PART # 01

ALGEBRA

EXERCISE # 01

SECTION-1 : (ONE OPTION CORRECT TYPE)

 Number of solutions of |z − 1| + |z + 1| = 4 and |2z − 1 + i| = √14 is: (A) 2 (B) 3 (C) 4 (D) none of these

 Let X be the set of three digit numbers, which when divided by its sum of its digits give maximum value and Y

be the set of all possible real values of a for which the $x^3 - 3ax^2 + 3(298a + 299)x - 2 = 0$ have a positive point of maxima, then the number of elements in X \cap Y, is : (A) 0 (B) 6 (C) 7 (D) 9

- **3.** Let $f(x) = x^2 bx + c$, b is a odd positive integer, f(x) = 0 have two prime numbers as roots and b + c = 35. Then the global minimum value of f(x) is
 - (A) $-\frac{183}{4}$ (B) $\frac{173}{16}$ (C) $-\frac{81}{4}$ (D) data not sufficient
- **4.** If z_1 , z_2 , z_3 , z_4 are the reflections of the complex number z, with respect to the origin, real axis and imaginary axis respectively in an argand plane, then the value of $\arg(z_1^4 \cdot z_2^5 \cdot z_3^4 \cdot z_4^5 + 5)$ is

	(A)	$\frac{\pi}{3}$	(B)	$\frac{\pi}{2}$	(C)	$\frac{2\pi}{3}$	(D)	none of these
5.	lf a =	e ^{1/e} then the numb	er of p	oint of intersectior	n of the	e curve y = log _a x a	nd the	line y = x, is
	(A)	three	(B)	zero	(C)	one	(D)	two
6.	The c	coefficient of a ⁸ b⁴c [€]	d ⁹ in (a	abc + abd + acd +	bcd) ¹⁰	is		
	(A)	10!			(B)	10! 8!4!9!9!		
	(C)	2520			(D)	None of these.		
7.	Sum	of all divisors of 54	00 who	ose units digit is 0	is			
	(A)	5400			(B)	10800		
	(C)	16800			(D)	None of these.		
8.	Sequ	ence {t _n } is a G.P.	lf t ₆ , 2,	5, t_{14} form anothe	r G.P i	n that order, then	t ₁ . t ₂ . t ₃	$_{3}$ t_{19} is equal to
	(A)	190	(B)	10 ¹⁰	(C)	10 ¹⁹ / ₂	(D)	10 ⁹

9.	lf β _k 1 + β	$ < 3, 1 \le k \le n$, the $\beta_1 z + \beta_2 z^2 + + \beta_n$	n all th z ⁿ = 0,	e complex numbe z < 1	rs z sa	atisfying the equati	on	
	(A)	lie inside the circ	le z =	<u>1</u> 4	(B)	lie in $\frac{1}{3} < z < \frac{1}{2}$		
	(C)	lie on the circle 2	$ z = \frac{1}{4}$		(D)	lie outside the cir	cle z	$=\frac{1}{4}$
10.	The (A) (C)	sum of the series $2^{4n-2} + (-1)^n 2^{2n}$ $2^{4n-2} - 2^{2n-1}$	^{In} C ₀ + ⁴	${}^{n}C_{4} + {}^{4n}C_{8} + \dots + {}^{n}C_{8}$	⁴ⁿ C _{4n} is (B) (D)	s $2^{4n-2} + (-1)^{n+1}$ $2^{4n-2} + 2^{2n-1}$	2 ^{2n – 1}	
11.	In a achi	shooting competit	ion, a i n iust 7	man can score 5, ' shots	4, 3,	2 or 0 points for o	each s	hot. In how many ways he can
	(A)	455	(B)	460	(C)	420	(D)	495
12.	The	product $\left(\frac{2^3-1}{2^3+1}\right)\left(\frac{2^3}{3}\right)$	$\left(\frac{3^3-1}{3^3+1}\right)$	$\left(\frac{4^{3}-1}{4^{3}+1}\right) \dots$ (to infi	nity) is	equal to		
	(A)	$\frac{2}{3}$	(B)	$\frac{1}{3}$	(C)	$\frac{3}{4}$	(D)	$\frac{1}{2}$
13.	lf α,	α^2 ,, α^{n-1} be the	e n th roc	ots of unity, then $\left(\left(\left$	$\left[\frac{3^n-1}{3^{n-1}}\right]$	$\left \left(\sum_{r=1}^{n-1}\frac{1}{3-\alpha^r}+\frac{1}{2}\right)\right =$	1	
	(A)	– n	(B)	0	(C)	n	(D)	1
14.	lf Re	$e\left(\frac{z-8i}{z+6}\right) = 0$, then	z = x +	· iy lies on the cur	ve			
	(A) (C)	$x^{2} + y^{2} + 6x - 8y$ $x^{2} + y^{2} - 8 = 0$	= 0		(B) (D)	4x - 3y + 24 = 0 none of these		
15.	The is	set of values of 'a'	for wh	ich x ³ + ax ² + sin⁻	¹ (x ² –	$4x + 5) + \cos^{-1} (x^2)$	² – 4x ·	+ 5) = 0 has atleast one solution
	(A)	$\frac{\pi}{8}$ + 2	(B)	$\frac{\pi}{8}$ + 1	(C)	$-\left(\frac{\pi}{8}+1\right)$	(D)	$-\left(\frac{\pi}{8}+2\right)$
16.	Let a	$a_1 = 1, a_n = n(a_{n-1} + (a_{n-1} + (a_{$	• 1) for	$n = 2, 3, \dots$				
	defir	$P_n = \left(1 + \frac{1}{a_1}\right) \left(1 $	$\left +\frac{1}{a_2}\right $	$\left(1+\frac{1}{a_n}\right)$. Then	$\lim_{n\to\infty}P_n$	must be		
	(A)	1 + e	(B)	e	(C)	1	(D)	α
17.	lf n i	s a positive intege	then	$\sum_{k=1}^{n} k^{3} \left(\frac{C_{k}}{C_{k}} - 1 \right) \text{e}$	quals			
	(A)	$\frac{n}{12}(n+1)^2(n+2)$			(B)	$\frac{n}{12}(n+1)(n+2)^2$		
	(C)	$\frac{n}{12}(n+1)(n+2)$			(D)	none of these		
18.	lf z	– 25i ≤ 15, then m	aximur	n of arg(z) – minin	num o	f arg(z) equals		
	(A)	$2\cos^{-1}\left(\frac{3}{5}\right)$	(B)	$2\cos^{-1}\left(\frac{4}{5}\right)$	(C)	$\frac{\pi}{2} + \cos^{-1}\left(\frac{3}{5}\right)$	(D)	$\sin^{-1}\left(\frac{3}{5}\right) - \cos^{-1}\left(\frac{3}{5}\right)$

19.	The least value of the expression $x^2 + 4y^2 + 3z^2$	z ^z – 2x – 12y – 6z + 14 is
	(A) 0	(B) 1
	(C) no least value	(D) none of these
20.	The largest term of the sequence $a_n = \frac{n}{n^2 + 10}$	is
	(A) $\frac{3}{19}$ (B) $\frac{2}{13}$	(C) 1 (D) $\frac{1}{7}$
21.	The number of positive integral solution of x^2 - (A) 2 (B) 3	$+9 < (x + 3)^2 < 8x + 25$ is (C) 4 (D) 5
22.	$n \cdot {n^{-2}C_{r-1}} = r(k^2 - 3) \cdot {n^{-1}C_{r-1}} + {n^{-2}C_{r-1}}$, then the value	ue of k is
	(A) (−∞, −2]	(B) $\left(-\infty, -\sqrt{3}\right) \cup \left(\sqrt{3}, 2\right]$
	(C) $\left[-2,-\sqrt{3}\right]\cup\left(\sqrt{3},2\right]$	(D) $\left[-2,-\sqrt{3}\right)\cup\left(\sqrt{3},\infty\right]$
23.	If the ratio of the squares of the roots of the e	equation $x^2 + px + q = 0$ be equal to the ratio of the roots of the
	equation $x^2 + lx + m = 0$, then	
	(A) $q^2m^2 = (p^2 - 2q)^2 I$	(B) $(p^2 - 2q)^2 m = q^2 l^2$
	(C) $q p = (1 - 2q) q$	(D) none of these
24.	The equation $ z - 2i + z + 2i = k, k > 0, can r$	epresent on ellipse if k is
	(A) 2 (C) 4	(B) 3 (D) 5
25	If n have and n girls sit along a line alternated	(3) (3)
25.	the number of ways in which n boys can sit at	a round table so that all shall not have same neighbors is
	(A) 6	(B) 120
	(C) 60	(D) 12
26.	If [.] denotes the greatest integer function, the	n the domain of the real valued function $\log_{[x+1/2]} x^2 = x - 6 $ is
	$(A) \left(\frac{1}{2}, \ 1\right] \cup (1, \ \infty)$	(B) $\left[\frac{3}{2}, 2\right] \cup \left(2, +\infty\right)$
	(C) $\left(0, \frac{3}{2}\right] \cup \left(2, +\infty\right)$	$(D) (0, \ 1] \cup \left(\frac{3}{2}, \ +\infty\right)$
27.	Equation $\frac{a^2}{x-\alpha} + \frac{b^2}{x-\beta} + \frac{c^2}{x-\gamma} = m - n^2 x$ (a, b)	$p, c, m, n \in R$) has necessarily
	1 1	
	(A) all the roots real	(B) all the roots imaginary
	(A) all the roots real(C) 2 real and 2 imaginary	(B) all the roots imaginary(D) 2 rational and 2 irrational
28.	 (A) all the roots real (C) 2 real and 2 imaginary The number of non-integral solutions of 4x - 	(B) all the roots imaginary (D) 2 rational and 2 irrational $x^{2} -1 = 3$ is
28.	 (A) all the roots real (C) 2 real and 2 imaginary The number of non-integral solutions of 4x - (A) four (B) two 	(B) all the roots imaginary (D) 2 rational and 2 irrational $x^{2} -1 = 3$ is (C) three (D) none of these
28. 29.	(A) all the roots real (C) 2 real and 2 imaginary The number of non-integral solutions of $ 4x - (A)$ four (B) two The coefficient of x^n in the polynomial $(x + 2^{n})$	(B) all the roots imaginary (D) 2 rational and 2 irrational $x^{2} -1 = 3$ is (C) three (D) none of these $(x + 2n+1 C_{1})(x + 2n+1 C_{2})(x + 2n+1 C_{n})$ is
28. 29.	(A) all the roots real (C) 2 real and 2 imaginary The number of non-integral solutions of $ 4x - (A)$ four (B) two The coefficient of x^n in the polynomial $(x + 2^{n+1})$ (A) 2^{n+1}	(B) all the roots imaginary (D) 2 rational and 2 irrational $x^{2} -1 = 3$ is (C) three (D) none of these $^{+1}C_{0}(x + ^{2n+1}C_{1})(x + ^{2n+1}C_{2})(x + ^{2n+1}C_{n})$ is (B) $2^{2n+1} - 1$
28. 29.	(A) all the roots real (C) 2 real and 2 imaginary The number of non-integral solutions of $ 4x - (A)$ four (B) two The coefficient of x^n in the polynomial $(x + 2^{n+1})$ (A) 2^{n+1} (C) 2^{2n}	(B) all the roots imaginary (D) 2 rational and 2 irrational $x^{2} -1 = 3$ is (C) three (D) none of these $^{+1}C_{0}(x + ^{2n+1}C_{1})(x + ^{2n+1}C_{2})(x + ^{2n+1}C_{n})$ is (B) $2^{2n+1} - 1$ (D) None of these

30.	The i (A)	nequality (x – 3m) (1, 2)	(x – m (B)	- 3) < 0 is satisfie(0, 1/3)	ed for x (C)	k in [1, 3]. Determi (1, 3)	ne the (D)	value of m for which this holds none of these
31.	If the	equation a(b – c)	x ² + b(c	c – a)x + c(a – b) ∈	= 0 ha	s equal roots whe	re a, b	, c are distinct positive numbers
	(A)	$a^n + c^n \ge 2b^n$	(B)	$a^{n} + c^{n} > 2b^{n}$	(C)	$a^n + c^n \le 2b^n$	(D)	$a^n + c^n < 2b^n$
32.	lf z ₁ a	and z_2 are two com	nplex n	umbers such that	z ₁ =	$ z_2 + z_1 - z_2 $, ther	۱	
	(A)	$\operatorname{Im}\left(\frac{Z_{1}}{Z_{2}}\right) = 0$			(B)	$\operatorname{Re}\left(\frac{Z_{1}}{Z_{2}}\right) = 0$		
	(C)	$\operatorname{Re}\left(\frac{z_{1}}{z_{2}}\right) = \operatorname{Im}\left(\frac{z_{1}}{z_{2}}\right)$			(D)	none of these		
33.	lfα, f	3 are roots of 2x +	$\frac{1}{x} = 2$	and $f(x) = \frac{8x^6 + 1}{x^3}$, then			
	(A)	$f(\alpha)-f(\beta)=0$	(B)	$f(\alpha) + f(\beta) = 8$	(C)	$f(\alpha) - f(\beta) = 2$	(D)	$f(\alpha) + f(\beta) = 12$
34.	lf f(x) 0 Th	en α β γ are in	ation v	vith positive and c	listinct	roots α , β , γ such	that β	is the H.M of the roots of $f'(x) =$
	(A)	A.P.			(B)	G.P.		
25	(C)	H.P.	which	the equerce of e	(D)	none of these		tod rod or blue on that each 2
35.	2 squ	are has two red a	nd two	blue squares of a	0 × 0 (chess board can b	e pain	ted red of blue so that each 2 ×
	(A) (C)	2 ⁹ 2 ⁹ – 2			(B) (D)	2 ⁹ – 1 none of these		
36.	All th	e roots of the equa	ation 11	Iz ¹⁰ + 10iz ⁹ + 10iz	: – 11 :	= 0 lie		
	(A) (C)	inside z = 1 outside z = 1			(B) (D)	on z = 1 can't say		
37.	Let for	(x), g(x) and h(x)	be qua	adratic polynomia	als hav hen th	ving positive leadi	ng co x) + h(-efficients and real and distinct $f(x) = 0$ are
	(A)	always real and c	listinct	,-	(B)	always real and r	may be	e equal
38.	(C) If x is	may be imaginary	y [x], [x]	and x are in G.P	(D) ther	$x = x^{2}$ is equal to, (v	/ where	[] denotes the greatest integer
	funct	ion and {.} denotes	s the fra	actional part of x)	,	()		[]
	(A)	$\frac{\sqrt{5}-1}{2}$	(B)	$\frac{\sqrt{5}+1}{4}$	(C)	$\frac{\sqrt{5}-1}{4}$	(D)	none of these
39.	The \	value of $\sum_{r=0}^{n-1} \left(\frac{n+1}{n} \right)$	$\left(\frac{\mathbf{r} \cdot {}^{n} \mathbf{C}_{r}}{r+}\right)$	$\left(\frac{C_{r+1}}{2}\right)$ is				
	(A)	$^{2n-1}C_{n+1}$	(B)	${}^{2n}C_{n-1}$	(C)	$^{2n-1}C_{n-1}$	(D)	$^{2n-1}C_{n-2}$
40.	The r	number of points in $x - y < 10$ is	n the c	artesian plane wi	th inte	gral co-ordinates	satisfy	ing the inequation $ x \le 10$, $ y \le 10$
	(A)	321	(B)	331	(C)	341	(D)	none of these
41.	The \	value of $\sum_{r=1}^{n} r^4 - \sum_{r=-1}^{n+2} r^4$	(n + 1 –	r) ⁴ is equal to				
	(A) (C)	- [1 + n4 + (n + 1)]- [1 + (n - 1)4 + r) ⁴] 1 ⁴]		(B) (D)	$-[1 + (n + 1)^4 + (n + 1)^4]$	(n + 2)	4]

42.	The	value of a (a < 0) f	or whic	h least value of c	luadra	tic expression 4x ²	– 4ax	+ a^2 – 2a + 2 on the interval 0	\leq
	$x \le 2$	2 is equal to 3 is							
	(A)	$-\sqrt{2}$			(B)	$\sqrt{2} - 2$			
	(C)	1 – √2			(D)	none of these			
43.	The	perpendicular dista	ance of	line (1 – i) z + (1	+ i)	+ 3 = 0, from (3 +	2i) will	be	
	(A)	13	(B)	<u>13</u> 2	(C)	26	(D)	none of these	
44.	If the	e complex numbers	SZ1, Z2	satisfying z ₁ = 10	6 and	z ₂ – 2 – 3i = 7 the	e minin	num value of $ z_1 - z_2 $	
	(A)	0			(B)	1			
	(C)	7			(D)	2			
45.	Find	the value of $\frac{1}{3.5}$ +	$-\frac{1}{7.9}+\frac{1}{7}$	$\frac{1}{11.13}$ + ∞ term	IS :				
	(A)	$\frac{1}{4}-\frac{\pi}{2}$			(B)	$\frac{\pi}{8}-\frac{1}{9}$			
	(C)	$\frac{1}{2}-\frac{\pi}{8}$			(D)	none of these			
46.	lf a,	b > 0, a + b = 1, the	en the r	minimum value of	$=\left(a+\frac{1}{a}\right)$	$\left(\frac{1}{a}\right)^2 + \left(b + \frac{1}{b}\right)^2$ is			
	(A)	8			(B)	16			
	(C)	18			(D)	<u>25</u> 2			
47.	The	results of 10 crick	et mato	ches (win, lose o	r draw) have to be pred	licted.	How many different forecasting	a
	can	contain exactly 7 c	orrect r	esults?	a a a a a				9
	(A)	100			(B)	120			
	(C)	960			(D)	None of these			
48.	Let z then	z_1, z_2 be two distinct $arg(z_1 - \overline{z}_1) - arg(z_1 - \overline{z}_1)$	$z_{2} + \overline{z}_{2}$	lex numbers with) is equal to	non-z	ero real and imag	inary p	arts such that $arg(z_1 + z_2) = \pi/2$	2,
	(•)	π							
	(A)	2			(B)	π			
	(C)	$-\frac{\pi}{2}$			(D)	None of these.			
49.	The	number of ways in	which	4 persons P ₁ , P ₂	, P₃, P	a can be arrange	d in a r	row such that P2 does not follow	w
	P ₁ , F	P_3 does not follow F	P_2 and P_2	P4 does not follow	≀P₃ is				
	(A)	24			(B)	12			
	(C)	11			(D)	10			
50.	Let z	$z \in C$ and if $A = \left\{ z \right\}$: arg(z)	$=\frac{\pi}{4}$ and $B = \left\{z\right\}$::arg(;	$z-3-3i)=\frac{2\pi}{3}\right\} th$	nen n(A	$A \cap B$) is equal to	
	(A)	1			(B)	2			
	(C)	3			(D)	0			

SECTION-2 : (MORE THAN ONE OPTION CORRECT TYPE)

51.	lfα,β	3 are roots of 2x +	$\frac{1}{x} = 2$ and f($\mathbf{x})=\frac{8\mathbf{x}^{6}+1}{\mathbf{x}^{3}},$	then				
	(A)	$f(\alpha) - f(\beta) = 0$			(B)	$f(\alpha) + f(\beta) = -8$			
	(C)	$f(\alpha) - f(\beta) = 2$			(D)	$f(\alpha) + f(\beta) = 8$			
52.	lf z ₁ , :	z_2 , z_3 , z_4 be the v	ertices of a pa	rallelogram	taken	in anticlockwise d	lirectio	n and $ z_1 - z_2 =$	$ z_1 - z_4 $, then
	(A)	$\sum_{r=1}^{4} (-1)^{r} z_{r} = 0$			(B)	$z_1 + z_2 - z_3 - z_4 =$	= 0		
	(C)	$\arg\left(\frac{z_4 - z_2}{z_3 - z_1}\right) = \frac{z_4}{z_4}$	τ2		(D)	$arg\left(\frac{z_4 - z_1}{z_2 - z_1}\right) = \frac{\pi}{2}$			
53.	The c	coefficient of 3 co	nsecutive term	ns in the exp	ansio	n of (1 + x) ⁿ are in	the ra	tio 1 : 7 : 35 the	
	(A) (B)	n is not divisible	by any numbe	er other than	n 1 and	t itself			
	(C)	n is divisible by 3	35		(D)	n is divisible by 2	23		
54.	Let f($n) = 2^{n} + 7^{n}$ where	e n is a positiv	e integer, th	en				
	(A)	if f(n) is divisible	by 5, then f(n	+ 1) is also	divisit	ble by 5			
	(B)	if f(n) is not divisi	ible by 5, then	ı f(n + 1) is r	not div	isible by 5	la hy E	for all n	
55	(C) Tho r	(3) IS NOT DIVISID	le Dy 5 gativo intogral	colutions of	(D) fv = 1	f(n) is not divisible $x + x < n$ is	le by 5	for all n	
55.	(A)	$^{n+2}C_{2}$	(B) ⁿ⁺³ C₂	SOLUTIONS OF	(C)	$n^{+2}C_{n}$	(D)	^{n + 3} C _n	
50	(• •)	-2	$(-)^{2}$		(0)		(-)	•11	
56.	π a, c), C ∈ R SUCH that either a b c are	a + p + c <	+ DC + DC +	· ca), t (B)	nen atleast two of a	hcar		
	(A) (C)	none of a, b, c c	an be zero	an negative	(D)	a, b, c are all dis	tinct	equal	
	. ,		~)						
	tar	$ \alpha - i \sin \frac{\alpha}{2} + \cos \frac{\beta}{2}$	$\left(\frac{\alpha}{2}\right)$.						
57.	IT —	$1+2i\sin\frac{\alpha}{2}$	— is purely in	naginary, th	enαι	s given by			
	(A)	$2n\pi + \frac{\pi}{2}$	(B) 2nπ		(C)	$n\pi + \frac{\pi}{2}$	(D)	$n\pi - \frac{\pi}{-}$	
	()	4	(-)		(-)	4	(-)	4	
58.	Value	es of x for which t	he sixth term o	of the expan	sion o	$f E = \left(3^{\log_3 \sqrt{g^{ x-2 }} + 7^{1/5}}\right)$	log ₇ [4·3 ^{lx-2}	$(-9])^7$ is 567 are	
	(A)	3	(B) 1		(C)	2	(D)	4	
59.	For a	positive integer r	1 let a(n) =1+	$\frac{1}{1+1}$ + + +	1	then			
•••		poolare integer i	i, iot a(ii)	2 3	2 ⁿ – 1				
	(A)	a(n) < n			(B)	$a(n) > \frac{n}{2}$			
	(C)	a(2n) > n			(D)	a(2n) < 2n			
60.	The v	value of x, for whi	ch the 6 th term	in the expa	insion	of $\left[10^{\log_{10}\sqrt{9^{x-1}+7}} + -\right]$	1	$\left[\frac{1}{3^{x-1}+1}\right]^7$ is 84 is e	equal to
	(• • •	1			(D)	L 1	IU ^{., 0,0910}]	
	(A) (C)	і З			(B) (D)	∠ 4			
	(0)	-			(2)				

If $a + ib \ge 8 - 6i$, then 61. (A) a = 8, b = 6(B) a = 8, b = -6(C) a = -6, b = 8(D) inequality is not defined in case of complex number $\frac{1}{\sqrt{2}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{8}} + \frac{1}{\sqrt{8}+\sqrt{11}} + \cdots$ n terms value of the above expression is 62. (A) $\frac{\sqrt{3n+2}-\sqrt{2}}{3}$ (B) $\frac{n}{\sqrt{2+3n}+\sqrt{2}}$ (C) less than n (D) less than $\sqrt{\frac{n}{3}}$ 63. If $|z_1 + z_2| = |z_1 - z_2|$ and $|z_1| = |z_2|$, then (C) $z_1 = \pm i z_2$ (D) $z_2 = \pm i z_1$ (A) $z_1 = z_2$ (B) $z_1 = -z_2$ For a positive integers n, if the expansion of $\left(\frac{5}{x^2} + x^4\right)^n$ has term independent of x, then 'n' can be 64. (A) 18 (B) 21 (C) 27 (D) 99 If $x^2 + mx + 1 = 0$ and $(b - c)x^2 + (c - a)x + (a - b) = 0$ have both roots common then 65. (A) m = − 2 (B) m = − 1 (D) a, b, c are in H.P. (C) a, b, c are in A.P. The modulus equation ||x - 3| + a| = 25 ($a \in R$) can have real solutions for x if a lies on the interval 66. (A) (−∞, 25] (B) [-25, 25] (C) (−∞, −25] (D) (25,∞) If x, y, a, b are real numbers such that $(x + iy)^{1/5} = a + ib$ and $P = \frac{x}{a} - \frac{y}{b}$, then 67. (A) (a – b) is a factor of P (B) (a + b) is a factor of P (D) (a – ib) is a factor of P (C) (a + ib) is a factor of P The complex numbers z1, z2, z3 are the vertices of a triangle, find all the complex numbers z which make the 68. triangle into parallelogram (A) $z = z_1 + z_2 - z_3$ (B) $z = z_1 + z_3 - z_2$ (C) $z = z_2 + z_3 - z_1$ (D) $z = z_1 + z_2 + z_3$ $z_0 = \left(\frac{1-i}{2}\right)$ then the value of the product $(1 + z_0) (1 + z_0^{2^2}) (1 + z_0^{2^2}) \cdots (1 + z_0^{2^n})$ must be 69. (B) $(1-i)\left(1-\frac{1}{2^{2^n}}\right)$ (C) $\frac{5}{4}(1-i)$ if n = 1 (D) 0 (A) 2^{2ⁿ⁻¹} If α , β are the roots of $8x^2 - 10x + 3 = 0$ then the equation whose roots are $(\alpha + i\beta)^{100} + (\alpha - i\beta)^{100}$ is 70. (A) $x^{2} + x + 1 = 0$ (B) $x^{2} - x + 1 = 0$ (C) $\frac{x^{3} - 1}{x - 1} = 0$ (D) none of these All the three roots of $az^3 + bz^2 + cz + d = 0$ have negative real parts (a, b, c $\in R$), then 71. (B) bc > 0 (A) ab > 0(C) ad > 0 (D) bc – ad > 0 If a, b, c \in R such that $a^2 + b^2 + c^2 < 2(ab + bc + ca)$, then 72. (A) either a, b, c are all positive or all negative (B) atleast two of a, b, c are equal (C) none of a, b, c can be zero (D) a, b, c are all distinct

73.	lf z ₁ , :	z_2 be two complex numbers ($z_1 \neq z_2$) satisfy	/ing z ²	$ \overline{z}^2 - \overline{z}^2_2 = \left \overline{z}^2_1 + \overline{z}^2_2 - 2\overline{z}_1\overline{z}_2\right $, then
	(A)	$ \arg z_1 - \arg z_2 = \pi$	(B)	$ \arg z_1 - \arg z_2 = \frac{\pi}{2}$
	(C)	$\frac{Z_1}{Z_2}$ is purely imaginary	(D)	$\frac{Z_1}{Z_2}$ is purely real
74.	a, b e	E I satisfies equation $a(b - 1) = 3 + b - b^2$, t	hen a	+ b is equal to
	(A)	2	(B)	3
	(C)	1	(D)	– 1
75.	Let f(x) = $ax^2 + bx + 2$, such that $a + b + 2 < 0$ ar	nd a –	2b + 8 < 0, then
	(A)	a < 0, f(x) has one real root in (0, 2)	(B)	f(x) has one real root in the interval (0, 1)
	(C)	f(x) has one real root in the interval (1, 2)	(D)	f(x) has one real root in the interval $\left(-\frac{1}{2}, 0\right)$
76.	A wor them	man has 11 close friend. Number of ways are not on speaking terms & will not attend	in whi 1 toget	ch she can invite 5 of them to dinner, if two particular of ther is -
	(A)	$^{11}C_5 - ^9C_3$	(B)	${}^{9}C_{5} + 2{}^{9}C_{4}$
	(C)	3 ⁹ C ₄	(D)	None of these
77.	lf f(x)	= 0 is a polynomial whose coefficients all	±1 an	d whose roots are all real, then the degree of $f(x)$ can be
	equal	l to		
	(A)	1	(B)	2
	(C)	3	(D)	4
78.	The o	diagonals of a square are along the pair re	preser	hted by $2x^2 - 3xy - 2y^2 = 0$. If (2, 1) is the vertex of the
	(A)	(-1, 2)	(B)	(1 –2)
	(C)	(-2,-1)	(D)	(1,2)
79.	lf p. c	a. r are in H.P and p. g. – 2r are in G.P: (p.	a. r > (0) then
-	(A)	p^2 , q^2 , r^2 are in G.P.	-17	- /
	(B)	p ² , q ² , r ² are in A.P.		
	(C)	2p, q, 2r are in A.P.		
	(D)	p + q + r = 0		
80.	If the	equations $\overline{a}z + a\overline{z} + b = 0$ and $\overline{a}z - a\overline{z} + b_1$	= 0 r	epresent two lines C_1 and C_2 in the complex plane then
	(A)	L_1 and L_2 are perpendicular	(B)	b is purely real
	(C)	b1 is purely imaginary	(D)	b ₁ is purely real
81.	If α is	s a real root of $x^3 + 2x^2 + 10x - 20 = 0$, then	l	
	(A)	α is rational	(B)	α^2 is rational
	(C)	α is irrational	(D)	α^2 is irrational

B3. If z_1, z_2, z_3, z_4 are root of the equation $a_0z^4 + z_4z^3 + z_4z^2 + z_3z + z_4 = 0$, where a_0, a_1, a_2, a_3 and a_4 at then (A) $\overline{z}_1, \overline{z}_2, \overline{z}_3, \overline{z}_4$ are also roots of the equation (B) z_1 is equal to at least one of $\overline{z}_1, \overline{z}_2, \overline{z}_3, \overline{z}_4$ (C) $-\overline{z}_1, -\overline{z}_2, -\overline{z}_3, -\overline{z}_4$ are also roots of the equation (D) none of these B4. If $a^3 + b^3 + 6$ abc = 8 c ³ 8 ω is a cube root of unity then : (A) a, c, b are in A.P. (B) a, c, b are in H.P. (C) $a + b\omega - 2c\omega^2 = 0$ (D) $a + b\omega^2 - 2c\omega = 0$ 35. The points z_1, z_2, z_3 on the complex plane are the vertices of an equilateral triangle if and on (A) $\sum (z_1 - z_2)(z_2 - z_3) = 0$ (B) $z_1^2 + z_2^2 + z_3^2 = 2(z_1 + z_2 + z_3 + z_4 + z_3^2 $	e real, y if :)
(A) $\overline{z}_1, \overline{z}_2, \overline{z}_3, \overline{z}_4$ are also roots of the equation (B) z_1 is equal to at least one of $\overline{z}_1, \overline{z}_2, \overline{z}_3, \overline{z}_4$ (C) $-\overline{z}_1, -\overline{z}_2, -\overline{z}_3, -\overline{z}_4$ are also roots of the equation (D) none of these 84. If $a^3 + b^3 + 6$ abc = $8 c^3 \& \omega$ is a cube root of unity then : (A) a, c, b are in A.P. (B) a, c, b are in H.P. (C) $a + b\omega - 2 c\omega^2 = 0$ (D) $a + b\omega^2 - 2 c\omega = 0$ 85. The points z_1, z_2, z_3 on the complex plane are the vertices of an equilateral triangle if and on (A) $\Sigma(z_1-z_2)(z_2-z_3) = 0$ (B) $z_1^{2+}z_2^{2+}z_3^{2-} = 2(z_1z_2+z_2z_3+z_3z_3z_4)$ (C) $z_1^{2+}z_2^{2+}z_3^{2-} = z_1z_2+z_2z_3+z_3z_4$ (D) $2(z_1^{2+}+z_2^{2+}+z_3^{2-}) = z_1z_2+z_2z_3+z_3z_4$ (G) $\frac{z_1}{z_2}$ is purely real (D) $\frac{z_1}{z_2}$ is purely imaginary 87. If $\cos \alpha + \cos \beta + \cos \gamma = 0$ and also $\sin \alpha + \sin \beta + \sin \gamma = 0$, then which of the following is (A) $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = \sin 2\alpha + \sin 2\beta + \sin 2\gamma$ (B) $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3 \sin (\alpha + \beta + \gamma)$ (C) $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3 \cos (\alpha + \beta + \gamma)$ (D) $\sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0$ 38. If $\sum_{r=1}^{n} r(r+1)(2r+3) = an^4 + bn^3 + cn^2 + dn + e$, then (A) $a + c = b + d$ (B) $e = 0$ (C) $a, b - 2/3, c - 1$ are in A.P. (D) c/a is an integer 39. The sides of a right triangle form a G.P. The tangent of the smallest angle is (A) $\sqrt{\sqrt{5} + \frac{1}{2}}$ (B) $\sqrt{\frac{\sqrt{5} - 1}{2}}$ (C) $\sqrt{\frac{2}{\sqrt{5} + 1}}$ (D) $\sqrt{\frac{2}{\sqrt{5} - 1}}$ 30. Sum to n terms of the series $S = 1^2 + 2(2)^2 + 3^2 + 2(4^2) + 5^2 + 2(6^2) +$ is (A) $\frac{1}{2} n (n + 1)^2$ when n is even (B) $\frac{1}{2} n^2 (n + 1)$ when n is odd (C) $\frac{1}{4} n^2 (n + 2)$ when n is odd (D) $\frac{1}{4} n(n + 2)^2$ when n is even. 31. If a, b, c are in H.P., then:	y if :)
(B) z_1 is equal to at least one of \overline{z}_1 , \overline{z}_2 , \overline{z}_3 , \overline{z}_4 (C) $-\overline{z}_1$, $-\overline{z}_2$, $-\overline{z}_3$, $-\overline{z}_4$ are also roots of the equation (D) none of these 84. If $a^3 + b^3 + 6 abc = 8 c^3 & \omega$ is a cube root of unity then : (A) a, c, b are in A.P. (B) a, c, b are in H.P. (C) $a + b\omega - 2 c\omega^2 = 0$ (D) $a + b\omega^2 - 2 c\omega = 0$ 85. The points z_1, z_2, z_3 on the complex plane are the vertices of an equilateral triangle if and on (A) $\sum (z_1 - z_2)(z_2 - z_3) = 0$ (B) $z_1^2 + z_2^2 + z_3^2 = 2 (z_1 z_2 + z_2 z_3 + z_3 z_3 - z_3) = (C) z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1 = (D) 2 (z_1^2 + z_2^2 + z_3^2) = z_1 z_2 + z_2 z_3 + z_3 z_3 + z_3 z_1 = (D) 2 (z_1^2 + z_2^2 + z_3^2) = z_1 z_2 + z_2 z_3 + z_3 z_3 + z_3 z_3 + z_3 z_1 = (D) \frac{z_1}{z_2}$ is purely real (A) $ amp z_1 - amp z_2 = \frac{\pi}{2}$ (B) $ amp z_1 - amp_2 = \pi$ (C) $\frac{z_1}{z_2}$ is purely real (D) $\frac{z_1}{z_2}$ is purely imaginary 1f $\cos \alpha + \cos \beta + \cos \gamma = 0$ and also $\sin \alpha + \sin \beta + \sin \gamma = 0$, then which of the following is (A) $\cos 2\alpha + \cos 2\beta + \cos 2\beta + \sin 2\alpha + \sin 2\beta + \sin 2\gamma$ (B) $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3 \sin (\alpha + \beta + \gamma)$ (C) $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3 \cos (\alpha + \beta + \gamma)$ (D) $\sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0$ 38. If $\sum_{r=1}^{n} r(r + 1) (2r + 3) = an^4 + bn^3 + cn^2 + dn + e, then$ (A) $a + c = b + d$ (B) $e = 0$ (C) $a, b - 2/3, c - 1$ are in A.P. (D) c/a is an integer 39. The sides of a right triangle form a G.P. The tangent of the smallest angle is (A) $\sqrt{\sqrt{5 + 1}}$ (B) $\sqrt{\frac{\sqrt{5} - 1}{2}}$ (C) $\sqrt{\frac{2}{\sqrt{5} + 1}}$ (D) $\sqrt{\frac{2}{\sqrt{5} - 1}}$ 30. Sum to n terms of the series $S = 1^2 + 2(2)^2 + 3^2 + 2(4^2) + 5^2 + 2(6^2) +$ is (A) $\frac{1}{2} n (n + 1)^2$ when n is even (B) $\frac{1}{2} n^2 (n + 1)$ when n is odd (C) $\frac{1}{4} n^2 (n + 2)$ when n is odd (D) $\frac{1}{4} n(n + 2)^2$ when n is even. 31. If a, b, c are in H.P., then:	y if :)
(C) $-\overline{z}_1, -\overline{z}_2, -\overline{z}_3, -\overline{z}_4$ are also roots of the equation (D) none of these 84. If $a^3 + b^3 + 6 abc = 8 6^3 \& \omega$ is a cube root of unity then : (A) a, c, b are in A.P. (B) a, c, b are in H.P. (C) $a + b\omega - 2c\omega^2 = 0$ (D) $a + b\omega^2 - 2c\omega = 0$ 85. The points z_1, z_2, z_3 on the complex plane are the vertices of an equilateral triangle if and on (A) $\sum (z_1 - z_2)(z_2 - z_3) = 0$ (B) $z_1^2 + z_2^2 + z_3^2 = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 z_3 z_3 - z_1 z_2 + z_2^2 + z_3^2) = z_1 z_2 + z_2 z_3 + z_3 z_3 z_3 z_3 z_3 z_3 z_3 z_3 z_3 z_3$	y if :)
84. If $a^3 + b^3 + 6 abc = 8 c^3 \& w$ is a cube root of unity then : (A) a, c, b are in A.P. (B) a, c, b are in H.P. (C) $a + bw - 2 co^2 = 0$ (D) $a + bw^2 - 2 co = 0$ 85. The points z_1, z_2, z_3 on the complex plane are the vertices of an equilateral triangle if and on (A) $\sum (z_1 - z_2)(z_2 - z_3) = 0$ (B) $z_1^2 + z_2^2 + z_3^2 = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2 + z_3^2) = 2(z_1 z_2 + z_3^2 + z_3^2) = 2(z_1 z_2 + z_2 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_3 z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2) = 2(z_1 z_2 + z_3^2 + z_3^2) = 2(z_1 z_2 + z_3 + z_3 z_3 - (C)) 2(z_1^2 + z_2^2 + z_3^2 + z_3^2) = 2(z_1 z_2 + z_3 + z_3 + z_3 + z_3 - (C)) 2(z_1^2 + z_3^2 + z_3^2) = 2(z_1^2 + z_3^2 + z_3^2 + z_3^2) = 2(z_1^2 + z_3^2 + z_3^2 + z_3^2) = 2(z_1^2 +$	y if :)
35. The points z_1, z_2, z_3 on the complex plane are the vertices of an equilateral triangle if and on (A) $\sum (z_1 - z_2) (z_2 - z_3) = 0$ (B) $z_1^2 + z_2^2 + z_3^2 = 2 (z_1 z_2 + z_2 z_3 + z_3 z_3 z_3)$ (C) $z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$ (D) $2 (z_1^2 + z_2^2 + z_3^2) = z_1 z_2 + z_2 z_3 + z_3 z_3 z_3 z_3 z_3 z_3 z_3 z_3 z_3 z_3$	y if:)
36. If $ z_1 + z_2 = z_1 - z_2 $ then (A) $ \operatorname{amp} z_1 - \operatorname{amp} z_2 = \frac{\pi}{2}$ (B) $ \operatorname{amp} z_1 - \operatorname{amp}_2 = \pi$ (C) $\frac{z_1}{z_2}$ is purely real (D) $\frac{z_1}{z_2}$ is purely imaginary 87. If $\cos \alpha + \cos \beta + \cos \gamma = 0$ and also $\sin \alpha + \sin \beta + \sin \gamma = 0$, then which of the following is (A) $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = \sin 2\alpha + \sin 2\beta + \sin 2\gamma$ (B) $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3 \sin (\alpha + \beta + \gamma)$ (C) $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3 \cos (\alpha + \beta + \gamma)$ (D) $\sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0$ 38. If $\sum_{r=1}^{n} r(r+1) (2r+3) = an^4 + bn^3 + cn^2 + dn + e$, then (A) $a + c = b + d$ (B) $e = 0$ (C) $a, b - 2/3, c - 1$ are in A.P. (D) c/a is an integer 39. The sides of a right triangle form a G.P. The tangent of the smallest angle is (A) $\sqrt{\frac{\sqrt{5} + 1}{2}}$ (B) $\sqrt{\frac{\sqrt{5} - 1}{2}}$ (C) $\sqrt{\frac{2}{\sqrt{5} + 1}}$ (D) $\sqrt{\frac{2}{\sqrt{5} - 1}}$ 30. Sum to n terms of the series $S = 1^2 + 2(2)^2 + 3^2 + 2(4^2) + 5^2 + 2(6^2) + \dots$ is (A) $\frac{1}{2}n(n+1)^2$ when n is even (B) $\frac{1}{2}n^2(n+1)$ when n is odd (C) $\frac{1}{4}n^2(n+2)$ when n is odd (D) $\frac{1}{4}n(n+2)^2$ when n is even. 31. If a, b, c are in H.P., then:	1
(A) $ \operatorname{amp} z_1 - \operatorname{amp} z_2 = \frac{\pi}{2}$ (B) $ \operatorname{amp} z_1 - \operatorname{amp}_2 = \pi$ (C) $\frac{z_1}{z_2}$ is purely real (D) $\frac{z_1}{z_2}$ is purely imaginary (B) $\operatorname{cos} 2\alpha + \cos \beta + \cos \gamma = 0$ and also $\sin \alpha + \sin \beta + \sin \gamma = 0$, then which of the following is (A) $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = \sin 2\alpha + \sin 2\beta + \sin 2\gamma$ (B) $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3 \sin (\alpha + \beta + \gamma)$ (C) $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3 \cos (\alpha + \beta + \gamma)$ (D) $\sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0$ (D) $\sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0$ (A) $a + c = b + d$ (B) $e = 0$ (C) $a, b - 2/3, c - 1$ are in A.P. (D) c/a is an integer (B) $\sqrt{\frac{\sqrt{5} + 1}{2}}$ (B) $\sqrt{\frac{\sqrt{5} - 1}{2}}$ (C) $\sqrt{\frac{2}{\sqrt{5} + 1}}$ (D) $\sqrt{\frac{2}{\sqrt{5} - 1}}$ (D) Sum to n terms of the series $S = 1^2 + 2(2)^2 + 3^2 + 2(4^2) + 5^2 + 2(6^2) + \dots$ is (A) $\frac{1}{2}n(n + 1)^2$ when n is even (B) $\frac{1}{2}n^2(n + 1)$ when n is odd (C) $\frac{1}{4}n^2(n + 2)$ when n is odd (D) $\frac{1}{4}n(n + 2)^2$ when n is even. (A) If a, b, c are in H.P., then:	
(C) $\frac{z_1}{z_2}$ is purely real (D) $\frac{z_1}{z_2}$ is purely imaginary If $\cos \alpha + \cos \beta + \cos \gamma = 0$ and also $\sin \alpha + \sin \beta + \sin \gamma = 0$, then which of the following is (A) $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = \sin 2\alpha + \sin 2\beta + \sin 2\gamma$ (B) $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3 \sin (\alpha + \beta + \gamma)$ (C) $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3 \cos (\alpha + \beta + \gamma)$ (D) $\sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0$ 38. If $\sum_{r=1}^{n} r(r+1)$ ($2r + 3$) = an ⁴ + bn ³ + cn ² + dn + e, then (A) $a + c = b + d$ (B) $e = 0$ (C) $a, b - 2/3, c - 1$ are in A.P. (D) c/a is an integer 39. The sides of a right triangle form a G.P. The tangent of the smallest angle is (A) $\sqrt{\frac{\sqrt{5} + 1}{2}}$ (B) $\sqrt{\frac{\sqrt{5} - 1}{2}}$ (C) $\sqrt{\frac{2}{\sqrt{5} + 1}}$ (D) $\sqrt{\frac{2}{\sqrt{5} - 1}}$ 30. Sum to n terms of the series $S = 1^2 + 2(2)^2 + 3^2 + 2(4^2) + 5^2 + 2(6^2) +$ is (A) $\frac{1}{2} n (n + 1)^2$ when n is even (B) $\frac{1}{2} n^2 (n + 1)$ when n is odd (C) $\frac{1}{4} n^2 (n + 2)$ when n is odd (D) $\frac{1}{4} n(n + 2)^2$ when n is even. 31. If a, b, c are in H.P., then:	
87. If $\cos \alpha + \cos \beta + \cos \gamma = 0$ and also $\sin \alpha + \sin \beta + \sin \gamma = 0$, then which of the following is (A) $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = \sin 2\alpha + \sin 2\beta + \sin 2\gamma$ (B) $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3 \sin (\alpha + \beta + \gamma)$ (C) $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3 \cos (\alpha + \beta + \gamma)$ (D) $\sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0$ 88. If $\sum_{r=1}^{n} r(r+1) (2r+3) = an^4 + bn^3 + cn^2 + dn + e$, then (A) $a + c = b + d$ (B) $e = 0$ (C) $a, b - 2/3, c - 1$ are in A.P. (D) c/a is an integer 89. The sides of a right triangle form a G.P. The tangent of the smallest angle is (A) $\sqrt{\frac{\sqrt{5} + 1}{2}}$ (B) $\sqrt{\frac{\sqrt{5} - 1}{2}}$ (C) $\sqrt{\frac{2}{\sqrt{5} + 1}}$ (D) $\sqrt{\frac{2}{\sqrt{5} - 1}}$ 90. Sum to n terms of the series $S = 1^2 + 2(2)^2 + 3^2 + 2(4^2) + 5^2 + 2(6^2) +$ is (A) $\frac{1}{2}n(n + 1)^2$ when n is even (B) $\frac{1}{2}n^2(n + 1)$ when n is odd (C) $\frac{1}{4}n^2(n + 2)$ when n is odd (D) $\frac{1}{4}n(n + 2)^2$ when n is even. 91. If a, b, c are in H.P., then:	
88. If $\sum_{r=1}^{n} r(r+1) (2r+3) = an^4 + bn^3 + cn^2 + dn + e$, then (A) $a + c = b + d$ (B) $e = 0$ (C) $a, b - 2/3, c - 1$ are in A.P. (D) c/a is an integer 89. The sides of a right triangle form a G.P. The tangent of the smallest angle is (A) $\sqrt{\frac{\sqrt{5}+1}{2}}$ (B) $\sqrt{\frac{\sqrt{5}-1}{2}}$ (C) $\sqrt{\frac{2}{\sqrt{5}+1}}$ (D) $\sqrt{\frac{2}{\sqrt{5}-1}}$ 90. Sum to n terms of the series $S = 1^2 + 2(2)^2 + 3^2 + 2(4^2) + 5^2 + 2(6^2) +$ is (A) $\frac{1}{2}n(n+1)^2$ when n is even (B) $\frac{1}{2}n^2(n+1)$ when n is odd (C) $\frac{1}{4}n^2(n+2)$ when n is odd (D) $\frac{1}{4}n(n+2)^2$ when n is even. 91. If a, b, c are in H.P., then:	rue.
(A) $a + c = b + d$ (B) $e = 0$ (C) $a, b - 2/3, c - 1$ are in A.P. (D) c/a is an integer 39. The sides of a right triangle form a G.P. The tangent of the smallest angle is (A) $\sqrt{\frac{\sqrt{5} + 1}{2}}$ (B) $\sqrt{\frac{\sqrt{5} - 1}{2}}$ (C) $\sqrt{\frac{2}{\sqrt{5} + 1}}$ (D) $\sqrt{\frac{2}{\sqrt{5} - 1}}$ 90. Sum to n terms of the series $S = 1^2 + 2(2)^2 + 3^2 + 2(4^2) + 5^2 + 2(6^2) + \dots$ is (A) $\frac{1}{2}n(n+1)^2$ when n is even (B) $\frac{1}{2}n^2(n+1)$ when n is odd (C) $\frac{1}{4}n^2(n+2)$ when n is odd (D) $\frac{1}{4}n(n+2)^2$ when n is even. 91. If a, b, c are in H.P., then:	
89. The sides of a right triangle form a G.P. The tangent of the smallest angle is (A) $\sqrt{\frac{\sqrt{5}+1}{2}}$ (B) $\sqrt{\frac{\sqrt{5}-1}{2}}$ (C) $\sqrt{\frac{2}{\sqrt{5}+1}}$ (D) $\sqrt{\frac{2}{\sqrt{5}-1}}$ 90. Sum to n terms of the series S = 1 ² + 2(2) ² + 3 ² + 2(4 ²) + 5 ² + 2(6 ²) + is (A) $\frac{1}{2}$ n (n + 1) ² when n is even (B) $\frac{1}{2}$ n ² (n + 1) when n is odd (C) $\frac{1}{4}$ n ² (n + 2) when n is odd (D) $\frac{1}{4}$ n(n + 2) ² when n is even. 91. If a, b, c are in H.P., then:	
(A) $\sqrt{\frac{\sqrt{5}+1}{2}}$ (B) $\sqrt{\frac{\sqrt{5}-1}{2}}$ (C) $\sqrt{\frac{2}{\sqrt{5}+1}}$ (D) $\sqrt{\frac{2}{\sqrt{5}-1}}$ Sum to n terms of the series S = 1 ² + 2(2) ² + 3 ² + 2(4 ²) + 5 ² + 2(6 ²) + is (A) $\frac{1}{2}$ n (n + 1) ² when n is even (B) $\frac{1}{2}$ n ² (n + 1) when n is odd (C) $\frac{1}{4}$ n ² (n + 2) when n is odd (D) $\frac{1}{4}$ n(n + 2) ² when n is even. If a, b, c are in H.P., then:	
90.Sum to n terms of the series $S = 1^2 + 2(2)^2 + 3^2 + 2(4^2) + 5^2 + 2(6^2) + \dots$ is(A) $\frac{1}{2}n(n+1)^2$ when n is even(B) $\frac{1}{2}n^2(n+1)$ when n is odd(C) $\frac{1}{4}n^2(n+2)$ when n is odd(D) $\frac{1}{4}n(n+2)^2$ when n is even.91.If a, b, c are in H.P., then:	
(A) $\frac{1}{2}$ n (n + 1) ² when n is even (B) $\frac{1}{2}$ n ² (n + 1) when n is odd (C) $\frac{1}{4}$ n ² (n + 2) when n is odd (D) $\frac{1}{4}$ n(n + 2) ² when n is even. 91. If a, b, c are in H.P., then:	
(C) $\frac{1}{4}$ n ² (n + 2) when n is odd (D) $\frac{1}{4}$ n(n + 2) ² when n is even. 91. If a, b, c are in H.P., then:	
91. If a, b, c are in H.P., then:	
(A) $\frac{a}{b+c-a}$, $\frac{b}{c+a-b}$, $\frac{c}{a+b-c}$ are in H.P.	
(B) $\frac{2}{b} = \frac{1}{b-a} + \frac{1}{b-c}$	
(C) $\mathbf{a} - \frac{\mathbf{b}}{2}, \frac{\mathbf{b}}{2}, \mathbf{c} - \frac{\mathbf{b}}{2}$ are in G.P. (D) $\frac{\mathbf{a}}{\mathbf{b} + \mathbf{c}}, \frac{\mathbf{b}}{\mathbf{c} + \mathbf{a}}, \frac{\mathbf{c}}{\mathbf{a} + \mathbf{b}}$ are in H.P.	
$2 + 2 + 2 = 2 \qquad b + c + a + b$	

92.	If b_1 , b_2 the ine	, b ₃ (b _i > 0) are quality b ₃ > 4b	three su - 3b, ho	ccessive terms o olds is aiven bv	of a G.P.	with common r	atio r, th	e value of r for which
	(A)	r > 3	(B)	r < 1	(C)	r = 3.5	(D)	r = 5.2
93.	lfa,ba (A)	are non-zero re α^2 , β^2 are the	al numb roots of :	ers, and α , β the x ² – (2b – a ²) x +	e roots o · a² = 0	$f x^2 + ax + b = 0$), then	
	(B)	1/lpha, 1/eta are	the root	s of bx ² + ax + 1	1 = 0			
	(C)	$\alpha / \beta, \beta / \alpha$	are the ro	pots of bx ² + (2b	– a²) x	+ b = 0		
	(D)	$-\alpha$, $-\beta$ are th	ne roots o	of $x^2 + ax - b = 0$	0			
94.	x ² + x +	- 1 is a factor o	ofax ³ +b	$x^{2} + cx + d = 0$,	then th	e real root of ab	ove equ	uation is
	(a, b, c	, d ∈ R)						
~-	(A)	– d/a	(B)	d/a	(C)	(b – a)/a	(D)	(a – b)/a
95.	If $(X^2 + (\Lambda))$	$(x + 1) + (x^2 + 2)$	2x + 3) + (P)	$(x^2 + 3x + 5) +$.	+ (x	(2 + 20x + 39) =	• 4500, t	nen x is equal to:
96	(A)	s a root of the e	(ם) equation	-10 $25x^2 + 5x - 12 =$	(C) = 0 _ 1 <	x < 0 then the	value c	-20.5
	(A)	24/25	(B)	-12/25	(C)	-24/25	(D)	20/25
97.	If the c	luadratic equa	tions, x ²	+ abx + c = 0 a	and x^2 +	acx + b = 0 ha	ave a co	ommon root then the
	equation	on containing th	neir other	roots is/are:				
	(A)	$x^{2} + a(b + c)$		= 0	(B)	$x^{2} - a(b + c)x$	+ a ² bc =	= 0
00	(C)	$a(b + c)x^2 - ($	b + c)x + c	+ abc = 0	(D)	$a(b + c)x^{2} + (b)$	o + c) x -	– abc = 0
90.	(Δ)	$C_4 > C_5 = 0_5$	(B)		(C)	10	(D)	11
99.	There a	are 10 points P	., P.,, I	P, in a plane, no	three o	f which are colli	near. Nu	mber of straight lines
	which o	an be determi	ned by th	nese points whic	h do no	t pass through t	he point	ts P_1 or P_2 is:
	(A)	¹⁰ C ₂ - 2. ⁹ C ₁	(B)	27	(C)	⁸ C ₂	(D)	${}^{10}C_2 - 2.9C_1 + 1$
100.	You are	e given 8 balls	of differe	ent colour (black	, white,.). The number	f of ways	s in which these balls
	togethe	anangeu ma r sris	ow so the		n partict	liai coloui (say i		inte) may never come
	(A)	8!-2.7!	(B)	6.7!	(C)	2.6!. ⁷ C	(D)	none
101.	À man	is dealt a poke	r hand (c	consisting of 5 ca	ards) fro	om an ordinary p	ack of 5	52 playing cards. The
	numbe	r of ways in wh	ich he ca	n be dealt a "stra	aight" (a	straight is five	consecu	tive values not of the
	same s	uit, eg. {Ace [,] 2	2 [,] 3 [,] 4 [,] 5},	, {2, 3, 4, 5, 6}	(0)	& {10 [,]		Ace}) is
102	(A) Numbe	$10(4^\circ - 4)$	(D) hich 3 nu	mbers in A P ca	(C) an he se	lected from 1.2	(D) 2 3	10200 n is:
102.	Numbe						., 0,	
	(A)	$\left(\frac{n-1}{2}\right)^2$ if n i	6 0V0D		(P)	$\frac{n(n-2)}{n}$ if n	ic odd	
	(A)	$\begin{pmatrix} 2 \end{pmatrix}$	SEVEN		(В)	4	15 000	
		()2						
	(C)	$\frac{(n-1)^{-1}}{(n-1)^{-1}}$ if n is	s odd		(D)	$\frac{n(n-2)}{n(n-2)}$ if n i	seven	
	(-)	4			(-)	4		
103.	Consid	er the expansion	on _, (a ₁ + a	$a_{2} + a_{3} + \dots + a_{p}$	_ຸ) ⁿ where	$e n \in N$ and $n \leq p$	o. The co	prrect statement(s) is/
	are:	number of diff	Foront tor	ms in the expan	cion ic "	+ p – 1 C		
	(A) (B)	co-efficient of	anv term	in which none of	of the va	riables a a	a occur	more than once is 'n'
	(C)	co-efficient of	any term	in which none o	of the var	riables a, a,,a,	occur n	nore than once is n ! if
		n = p				1, 2, 1	,	
	(E)							. (p)
	(D)	Number of ter	ms in wh	lich none of the	variable	s a _{1,} a _{2,} , a _p c	occur mo	ore than once is $\begin{pmatrix} 1 \\ n \end{pmatrix}$.
104.	In the e	expansion of (x	(+ y + z)	25				
	(A)	avary tarm is	of the for	rm 25C $rC v25$	-r vr - k	zk		

- -'. y' ĸ. z'
- (A) every term is of the form ${}^{25}C_r$. ${}^{r}C_k$. x^{21} (B) the coefficient of $x^8 y^9 z^9$ is 0 (C) the number of terms is 325 (D) none of these

COMPREHENSION-1

Paragraph for Questions Nos. 105 to 107

	Let t	be a real number s	satisfy	ring							
	2	$2t^3 - 9t^2 + 30 - a =$	0		(1)					
	And	$x + \frac{1}{x} = t$			(2)						
105.	lf eq	uation (1) has three	e real	and distinct roots t	hen						
	(A)	a > 30	(B)	a < 3	(C)	3 < a < 30	(D)	a < 3 or a > 30			
106.	lf eq	uation (2) has two	real a	nd distinct roots the	en						
	(A)	- 2 < t < 2	(B)	- 1 < t < 1	(C)	t < - 2 or t > 2	(D)	none of these			
107.	lf x +	$\frac{1}{x} = t$ gives six re	al and	I distinct values of a	k, ther	ı					
	(A)	3 < a < 30	(B)	$a\in \phi$	(C)	a ∈ (2, 5)	(D)	none of these			
	COMPREHENSION-2										
			Par	agraph for Que	estio	ns Nos. 108 to	110				
	Cons	sider the equation :	x + y -	- [x] [y] = 0, where	[·] = G	reatest integer fund	ction.				
108.	The	number of integral	solutio	ons to the equation	, is						
	(A)	0	(B)	1	(C)	2	(D)	none of these			
109.	Equa	ation of one of the	lines c	on which the non in	tegral	solution of given e	quatio	n, lies is			
	(A)	x + y = -1	(B)	x + y = 0	(C)	x + y = 1	(D)	x + y = 5			
110.	Num giver	ber of the point of n equation lies, is	inters	section between al	l the p	oossible lines on w	hich t	he non-integral solutions of the			
	(A)	0	(B)	1	(C)	2	(D)	3			
	COMPREHENSION-3										

Paragraph for Questions Nos. 111 to 113

 $y = ax^2 + bx + c = 0$ is a quadratic equation which has real roots if and only if $b^2 - 4ac \ge 0$. If f(x, y) = 0 is a second degree equation, then using above fact we can get the range of x and y by treating it as quadratic equation in y or x. Similarly $ax^2 + bx + c \ge 0 \forall x \in R$ if a > 0 and $b^2 - 4ac \le 0$.

- **111.** If $0 < \alpha$, $\beta < 2\pi$, then the number of ordered pairs (α, β) satisfying $\sin^2(\alpha + \beta) 2 \sin\alpha \sin(\alpha + \beta) + \sin^2\alpha + \cos^2\beta = 0$ is:
 - (A) 2 (B) 0 (C) 4 (D) none of these
- **112.** If A + B + C = π , then the maximum value of cosA + cosB + k cosC (where k > 1/2) is

(A)
$$\frac{1}{k} + \frac{k}{2}$$
 (B) $\frac{2k^2 + 1}{3}$ (C) $\frac{k^2 + 2}{2}$ (D) $\frac{1}{2k} + k$

113. A circle with radius |a| and centre on y-axis slides along it and a variable line through (a, 0) cuts the circle at points P and Q. The region in which the point of intersection of tangents to the circle at points P and Q lies is represented by

(A) $y^2 \ge 4(ax - a^2)$ (B) $y^2 \le 4(ax - a^2)$ (C) $y \ge 4(ax - a^2)$ (D) $y \le 4(ax - a^2)$

COMPREHENSION-4

Paragraph for Questions Nos. 114 to 116

Let N = $p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_n^{\alpha_n}$ be a natural number where p_i (1 $\leq i \leq n$) is a prime number. The total number of divisors of N is $(\alpha_1 + 1)(\alpha_2 + 1)\dots(\alpha_n + 1).$ The sum of all divisors is $\left(\frac{p_1^{\alpha_1+1}-1}{p_1-1}\right)\left(\frac{p_2^{\alpha_2+1}-1}{p_2-1}\right)\dots\left(\frac{p_n^{\alpha_n+1}-1}{p_2-1}\right).$ The number of ways in which N can be resolved in two factors is $\frac{(\alpha_1 + 1)(\alpha_2 + 1)\cdots(\alpha_n + 1) + 1}{2}$ or $\frac{(\alpha_1 + 1)(\alpha_2 + 1)\cdots(\alpha_n + 1)}{2}$ as N is a perfect square or not. Number of ways of resolving N in two coprime factors is 2^{n-1} . 114. The number of ways in which 420 can be factorised in two non coprime factors is (A) 24 (B) 8 (C) 12 (D) 4 115. The number of positive integral solution of $x_1x_2x_3x_4 = 420$ is (A) 420 (B) 240 (C) 640 (D) none of these 116. The sum of all the even divisors of 420 is (A) 860 (B) 192 (C) 1344 (D) 1152

COMPREHENSION-5

Paragraph for Questions Nos. 117 to 119

If z_1 , z_2 be the complex numbers representing two points A and B, then we define the complex slope of the line AB as $\mu = \frac{z_1 - z_2}{\overline{z}_1 - \overline{z}_2}$, it can be noted that $|\mu| = 1$ and μ remains same for any two points on the line AB, since if $z_3 \cdot z_4$ be

complex numbers representing some other points on the same line, then

$$\mu' = \frac{z_3 - z_4}{\overline{z}_3 - \overline{z}_4} = \frac{\lambda(z_1 - z_2)}{\overline{\lambda}(\overline{z}_1 - \overline{z}_2)} \qquad (\because z_3 - z_4 = \lambda(z_1 - z_2)\lambda \text{ real}) = \frac{z_1 - z_2}{\overline{z}_1 - \overline{z}_2} = \mu$$

117. The complex slope of the line $\overline{a}z + a\overline{z} + b = 0$ where a is complex and b is real is

(A)
$$\frac{a}{a}$$
 (B) $-\frac{a}{a}$ (C) $\frac{\overline{a}}{a}$ (D) $-\frac{\overline{a}}{a}$

118. If the complex slope of a line which is not parallel to y-axis is $\cos\phi + i\sin\phi$, then the line makes an angle θ with x-axis, θ must be

(A)	2φ	(B)	$90^{\circ} - \phi$
(C)	$\frac{\phi}{2}$	(D)	φ

119. If μ and μ' be complex slopes of two perpendicular lines, then

- (A) $\mu\mu' = 1$ (B) $\mu\mu' = -1$
- (C) $\mu + \mu' = 0$ (D) none of these

COMPREHENSION-6

Paragraph for Questions Nos. 120 to 122

Let z be a complex number lying on a circle $|z| = \sqrt{2} a$ and b = b₁ + ib₂ (any complex number), then

120. The equation of tangent at the point 'b' is

(A) $z\overline{b} + \overline{z}b = a^2$ (B) $z\overline{b} + \overline{z}b = 2a^2$ (C) $z\overline{b} + \overline{z}b = 3a^2$ (D) $z\overline{b} + \overline{z}b = 4a^2$

121. The equation of straight line parallel to the tangent at the point b and passing through centre of circle is

(A) $z\overline{b} + \overline{z}b = 0$ (B) $2z\overline{b} + \overline{z}b = \lambda$ (C) $2z\overline{b} + 3\overline{z}b = 0$ (D) $z\overline{b} + \overline{z}b = \lambda$

122. The equation of lines passing through the centre of the circle and making an angle $\frac{\pi}{4}$ with the normal at 'b' are

(A)
$$z = \pm \frac{ib^2}{2a^2}\overline{z}$$
 (B) $z = \pm \frac{ib^2}{a^2}\overline{z}$ (C) $z = \pm \frac{ib^2}{3a^2}\overline{z}$ (D) $z = \pm \frac{ib^2}{4a^2}\overline{z}$

COMPREHENSION-7

Paragraph for Questions Nos. 123 to 125

Suppose $f(x) = 3x^3 - 13x^2 + 14x - 2$. It is assumed that f(x) = 0 have three real roots say α , β and γ where $\alpha < \beta < \gamma$.

123.	[α], [f	3], [γ] (where [.] der	notes t	the greatest intege	r func	tion) are in		
	(A)	A.P	(B)	G.P	(C)	H.P	(D)	none of these
124.	$\lim_{n\to\infty}\alpha$	${}^{n!} \cdot \beta^{1/n!}$ will be equal	al to					
	(A)	1	(B)	е	(C)	0	(D)	none of these
125.	The v	value of tan ^{-1α} + ta	ın ⁻¹ β +	tan ⁻¹ γ is				
	(A)	$\frac{\pi}{2}$	(B)	$\frac{3\pi}{2}$	(C)	$\frac{\pi}{4}$	(D)	$\frac{3\pi}{4}$
		2		2		4		4

COMPREHENSION-8

Paragraph for Questions Nos. 126 to 128

The quantities 1 + x, $1 + x + x^2$, $1 + x + x^2 + x^3$, ..., $1 + x + x^2 + ... + x^n$ are multiplied and terms of the product are arranged in increasing powers of x in the form $a_0 + a_1 x + a_2 x^2 + ...$, then

126. The number of terms in the product is

(A) n^2 (B) n(n + 1) (C) $\frac{n(n+1)}{2}$ (D) $\frac{n^2 + n + 2}{2}$

127. The coefficients of equidistant terms from beginning and end are

(A)	always equal	(B)	never equal
(C)	sometimes equal	(D)	can't be said

128. The sum of odd coefficients = sum of even coefficients = ?

- (A) n! (B) (n+1)!
- (C) $\frac{(n+1)!}{2}$ (D) none of these

COMPREHENSION-9 Paragraph for Questions Nos. 129 to 131

Consider the quadratic equation $az^2 + bz + c = 0$ where a, b, c and z are complex numbers

129. The condition that the equation has both real roots is

(A)
$$\frac{a}{\overline{a}} = -\frac{b}{\overline{b}} = \frac{c}{\overline{c}}$$
 (B) $\frac{a}{\overline{a}} = \frac{b}{\overline{b}} = \frac{c}{\overline{c}}$ (C) $\frac{a}{\overline{a}} = \frac{b}{\overline{b}} = -\frac{c}{\overline{c}}$ (D) none of these

130. The condition that equation has both roots purely imaginary

(A)
$$\frac{a}{\overline{a}} = -\frac{b}{\overline{b}} = -\frac{c}{\overline{c}}$$
 (B) $\frac{a}{\overline{a}} = -\frac{b}{\overline{b}} = \frac{c}{\overline{c}}$ (C) $\frac{a}{\overline{a}} = \frac{b}{\overline{b}} = -\frac{c}{\overline{c}}$ (D) none of these

131. Condition that equation has one complex root m such that |m| = 1

(Δ)	bc – ba _ a	$a\overline{a} + c\overline{c}$	(B)	bc+ba_	$a\overline{a} + c\overline{c}$
(~)	$\overline{a\overline{a}} - c\overline{c}$	$\overline{c}b + a\overline{b}$	(b)	$\overline{a\overline{a}} + c\overline{c}$	$\overline{c}b + a\overline{b}$

(C) $(\overline{b}c - b\overline{a})(\overline{c}b - a\overline{b}) = (a\overline{a} - c\overline{c})^2$ (D) none of these

COMPREHENSION-10

Paragraph for Questions Nos. 132 to 134

8 players compete in a tournament, everyone plays everyone else just once. The winner of a game gets 1, the loser 0 or each gets $\frac{1}{2}$ if the game is drawn. The final result is that everyone gets a different score and the player playing placing second gets the same score as the total of four bottom players. Now answer the following questions:

132. The total of the player placing II was

(A) 6 (B) $6\frac{1}{2}$ (C) $5\frac{1}{2}$ (D) can't say

133. The result of the game between player placing III and player placing VII was

- (A) player III was the winner (B) player VII was the winner
- (C) the game ended in a drawn (D) can't say
- **134.** The total score of the top four players was
 - (A) 22 (B) 21 (C) 20 (D) 19

COMPREHENSION-11

Paragraph for Questions Nos. 135 to 137

Let z_1 , z_2 , z_3 be the complex number associated with vertices A, B, C of a triangle ABC which is circumscribed by the circle |z| = 1. Altitude through A meets the side BC and D and circum-circle at E. Let P be the image of E about BC and F be the image of E about origin.

Now answer the following questions:

135. The complex number of point P is

(A)
$$\frac{z_1 + z_2 + z_3}{3}$$
 (B) $\frac{2(z_1 + z_2 + z_3)}{3}$

(C)
$$z_1 + z_2 + z_3$$
 (D) none of these

136. The complex number of point E is

(A)
$$\frac{Z_1Z_2}{Z_3}$$
 (B) $\frac{Z_2Z_3}{Z_1}$
(C) $-\frac{Z_2Z_3}{Z_1}$ (D) $-\frac{Z_1Z_2}{Z_3}$

137. The distance of point C from F i.e. CF is equal to

(A)
$$|z_1 - z_2|$$
 (B) $|z_1 + z_2|$
(C) $\frac{|z_1 - z_3|}{2}$ (D) $\frac{|z_1 + z_3|}{2}$

COMPREHENSION-12

Paragraph for Questions Nos. 138 to 140

A complex number z = x + iy satisfies $arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{3}$. Then-

- 138. Locus of z is
 - (A) major arc of the circle minor arc of the circle (B) (C) circle having centre at origin (D) none of these
- 139. Radius of the circle given by above equation is

(A)
$$\frac{1}{\sqrt{3}}$$
 (B) $\frac{2}{\sqrt{3}}$
(C) $\sqrt{3}$ (D) 1

(C)
$$\sqrt{3}$$
 (D)

140. Maximum value of |z| satisfying the given equation is

(A)
$$\frac{2}{\sqrt{3}} + 1$$
 (B) $\frac{1}{\sqrt{3}} + 1$
(C) $\sqrt{3}$ (D) $\frac{4}{\sqrt{3}}$

SECTION-4: (MATRIX MATCH TYPE)

141. Match the following

Column I Column II

1 (A) The number of integral solutions of the equation x + 2y = 2xy is (p) (B) The number of real solutions of the system of equations (q) $x = \frac{2z^2}{1+z^2}, y = \frac{2x^2}{1+x^2}, z = \frac{2y^2}{1+y^2}$ 2

(C) If
$$a(y + z) = x$$
, $b(z + x) = y$, $c(x + y) = z$, where $a \neq -1$, $b \neq -1$,
 $c \neq -1$ admit non-trivial solutions, then $\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c}$ is
(r) 0

(D) The solutions number of of the equation (s) Infinite $\sqrt{3x^2 + 6x + 7} + \sqrt{5x^2 + 10x + 14} \le 4 - 2x - x^2$ is

142. Match the following

List – I	List – II
(A) $\arg\left(\frac{z+1}{z-1}\right) = \frac{\pi}{4}$	(i) parabola
(B) $z = \frac{3i-t}{2+it}$ $(t \in R)$	(ii) part of a circle
(C) $\arg z = \frac{\pi}{4}$	(iii) full circle
(D) $z = t + it^2 (t \in R)$	(iv) line

143. Match the following:

List – I	List – II
(A) If the roots of the equation $x^2 - 2ax + a^2 + a - 3 = 0$ are real and less than 3, then a is	(i) (0, 1]
(B) Let $f(x) = (1 + b^2)x^2 + 2bx + 1$ and let m(b) be the minimum value of $f(x)$. As b varies, then m(b) is	(ii) $\left[\frac{2+\sqrt{3}}{2}, \infty\right)$
(C) If a, b, $c \in R$ and equation $px^2 + qx + r = 0$ has two real	(iii) < 2
roots α and β such that $\alpha < -1$ and $\beta > 1$, then	
$\mathbf{x}^2 + \left \frac{\mathbf{q}}{\mathbf{p}} \right \mathbf{x} + \frac{\mathbf{r}}{\mathbf{p}}$ is	
(D) The set of values of a for which both the roots of the	(iv) < 0
equation $x^2 + (2a - 1)x + a = 0$ are positive is	

144. Match the following:

List – I	List – I
(A) If $ x^2 - x \ge x^2 + x$, then x	(i) $[0, \infty)$
(B) $ x + y > x - y$, where $x > 0$, then $y =$	(ii) (-∞, 0]
(C) If $\log_2 x \ge \log_3^{(x^2)}$, then x =	(iii) [−1, ∞)
(D) $[x] + 2 \ge x $ (where [.] denotes the greatest integer	(iv) (0, 1]
function)	

145. Match the following:

List – I	List – II
(A) If inequation $ax^2 - ax + 1 < 0 \forall x \in R$, then a	(i) [0, 4)
belongs to	
	(ii) [0, 3]
(B) If $x^3 - 3x + \frac{1}{2} = 0$ has three real and distinct	
root, then $ a $ belongs to	
(C) If $x^3 + ax^2 + x + 1 = 0$ has exactly one real root,	(iii) (0, 4)
then a ² may belongs to	
(D) If quadratic equation $x^2 - 3ax + a^2 - 9 = 0$ has	(iv) (-3, 3)
roots of opposite sign then a belongs to	

146. Match the following:

List – I	List – II
(A) 1 1 1 1 91 times	(i) is a prime
(B) $1.2.3n(n+1)(n3.2.1)$	(ii) is not a prime
(C) $10^{4n} + 10^{4(n-1)} \dots + 10^8 + 10^4 + 1, n \in \mathbb{N}$	(iii) is a perfect square integer
(D) 4 4 4 4 8 8 8 8 9 n times (n-1) times	(iv) is a perfect square of odd integer.

147. Match the following:

List – I	List – II
(A) The least value of $2\log_{100}^{a} - \log_{a}^{0.0001}$, $a > 1$ is	(i) 0
(B) If α , β are the roots of $6x^2 - 2x + 1 = 0$ and $S_n = \alpha^n + \beta^n$, the $\lim_{n \to \infty} \sum_{r=1}^n S_r$ is	(ii) 1
(C) If $x^2 - x + 1 = 0$, then the value of x^{3n} where n is even	(iii) 2
(D) The number of roots of the equation $x - \frac{10^2}{x-1} = 1 - \frac{10^2}{x-1}$ is	(iv) 3
	(v) 4

148. Match the following:

List –I	List-II
(A) $(x - 1)(x - 3) + k(x - 2)(x - 4) = 0$ (k \in R) has real	(i) $(-5, -1)$
roots for $k \in$	
(B) Range of the function $\frac{x-1}{x^2-k+1}$ does not contain	(ii) ¢
any value in the interval $[-1, 1]$ for $k \in$	
(C) The equation $x \in \left(0, \frac{\pi}{2}\right)$, secx + cosecx = k has real	(iii) $(-\infty, \infty)$
roots if $k \in$	
(D) The equation $x^2 + 2(k - 1)x + k + 5 = 0$ has roots	(iv) $[2\sqrt{2}, \infty)$
positive and distinct if $k \in$	

149. Match the following:

List – I	List – II
(A) Given positive rational numbers a, b, c such that $a + b + c = 1$, then $a^a b^b c^c + a^b b^c c^a + a^c b^a c^b$	(i) is equal to $-\frac{1}{2}(n-1)$
(B) If n is a positive integer ≥ 1 , then $\frac{3^n}{2^n + n \cdot 6^{\frac{n-1}{2}}}$	(ii) is equal to $\frac{2}{n}$
(C) If $n \in N > 1$, then sum of real part of roots of $z^n = (z + 1)^n$	$(iii) \le 1$
(D) If the quadratic equations $2x^2 + bx + 1 = 0$ and $4x^2 + ax + 1$ = 0 have a common root, then the value of $a^2 + 2b^2 - 3ab + 4$	$(iv) \ge 1$
$\frac{a + 2b - bab + 1}{n}, \text{ when } n \in \mathbb{N}$	

150. Match the following:

List – I	List – II
(A) If $a - b$, $ax - by$, $ax^2 - by^2$ ($a, b \neq 0$) are in G.P., then x, y, $\frac{ax - by}{a - b}$ are in	(i) A.P.
(B) If the slope of one of the lines represented by $a^3x^2 - 2hxy + b^3y^2 = 0$ be the square of the other, then ab^2 , h, a^2b are in	(ii) G.P.
(C) a, b, c, d are distinct positive numbers, then $\frac{a^n}{b^n} > \frac{c^n}{d^n}$ for	(iii) H.P.
(D) If a_1, a_2, a_3, \dots are in H.P. and $f(k) = \sum_{r=1}^{n} a_r - a_k$, then $\frac{a_1}{f(1)}, \frac{a_2}{f(2)}, \frac{a_3}{f(3)} \dots \frac{a_n}{f(n)}$ are in	

151. Match the following:

	List – I		List – II
(A)	If x, y, $z \in N$ then number of ordered triplet (x, y, z) satisfying $xyz = 243$ is	(i)	19
(B)	The number of terms in the expansion of $(x + y + z)^6$ is	(ii)	28
(C)	If $x \in N$, then number of solutions of $x^2 + x - 400 \le 0$ is	(iii)	21
(D)	If x, y, $z \in N$, then number of solution of $x + y + z = 10$	(iv)	36

152.

If $f(x) = x^3 + ax^2 + bx + c = 0$ has three distinct integral roots and $(x^2 + 2x + 2)^3 + a(x^2 + 2x + 2)^2 + b(x^2 + 2x + 2) + c = 0$ has no real roots then

(A) a =	(1) 0
(B) b =	(2) 2
(C) c =	(3) 3
(D) If the roots of $f'(x) = k$ are equal then $k =$	(4) -1

153. Match the following:

(A) The coefficient of x^{-15} in $\left(3x^2 + \frac{3^{-4/7}}{x^3}\right)^{10}$	(i)	41
(B) If $(1 - x + x^2)^4 = a_0 + a_1x + a_2x^2 + \dots + a_8x^8$, then $a_0 + a_2 + a_4 + a_6 + a_8$ is equal	(ii)	34
to (C) $(\sqrt{2}+1)^4 + (\sqrt{2}-1)^4$ is equal to	(iii)	40
(D) Coefficient of x^{11} in the expansion of	(iv)	32
$\frac{1}{6}(2x^2+x-3)^6$ is equal to		

Match the following: 154.

(A)	Locus of $ 2z - (\sqrt{3}i + 1) + 2z - (\sqrt{3}i - 1) = 2$	(i) two infinite line segments
(B)	Locus of $ z + i + z - i = 4$	(ii) ellipse

(C) Locus of ||z - i| - |z + i|| = 4(iii) line segment

(D) Locus of ||z + i| - |z - i|| = 2(iv) nothing on the plane Column – I

Column – II

(a) $\frac{5x+1}{(x+1)^2} < 1$ (b) |x| + |x-3| > 3(c) $x \in (-\infty, 0) \cup (0, 2) \cup (2, \infty)$ (c) $x \in (-\infty, -5) \cup (-3, 3) \cup (5, \infty)$

(c)
$$\frac{1}{|x|-3} < \frac{1}{2}$$
 (R) $x \in (-\infty, -1) \cup (-1, 0) \cup (3, \infty)$

(d)
$$\frac{x^4}{(x-2)^2} > 0$$
 (S) $x \in (-\infty, 0) \cup (3, \infty)$

156. Match the following :

Column - I

Column - II

(a) If $\frac{x(y+z-x)}{\log x} = \frac{y(z+x-y)}{\log y} = \frac{z(x+y-z)}{\log z}$ (P) 1

and a. x^{y} . $y^{x} = b.y^{z}$. $z^{y} = cz^{x}$. x^{z} , then $\frac{a+b}{c}$ equals

(b)
$$y = \frac{1}{10^{1-\log_{10} x}}, z = \frac{1}{10^{1-\log_{10} y}}$$
 implies $x = \frac{1}{10^{a+b\log_{10} z}},$ (Q) 2
than a – b equals

(c) If
$$a^2 + b^2 = c^2 \implies \log_{c+b} a + \log_{c-b} a = k \log_{c+b} a \log_{c-b} a$$
, (R) 3 then k equals

(d) If
$$b = \sqrt{ac}$$
 where $a > 0$, $c > 0 \& b \neq 1$ and (S) 0
if $\frac{\log_a N - \log_b N}{\log_b N - \log_c N} = k \cdot \log_a c$, then k equals

157. Match the following

Column – I

Column – II

(A) If $\log_{sinx} \log_3 \log_{0.2} x < 0$, then (p) $x \in [-1, 1]$

(B) If
$$\frac{(e^x - 1)(2x - 3)(x^2 + x + 2)}{(\sin x - 2)x(x + 1)} \le 0$$
, then (q) $x \in [-3, 6)$

(C) If
$$|2 - |[x] - 1|| \le 2$$
, then (r) $x \in \left(0, \frac{1}{125}\right)$

[.] represents greatest integer function.

(D) If
$$|\sin^{-1}(3x - 4x^3)| \le \frac{\pi}{2}$$
, then (s) $x \in (-\infty, -1) \cup \left[\frac{3}{2}, \infty\right]$

158	Match the column Column – I			Column – II			
	(A) $x x =$ (p)			$\begin{cases} -2x \\ 2 \\ 2x \end{cases}$: x < : −1≤: : x ≥	–1 x ≤ 1 ≥ 1	
	(B)	x – 1 + x + 1 =	(q)	$\begin{cases} -x^2 \\ x^2 \end{cases}$	$\begin{array}{ll} x \leq 0 \\ x > 0 \end{array}$		
	(C)	If $-1 \le x \le 2$, then $2x - \{x\} =$	(q)	$\begin{cases} -x & : & -1 \le x < 0 \\ 0 & : & 0 \le x < 1 \\ x & : & 1 \le x < 2 \end{cases}$			
	(D)	If $-1 \le x \le 2$, then $x[x] =$	(S)	$\begin{cases} x-1 \\ x \\ x+1 \end{cases}$: –1≤: : 0≤> : 1≤x	x < 0 < < 1 < 2	
159	Match	The column					
	Colum	n – I			Colum	n – II	
	(A)	Number of real solution of $a^2 + b^2 + c^2 = x^2$ is			(p)	2	
	(B)	The number of non-negative real roots of $2^{x} - x - 1 = 0$, equals			(q)	8	
	(C) Let p and q be the roots of the quadratic equation $x^2 - (\alpha - 2)x - \alpha - 1 = 0$. What is the minimum possible value of $p^2 + q^2$?				(r)	6	
	(D)	The value of 'c' for which $ \alpha^2 - \beta^2 = \frac{7}{4}$,			(s)	5	
		where α and β are the roots of 2x² + 7x + c = 0, i	S				
160.	Match	the column					
	Colum	n – I		Colum	n – II		
	(A)	Find all possible values of k for which every solution of the inequation $x^2 - (3k - 1)x + 2k^2 - 3k - 2 \ge 0$ also a solution of the inequation $x^2 - 1 \ge 0$.	on) is	(p)	16		
	 (B) If a, b, c and d are four positive real numbers such that abcd = 1, the minimum value of (1 + a) (1 + b) (1 + c) (1 + d) is 			(q)	[0, 1]		
	(C)	Solution set of the inequality $5^{x+2} > \left(\frac{1}{25}\right)^{1/x}$ is	i	(r)	<u>1</u> 6		
	(D)	Let $f(x) = x^3 + 3x + 1$ if $g(x)$ is the inverse function of $f(x)$. Then $g'(5)$ equal to	l	(S)	(0, ∞)		

	Column – I C					Column – II	
	(A)	Suppose that $F(n + 1) = \frac{2 F(n) + 1}{2}$ for	(p)	42			
		n = 1, 2, 3, and F(1) = 2. Then F(101	1, 2, 3, and F(1) = 2. Then F(101) equals				
	(B)	If a_1 , a_2 , a_3 , a_{21} are in A.P. and			(q)	1620	
	(C) $a_3 + a_5 + a_{11} + a_{17} + a_{19} = 10$ then the value of $\sum_{i=1}^{21} a_i$ is (C) 10^{th} term of the sequence S = 1 + 5 + 13 + 29 +, is						
					(r)	52	
	(D)	The sum of all two digit numbers which by 2 or 3 is	are not	divisible	(s)	2045	
162.	Match t Colum	the column n – I			Colum	n – II	
	(A)	The arithmetic mean of two numbers is	6 and th	neir	(p)	$\frac{240}{77}$	
		geometric mean G and harmonic mean the relation $G^2 + 3 H = 48$. Find the two	H satist numbe	fy rs.			
	(B)	The sum of the series $\frac{5}{1^2 \cdot 4^2} + \frac{11}{4^2 \cdot 7^2}$	+ $\frac{17}{7^2.10}$	2 + is.	(q)	(4,8)	
	(C)	If the first two terms of a Harmonic Progr	ession b	$e \frac{1}{2} and \frac{1}{3}$,	(r)	$\frac{1}{3}$	
163.	Match t	then the Harmonic Mean of the first four t he column	erms is	Column II			
	Colum	n – 1		Column – II			
	(A)	${}^{m}C_{1} {}^{n}C_{m} - {}^{m}C_{2} {}^{2n}C_{m} + {}^{m}C_{3} {}^{3n}C_{m} \dots$	(p)	coefficient of x^r $((1 +)^n - 1)^m$	ⁿ in the e	expansion of	
	(B)	${}^{n}C_{m} + {}^{n-1}C_{m} + {}^{n-2}C_{m} + \dots + {}^{m}C_{m}$	(q)	coefficient of x ^r	ⁿ in (1+	$\frac{(x)^{n+1}}{x}$	
	(C)	$C_0 C_n + C_1 C_{n-1} + \dots + C_n C_0$	(r)	coefficient of x ¹	[•] in (1 +	x) ²ⁿ	
	(D)	$2^{k} {}^{n}C_{0} - 2^{k-1} {}^{n}C_{1} {}^{n-1}C_{k-1}$ (-1) ^k {}^{n}C_{k} {}^{n-k}C_{0}	(s)	coefficient of x	^k in the e	exp. of (1 + x) ⁿ	

164.	Match Colum	the column n – I	Column – II		
	(A) The number of distinct terms in the (p) expansion of $(x_1 + x_2 + x_3 + \dots + x_n)^3$ is				
	(B)	The number of Integral terms in ther expansion of $[5^{1/2} + 7^{1/8}]^{1024}$	(q)	^{n + 2} C ₃	
	(C)	Degree of polynomial $[x + (x^3 - 1)^{1/2}]^5 + [x - (x^3 - 1)^{1/2}]^5$ is	(r)	129	
	(D) Coefficients of the second, third and fourth (s) terms in the expansion of $(1 + x)^n$ are in A.P. the n is equal to				
165.	Colum	n – I		Colum	n – II
	(A)	If $(r + 1)$ th term is the first negative term in the expansion of $(1 + x)^{7/2}$, then the value of r (where $ x < 1$) is		(p)	divisible by 2
	(B)	(q)	divisible by 5		
	(C) If the second term in the expansion $\left(a^{\frac{1}{13}} + \frac{a}{\sqrt{a^{-1}}}\right)^n$ is 14a ^{5/2} ,				divisible by 10
		then the value of n is			
	(D) The coefficient of x^4 in the expression $(1 + 2x + 3x^2 + 4x^3 + \dots up \text{ to } \infty)^{1/2}$ is c, (c \in N), then c + 1 (where x < 1) is				a prime number
166.	Match	the following :			
		Column - I		Colum	n - II
	 (a) The number of cubes with the six faces numbered 1 to 6 can be made, if the sum of the number in each pair of opposite faces is 7, is equal to (b) A citizen is expected to vote for atleast one of three positions mayor, secretary and attorney. The number of ways he/she can vote if there are 3 candidates each for three position, is 9 k where k is (c) The number of ways in which 4 married couples can be seated at a round table if no husband and wife as well as no two men are to seat together is 3 k where k is 			(P)	2
			f r three	(Q)	4
			e as	(R)	3
	(d) The sum of all numbers of the form $\frac{12!}{a!b!c!}$ where k is				7

167. Match the following :

		Column - I		Colum	ın - II	
	(a)	The number of five - digit numbers having the product of digits 20 is		(P)	77	
	(b)	A man took 5 space plays out of an engine to clean them. The number of ways in which he can place atleast two plays in the engine from where they came out is		(Q)	31	
	(C)	The number of integer between 1 & 1000 inclusive in which atleast two consecutive digits are equal is		(R)	50	
	(d)	The value of $\frac{1}{15} \sum_{1 \le i \le j \le 9} i \cdot j$		(S)	181	
168.	Match	the following :				
	Colun	ın - I	Colum	n - II		
	(A)	The number of arrangements that can be made taking 4 letters, at a time, out of the letters of the word "PASSPORT" is :	(p)	2454		
	(B)	The numberof ways of forming a 4 letter word using the letters of the word MATHEMATICS, is	(q)	606		
	(C)	The number of selections of four letters from the letters of the word ASSASSINATION is	(r)	72		
	(D)	The total number of ways of selecting five letters from the letter of the words INDEPENDENT is	(s)	2424		
169.	Colum	Column – I			ın – II	
	(A)	The total number of selections of fruits which can be mad from, 3 bananas, 4 apples and 2 oranges is	e	(p)	Greater than 50	
	(B)	(B) If 7 points out of 12 are in the same straight line, then the number of triangles formed is		(q)	Greater than 100	
	(C)	The number of ways of selecting 10 balls from unlimited number of red, black, white and green balls is		(r)	Greater than 150	
	(D)	The total number of proper divisors of 38808 is		(s)	Greater than 200	

170.	Column – I				
	(A)	Number of 4 letter words that can be formed using the letter of the words 'RESONANCE' is	(p)	<u>11!</u> 3!	
	(B)	Number of ways of selecting 3 persons out of 12 sitting in a row, if no two selected persons were sitting together, is	(q)	1206	
	(C)	Number of solutions of the equation x + y + z = 20, where $1 \le x < y < z$ and x, y, z \in I, is	(r)	24	
	(D)	Number of ways in which indian team can bat, if Yuvraj wants to bat before Dhoni and Pathan wants to bat after Dhoni is (assume all the batsman bat)	(S)	120	

SECTION5: (INTEGER TYPE)

- **171.** In a class tournament where the participants were to play one game with another, two class players fell ill, having played 3 games each. If the total number of games played is 84, then the number of participants at the beginning is ______
- **172.** If $|z|^2 + (3 4i)z + (3 + 4i)\overline{z} + 75 = 0$ and $(1 i)z + (1 + i)\overline{z} 16 = 0$ intersect at z_1 and z_2 , then the integral part of the sum of the areas of the quadrilaterals having $(z_1 + z_2)$ and $(z_1 z_2)$ as diagonals passing through origin is ______ (Two vertices of 1st quadrilateral are z_1 and z_2 and of 2nd quadrilateral are z_1 and $-z_2$).

173. If x = 1.2 $(2^2 - 1^2) + 2.3 (3^2 - 2^2) + 3.4 (4^2 - 3^2) + \dots$ upto 50 terms, then the value of $\frac{X}{51^3}$ is _____

- **174.** If α is the absolute maximum value of the expression $\frac{3x^2 + 2x 1}{x^2 + x + 1} \quad \forall x \in \mathbb{R}$, then [α]is _____, (where [.] denotes the greatest integer function)
- **175.** The number of solutions of the equation $e^{|x|} = |x| + 1$ is _____
- **176.** The value of x satisfying the equations $\log_3(\log_2 x) + \log_{1/3}(\log_{1/2} y) = 1$; $xy^2 = 9$ is_____
- **177.** If there are six letters $L_1, L_2, L_3, L_4, L_5, L_6$ and their corresponding six envelopes $E_1, E_2, E_3, E_4, E_5, E_6$. Letters having odd value can be put into odd value envelopes and even value letter can be put into even value envelopes, so that no letter go into the right envelopes, the number of arrangement will be equal to ______
- **178.** The number of integral values of a ; $a \in (6, 100)$ for which the equation $[\tan x]^2 + \tan x a = 0$ has real roots; where [.] denotes greatest integer function is _____
- **179.** If the co-efficient of rth, (r+1)th and (r + 2)th terms in the expansion of $(1 + x)^{14}$ are in A.P. then the greatest possible value of r is _____
- **180.** The remainder when $(3m + (-1)^n)^{18}$ is divided by 9 is _____ (m, n are natural numbers).
- **181.** The numbers of five digits that can be made with the digits 1, 2, 3 each of which can be used at most thrice in a number, is ______
- 182. The number of TIMES the digit 0 will be written when listing of the integers from 1 to 100 is _____
- 183. If 6-digit number abcdef is multiplied with 6 and the resulting number is defabc. The number is
- **184.** If $f: \{a, b, c, d, e\} \rightarrow \{a, b, c, d, e\}$ f is onto and f(x) + x for each $x \in \{a, b, c, d, e\}$ is equal to _____.
- **185.** The number of real solutions of the equation $x^6 x^5 + x^4 x^3 + x^2 x + \frac{3}{4} = 0$ is ______
- **186.** The number of ordered triplets (a, b, c) such that L.C.M (a, b) = 1000, L.C.M (b, c) = 2000 and L.C.M (c, a) = 2000 is _____
- **187.** If the number of ordered pairs of (x, y) satisfying the system of equations $5x\left(1+\frac{1}{x^2+y^2}\right) = 12$ and

$$5y\left(1-\frac{1}{x^2+y^2}\right) = 4$$
 is n, then n is ------

188. Consider the sequence a_n given by $a_1 = \frac{1}{3}$, $a_{n+1} = a_n^2 + a_n$. Let $S = \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_{2008}}$, then [S] is equal to ______ (where [] represents greatest integer function)

- **189.** Let (x_i, y_i) where i = 1, 2, 3, 4 are the integral solutions of equation $2x^2y^2 + y^2 6x^2 12 = 0$. The area of quadrilateral whose vertices are (x_i, y_i) , i = 1, 2, 3, 4 is _____
- **190.** In the expansion of $(a^{1/3} + b^{1/9})^{6561}$, where a, b are distinct prime numbers, then the number of irrational terms are _____
- **191.** If $(1 + 2x + 3x^2)^{10} = a_0 + a_1x + a_2x^2 + \dots + a_{20}x^{20}$, then calculate $a_1 + a_2 + a_4$
- **192.** Given that a, g are roots of the equation, $A x^2 4 x + 1 = 0$ and b, d the roots of the equation, $B x^2 6 x + 1 = 0$, find values of A *B, such that a, b, g & d are in H.P.
- 193. In maths paper there is a question on "Match the column" in which column A contains 6 entries & each entry of column A corresponds to exactly one of the 6 entries given in column B written randomly. 2 marks are awarded for each correct matching & 1 mark is deducted from each incorrect matching. A student having no subjective knowledge decides to match all the 6 entries randomly. Find the number of ways in which he can answer, to get atleast 25 % marks in this question.
- **194.** Find the number of positive integral solutions of, $x^2 y^2 = 352706$

195. Find the nonzero value of 'x ' for which the fourth term in the expansion $\left(5^{\frac{2}{5}\log_5\sqrt{4^x+44}} + \frac{1}{5^{\log_5\sqrt[3]{2^{x-1}+7}}}\right)^{\circ}$,

is 336.

- **196.** In the binomial expansion of $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$, the ratio of the 7th term from the beginning to the 7th term from the end is 1 : 6 ; find n.
- **197.** Find the coefficient of $a^5 b^4 c^7$ in the expansion of $(bc + ca + ab)^8$.
- **198.** Find the number of positive integral solutions of xyz = 21600
- **199.** Find the value of 8k for which the expression $3x^2 + 2xy + y^2 + 4x + y + k$ can be resolved into two linear factors.
- **200.** How many five digits numbers divisible by 3 can be formed using the digits 0, 1, 2, 3, 4, 7 and 8 if, each digit is to be used atmost one.

END OF EXERCISE # 01

	Answer Key						
Qs.	Ans.	Qs.	Ans.	Qs.	Ans.	Qs.	Ans.
1	А	51	AB	101	AD	151	A-(iii), B-(ii), C-(i), D-(iv)
2	С	52	AC	102	CD	152	A-(3), B-(2), C-(1), D-(4)
3	С	53	BD	103	ACD	153	A-(iii), B-(i), C-(ii), D-(iv)
4		54	ABCD	104	AB	154	A-(iii), B-(ii), C-(iv), D-(i)
5	С	55	BD	105	С	155	A-(R), B-(S), C-(Q), D-(P)
6	С	56	AC	106	С	156	A-(Q), B-(Q), C-(Q), D-(P)
7	С	57	ABC	107	В	157	A-(r), B-(s), C-(q), D-(p)
8	С	58	AB	108	С	158	A-(q), B-(p), C-(s), D-(r)
9	D	59	ABCD	109	В	159	A-(q), B-(p), C-(s), D-(r)
10	Α	60	AB	110	А	160	A-(q), B-(p), C-(s), D-(r)
11	С	61	BD	111	С	161	A-(r), B-(p), C-(s), D-(q)
12	Α	62	ABCD	112	D	162	A-(q), B-(r), C-(p)
13	С	63	CD	113	А	163	A-(p), B-(q), C-(r), D-(s)
14	Α	64	ABCD	114	D	164	A-(q), B-(r), C-(s), D-(s)
15	D	65	AC	115	С	165	A-(q,s), B-(p,q,r), C-(p), D-(p,s)
16	В	66	ABC	116	D	166	A-(P), B-(S), C-(Q), D-(Q)
17	Α	67	ABCD	117	В	167	A-(R), B-(Q), C-(S), D-(P)
18	В	68	ABC	118	С	168	A-(q), B-(p), C-(r), D-(r)
19	В	69	BC	119	С	169	A-(p), B-(p,q,r), C-(p,q,r,s), D-(p)
20	Α	70	AC	120	D	170	A-(q), B-(s), C-(r), D-(p)
21	D	71	ABCD	121	А	171	15
22	С	72	AC	122	А	172	52
23	В	73	BC	123	А	173	50
24	D	74	BCD	124	С	174	3
25	С	75	ABD	125	D	175	1
26	В	76	ABC	126	D	176	729
27	А	77	ABC	127	А	177	4
28	В	78	ABC	128	С	178	7
29	С	79	BD	129	В	179	9
30	В	80		130	В	180	1
31	В	81	CD	131	С	181	210
32	Α	82	ABCD	132	А	182	192
33	Α	83	AB	133	A	183	142857
34	В	84	ACD	134	А	184	44
35	С	85	AC	135	С	185	0
36	В	86	AD	136	С	186	70
37	Α	87	ABCD	137	A	187	(2, 1) or (2/5, -1/5)
38	Α	88	ABCD	138	А	188	4
39	D	89	BC	139	В	189	16
40	В	90	AB	140	С	190	730
41	В	91	ABCD	141	A-(q), B-(q), C-(q), D-(p)	191	8315
42	С	92	ABCD	142	A-(ii), B-(iii), C-(iv), D-(i)	192	24
43	В	93	BC	143	A-(iii), B-(i), C-(iv), D-(ii)	193	40
44	D	94	AD	144	A-(ii), B-(i), C-(iv), D-(iii)	194	0
45	С	95	AD	145	A-(iii), B-(i), C-(ii), D-(iv)	195	1
46	D	96	AC	146	A-(ii), B-(iv), C-(ii), D-(iv)	196	n=9
47	С	97	BD	147	A-(v), B-(i), C-(ii), D-(i)	197	280
48		98	BCD	148	A-(iii), B-(ii), C-(iv), D-(i)	198	1260
49	С	99	CD	149	A-(iii), B-(iv), C-(i), D-(ii)	199	11
50	D	100	ABC	150	A-(I),(ii), B-(i), C-(iii), D-(iii)	200	744