Palananata		
	Organisms which remain attached to substratum (fixed animals) possess radial symmetry, radial symmetry is advantageous as it helps animals to gather food from all sides and also repel enemies from all sides.							
48.	Benthic animals are those, wh	nich						
	(1) Are submerged in area		(2)	Float on the sea su	urface			
	(3) Are deep dweller in sea		(4)	Are floating (free) of	rganis	sms		
Sol.	Answer (3)							
	Benthic animals are animals which live in deep sea.							
49.	9. The formation of canal system in sponges is due to							
	(1) Folding of inner walls		(2)	Gastro-vascular sy	stem			
	(3) Reproduction		(4)	Non-porous walls				
Sol. Answer (1)								
	Formation of canal system is sponges is due by porous walls of sponges pores known as 'ostia' allows entry of water to spongocoel and exit via 'osculum'. Sycanoid / leucanoid canal system is formed due to folding of inner walls.							
50.	The nephridia in earthworm ar	e analogous to						
	(1) Nematoblasts of Hydra		(2)	Flame cells of Plan	naria			
	(3) Gills of Prawn		(4)	Trachea of insects				
Sol.	Answer (2)							
	ria (Platyhelminthes) are							
	specialised cells which perform excretory functions. Nephridia and flame cells both perform excretory functions.							
54								
51.	Coelom is found between the	cavity of	(0)	Catadama and and				
	(1) Body wall and ectoderm	(andadarm)	(2)	Ectoderm and endo				
Sal	(3) Mesoderm and body wall (Answer (2)	(endodenn)	(4)	Mesoderm and ect	Juerri			
JJ1.	Sol. Answer (2) Body cavity can mean any internal space or series of spaces present inside body. True body cavity ge refers to large fluid-filled space lying between outer body wall and inner gut wall.					ue body cavity generally		
						as soay savity generally		

52.	Which of the following statement is without exception for sponges?					
	(1) They all have calcareous spicules	(2)	They have high reg	generat	ive power	
	(3) They are found only in marine water	(4)	They are all radial	lly sym	metrical	
Sol.	Answer (2)					
	Sponges possess high degree of regeneration posponge.	ower. Eve	n the cells of crushe	ed spo	nge can regroup to form	
53.	The embryonated egg of Ascaris represents					
	(1) An egg with blastula	(2)	An egg with a juve	enile		
	(3) An egg with an egg	(4)	An egg with gastru	ula		
Sol.	Answer (2)					
	In Ascaris, fertilised egg gets surrounded by shell. Inside shell the zygote develops into rhabditiform or juvenile stage in 10-14 days. After 10 days it develop into second stage juvenile, second stage juvenile is infective stage. Shell having infective statge is called embryonated egg.					
54.	What is common among silver fish, scorpion, crab and honey bee?					
	(1) Jointed legs	(2)	Metamorphosis			
	(3) Compound eyes	(4)	Poison glands			
Sol.	Answer (1)					
	Silver fish, Scorpion, Crab, Honey bee belong to phylum Arthropoda. All arthropods are characterised for having jointed appendages.					
55.	Most appropriate term to describe the life cycle of	of Obelia i	S			
	(1) Metamorphosis (2) Neoteny	(3)	Metagenesis	(4)	All of these	
Sol.	(1) Metamorphosis (2) Neoteny Answer (3)	(3)	Metagenesis	(4)	All of these	
Sol.		sexual and	asexual forms i.e. r	medus	a and polyp respectively	
	Answer (3) Obelia shows alternation of generation between s Obelia exists in both the forms shows alternatio	sexual and	asexual forms i.e. r	medus	a and polyp respectively	
	Answer (3) Obelia shows alternation of generation between some obelia exists in both the forms shows alternation called metagenesis.	sexual and	asexual forms i.e. r	medus	a and polyp respectively	
56.	Answer (3) Obelia shows alternation of generation between some obelia exists in both the forms shows alternation called metagenesis. Solenocytes are the main excretory structure in	sexual and n of gener	asexual forms <i>i.e.</i> ration in their life. T	medusa This alte	a and polyp respectively ernation of generation is	
56.	Answer (3) Obelia shows alternation of generation between some obelia exists in both the forms shows alternation called metagenesis. Solenocytes are the main excretory structure in (1) Echinodermates (2) Platyhelminthes	sexual and n of gener (3)	asexual forms <i>i.e.</i> ration in their life. T	medusa This alte	a and polyp respectively ernation of generation is Molluscs	
56.	Answer (3) Obelia shows alternation of generation between some obelia exists in both the forms shows alternation called metagenesis. Solenocytes are the main excretory structure in (1) Echinodermates (2) Platyhelminthes Answer (2) Solenocytes are flame cells. Flame cells are specifications.	sexual and n of gener (3) ecialised o	asexual forms <i>i.e.</i> ration in their life. T Annelids ells of platyhelmintl	medusa This alte (4) hes wh	a and polyp respectively ernation of generation is Molluscs	
56. Sol .	Answer (3) Obelia shows alternation of generation between some obelia exists in both the forms shows alternation called metagenesis. Solenocytes are the main excretory structure in (1) Echinodermates (2) Platyhelminthes Answer (2) Solenocytes are flame cells. Flame cells are spewell as osmoregulation.	sexual and n of gener (3) ecialised o	asexual forms <i>i.e.</i> ration in their life. T Annelids ells of platyhelmintl	medusa This alte (4) hes wh	a and polyp respectively ernation of generation is Molluscs	
56. Sol .	Answer (3) Obelia shows alternation of generation between some obelia exists in both the forms shows alternation called metagenesis. Solenocytes are the main excretory structure in (1) Echinodermates (2) Platyhelminthes Answer (2) Solenocytes are flame cells. Flame cells are spewell as osmoregulation. Temperature changes in the environment, affect in	sexual and n of gener (3) ecialised comost of the	asexual forms <i>i.e.</i> ration in their life. T Annelids ells of platyhelmintle animals which are	medusa This alte (4) hes wh	a and polyp respectively ernation of generation is Molluscs	
56. Sol .	Answer (3) Obelia shows alternation of generation between some obelia exists in both the forms shows alternation called metagenesis. Solenocytes are the main excretory structure in (1) Echinodermates (2) Platyhelminthes Answer (2) Solenocytes are flame cells. Flame cells are specially as osmoregulation. Temperature changes in the environment, affect in (1) Poikilothermic	sexual and n of gener (3) ecialised comost of the (2)	asexual forms <i>i.e.</i> ration in their life. The Annelids ells of platyhelmints animals which are Homoiothermic	medusa This alte (4) hes wh	a and polyp respectively ernation of generation is Molluscs	
56. Sol .	Answer (3) Obelia shows alternation of generation between some obelia exists in both the forms shows alternation called metagenesis. Solenocytes are the main excretory structure in (1) Echinodermates (2) Platyhelminthes Answer (2) Solenocytes are flame cells. Flame cells are spewell as osmoregulation. Temperature changes in the environment, affect in (1) Poikilothermic (3) Aquatic	ecialised of the (2)	asexual forms i.e. ration in their life. The Annelids ells of platyhelmintle animals which are Homoiothermic Desert living	medusa his alte (4) hes wh	a and polyp respectively ernation of generation is Molluscs nich help in excretion as	
56. Sol .	Answer (3) Obelia shows alternation of generation between some obelia exists in both the forms shows alternation called metagenesis. Solenocytes are the main excretory structure in (1) Echinodermates (2) Platyhelminthes Answer (2) Solenocytes are flame cells. Flame cells are spewell as osmoregulation. Temperature changes in the environment, affect in (1) Poikilothermic (3) Aquatic Answer (1)	ecialised of the (2) (4)	asexual forms i.e. ration in their life. The Annelids ells of platyhelmints animals which are Homoiothermic Desert living	medusa his alto (4) hes wh	a and polyp respectively ernation of generation is Molluscs mich help in excretion as displaying the polypoly of the polypoly	
56.Sol.57.Sol.	Answer (3) Obelia shows alternation of generation between some obelia exists in both the forms shows alternation called metagenesis. Solenocytes are the main excretory structure in (1) Echinodermates (2) Platyhelminthes Answer (2) Solenocytes are flame cells. Flame cells are spewell as osmoregulation. Temperature changes in the environment, affect of (1) Poikilothermic (3) Aquatic Answer (1) Animals which can change their body temperature	ecialised of the (2) (4)	asexual forms i.e. ration in their life. The Annelids ells of platyhelmints animals which are Homoiothermic Desert living	medusa his alto (4) hes wh	a and polyp respectively ernation of generation is Molluscs mich help in excretion as displaying the polypoly of the polypoly	
56.Sol.57.Sol.	Answer (3) Obelia shows alternation of generation between some obelia exists in both the forms shows alternation called metagenesis. Solenocytes are the main excretory structure in (1) Echinodermates (2) Platyhelminthes Answer (2) Solenocytes are flame cells. Flame cells are spewell as osmoregulation. Temperature changes in the environment, affect in (1) Poikilothermic (3) Aquatic Answer (1) Animals which can change their body temperature. The process of series of changes from larva to a	ecialised comost of the (2) (4)	asexual forms i.e. ration in their life. The animals which are Homoiothermic Desert living	medusa his alto (4) hes wh	a and polyp respectively ernation of generation is Molluscs mich help in excretion as displaying the polypoly of the polypoly	
56.Sol.57.Sol.58.	Answer (3) Obelia shows alternation of generation between some obelia exists in both the forms shows alternation called metagenesis. Solenocytes are the main excretory structure in (1) Echinodermates (2) Platyhelminthes Answer (2) Solenocytes are flame cells. Flame cells are spewell as osmoregulation. Temperature changes in the environment, affect in (1) Poikilothermic (3) Aquatic Answer (1) Animals which can change their body temperature. The process of series of changes from larva to an (1) Regeneration	ecialised of the (2) (4) e, with chall dult, after (2)	asexual forms i.e. ration in their life. The animals which are Homoiothermic Desert living ange in environment fembryonic development.	medusa his alto (4) hes wh	a and polyp respectively ernation of generation is Molluscs mich help in excretion as displaying the polypoly of the polypoly	

59.	Sin	nilarity in <i>Ascaris lumbri</i>	coide	es and <i>Anopheles step</i>	hens			
	(1)	Sexual dimorphism			(2)	Metamerism		
	(3)	Anaerobic respiration			(4)	Endoparasitism		
Sol.	An	swer (1)						
	Ascaris lumbricoides show sexual dimorphism as male and female are distinct externally. Often females are longer than males.							
		opheles stephens also e males have conspicuous		•	is an	tennae in females ar	e spa	arsely haired while those
60.	Wh	nich statement is correc	t?					
	(1)	A. indica is largest wild	l hor	ney bee				
	(2)	Wax is waste material	of ho	oney bee				
	(3)	Karl von Frisch deciph	ered	the communication me	ethod	ds in honey bee		
	(4)	Drone of honey bee is	diplo	id				
Sol.	An	swer (3)						
Wax is not waste material of honey bee. Wax is an important useful product of honey bee used and cosmetics.					oney bee used in paints			
	*	Prof. Karl von Frisch go communication method			codin	g the language of be	e dar	nce and deciphered
	*	Drone of honey bee, de	evelo	ps from unfertilized egg	g and	are haploid.		
61.	. Which of the following animals have scattered cells with cell - tissue grade organisation?					on?		
		Sponge	(2)	Hydra	(3)	Liver fluke	(4)	Ascaris
Sol.	. ,	swer (2)	` '	•	. ,		, ,	
	Sp	onges – Celllular level of	orga	anization	Нуа	ra – Tissue level of c	organi	zation
	Liv	er fluke – Organ level of	orga	nization	Asc	aris – Organ system	level	of organization
62	Bla	stopore is the pore of						
02.		Archenteron	(2)	Blastocoel	(3)	Coelom	(4)	Alimentary canal
Sol.	` ,	swer (1)	()		(-)		()	, , ,
		istopore is opening of ar	cher	nteron to exterior of em	bryo	at gastrula stage.		
63.							d from	
03.		Mouth and mouth	1000	digestion and mitrogen		Body wall and body		a iioiii
	` '	Mouth and body wall			(2) (4)	Mouth and tentacle		
Sol	` ′	swer (3)			(4)	Would and tentacle	3	
301.	Ну	• •		-	-	-		substances. Undigested
						also removed from t	Jody	wall by alliasion.
64.		which of the following ha						
	` ′	Annelida	(2)	Echinodermata	(3)	Insecta	(4)	Lower invertebrates
Sol.		swer (4)						
		emocyanin is respiratory emocyanin is observed i		•			of sor	ne invertebrate animals.

65. In which animal nerve cells are present but brain is absent? (1) Sponge (2) Earthworm (3) Cockroach (4) Hydra **Sol.** Answer (4) Sponges lack nerve cells and brain is also absent. Hydra have nerve cells which form nerve net but specialised brain is not present. Earthworm and cockroach posses ganglionated nervous system. 66. Which one of the following is a matching pair of an animal and a certain phenomenon, it exhibits? (1) Pheretima - Sexual dimorphism (2) Musca - Complete metamorphosis (3) Chameleon - Mimicry (4) Taenia - Polymorphism Sol. Answer (2) Musca (housefly) is an insects with complete metamorphosis (Holometabolous development). Life history includes egg, larva, pupa and imago. Larva of house fly is called maggot. 67. Ommatidia serve the purpose of photoreception in (1) Cockroach (2) Frog (3) Humans Sunflower Sol. Answer (1) Ommatidia are compound eyes which help these animals to perceive light falling on them. Ommatidia or compound eyes is observed in cockroach. 68. During the life-cycle, Fasciola hepatica (liver fluke) infects its intermediate host and primary host at the following larval stage respectively (1) Redia and miracidium (2) Cercaria and redia (3) Metacercaria and cercaria Miracidium and metacercaria Sol. Answer (4) Infective stage for intermediate host is miracidium larvae of Fasciola hepatica. Infective stage for primary host (sheep or goat) is metacarria larvae of Fasciola hepatica.

- 69. Sycon belongs to a group of animals, which are best described as
 - (1) Unicellular or acellular
 - (2) Multicellular without any tissue organization
 - (3) Multicellular with a gastrovascular system
 - (4) Multicellular having tissue organization, but no body cavity

Sol. Answer (2)

Sycon belongs to phylum Porifera. Sponges are multicellular animals with cellular level of organization.

- 70. Which one of the following is **not** correctly matched?
 - (1) Glossina palpalis Sleeping sickness
 - (2) Culex pipiens **Filariasis**
 - (3) Aedes aegypti Yellow fever
 - (4) Anopheles culifacies -Leishmaniasis

Sol. Answer (4)

Anopheles culifaciens is a major vector for malaria in Indian subcontinent. Leishmaniasis is transmitted by sandfly (Phlebotomus)

71.	The animals with bilateral symmetry in young stage, belong to the phylum	and	radial pentamerous symmetry in the adult stage,					
	(1) Annelida	(2)	Mollusca					
	(3) Cnidaria	(4)	Echinodermata					
Sol.	Answer (4)							
	Adult echinoderms are radially symmetric but larvae pentamerous radial symmetry and their body parts are							
72.	In Arthropoda, head and thorax are often fused to form the body is divided into head, thorax and abdomen?	cepha	alothorax, but in which one of the following classes,					
	(1) Insecta	(2)	Myriapoda					
	(3) Crustacea	(4)	Arachnida and curstacea					
Sol.	Answer (1)							
	* In insecta body is divisible into head, thorax and a	bdon	nen					
	 Myriapoda body is divisible into head and trunk 							
	* Crustacea body is divisible into cephalothorax and	abdo	omen					
	 In arachnida body of organism is divisible into cepl 	haloth	norax and abdomen					
73.	. Which one of the following has an open circulatory system?							
	(1) Octopus	(2)	Pheretima					
	(3) Periplaneta	(4)	Nereis					
Sol.	Answer (3)							
	Arthropodes have open circulatory system. <i>Periplaneta</i> belongs to phylum arthropoda.							
	Octopus (cephalopod molluscs) have closed circulatory system							
	Pheretima (Annelida) have closed circulatory system							
	Nereis (Annelida) have closed circulatory system							
74.	Which one of the following is not a living fossil?							
	(1) Peripatus	(2)	King crab					
	(3) Sphenodon	(4)	Archaeopteryx					
Sol.	Answer (4)							
	Archaeopteryx is missing link between reptiles and bir	ds.						
75.	Biological organisation starts with							
	(1) Cellular level	(2)	Organismic level					
	(3) Atomic level	(4)	Submicroscopic molecular level					
Sol.	Answer (4)							
	Biological organisation start with submicroscopic mole	cular	level.					
76.	Peripatus is a connecting link between							
	(1) Coelenterata and Porifera	(2)	Ctenophora and Platyhelminthes					
	(3) Mollusca and Echinodermata	(4)	Annelida and Arthropoda					
Sol.	Answer (4)							
	Peripatus is considered as connecting link between breathes by trachea.	anne	lida and arthropoda as it has unjointed legs and					

SECTION - C

Assertion-Reason Type Questions

- 1. A: Cysticercosis is caused by accidental ingestion of onchospheres.
 - R: Taenia solium is a monogenetic parasite.

Sol. Answer (3)

Assertion is true, i.e. cysticercosis is caused by accidental ingestion of onchosphere larvae.

Reason is false as *Taenia solium* is a digenetic parasite, having humans as primary host and pig as secondary host.

- 2. A: Mantle of pearl oyster is three layered.
 - R: Nacre secreting cells are present just below the nacreous layer.

Sol. Answer (2)

Assertion is true, i.e. Mantle of pearl oyster is three layered.

Reason is also true i.e. Nacre secreting cells are present just below nacreous layer.

But reason is not correct explanation for assertion.

- 3. A: Annelids, arthropods and molluscs are protostomial coelomates.
 - R: All the three phyla include members with bilateral symmetry and true coelom.

Sol. Answer (2)

Assertion is true i.e. Annelids, arthropods and molluscs are protostomial coelomates.

In all three phyla, mouth develops first in embryonic digestive tube.

Reason is also true i.e. all three phyla include members with bilateral symmetry and true coelom.

But reason is not correct explanation for assertion.

- 4. A: In Balanoglossus, proboscis is involved in excretion.
 - R: Glomerulus is present is probosis.

Sol. Answer (1)

Assertion is true i.e. In Balanoglossus, proboscis is involved in excretion.

Balanoglossus belongs to phylum hemichordate where proboscis gland performs the excretory function.

Reason is also true *i.e.* Glomerulus is present in proboscis which is responsible excretory function of proboscis gland. Both Assertion and reason are correct and reason is correct explanation for assertion.

- 5. A: Echinoderms are the only radially symmetrical animals with true coelom.
 - R: Echinoderms have secondarily adapted to radial symmetry.

Sol. Answer (2)

Assertion is true, Echinoderms are only radially symmetrical animals with true coelom.

Reason is also true as echinoderms have secondarily adapted to radial symmetry, because larval forms of echinoderm is bilaterally symmetric but adults are radially symmetric.

Both assertion and reason are correct, but reason is not correct explanation for assertion.

6. A: Hydra has a nerve net but no brain.

R: All its neurons are apolar and connected.

Sol. Answer (1)

Assertion is true, In *Hydra*, nerve cells are present which join to form nerve net but nerve cells are not organized to form brain in *Hydra*.

Reason is also true as neurons in *Hydra* are apolar. These apolar neurons (with no axon terminals) can join to form nerve net. Hence both Assertion and Reason is correct and Reason is correct explanation for Assertion.

7. A: Radula is rasping organ of all molluscs.

R: It is made up of vitrodentine.

Sol. Answer (4)

Assertion is false as radula is not present in all molluscs.

Radula is absent in class pelecypoda (Bivalvia) of molluscs.

Reason is also false as radula bears chitinous teeth.

Both assertion and reason are false.

8. A: True coelom originated for the first time in phylum Annelida.

R: It allowed the animal to have an alimentary canal longer than the body & space for storing gametes.

Sol. Answer (2)

Assertion is true, True coelom (lined by mesoderm) on both sides for first time originated in phyla annelida.

Reason is true, Annelids have longer alimentary canal than body and space for storing gametes.

Both Assertion and Reason are correct, but Reason is not correct explanation for Assertion.

9. A: Chitinous exoskeleton is a characteristic feature of arthropods.

R: It allows diffusion of water vapour from atmosphere to the body.

Sol. Answer (3)

Assertion is true, Chitinous exoskeleton is a characteristic feature of arthropods.

Reason is false as chitin is impermeable to water and does not allow diffusion of water vapour from atmosphere to body or vice-versa.

Assertion is true but Reason is false.

