CHAPTER-4 ANALYTICAL CHEMISTRY

Revision Notes

Qualitative analysis is carried out with the help of reagents. A reagent is a substance that reacts with another substance. Alkalis such as NaOH, KOH, NH₄OH are important laboratory reagents. These alkalis give characteristic tests with various metal ions from which these metal ions can be identified.

> Colour of the Salts and Their Solutions:

The salts of normal elements, i.e., the elements of group 1, 2 and 13 to 17 are generally colourless. Salts of transition elements, i.e., the elements of group 3 to 12 are generally coloured.

Colourless Ions				
Cation	Symbol	Colour		
Ammonium ion	NH ₄ ⁺			
Sodium ion	Na ⁺			
Potassium ion	K+			
Calcium ion	Ca ²⁺			
Magnesium ion	Mg ²⁺			
Aluminium ion	Al ³⁺			
Lead ion	Pb ²⁺			
Zinc ion	Zn ²⁺			
Cupric ion	Cu ²⁺	Blue		
Ferrous ion	Fe ²⁺	Light green		
Ferric ion	Fe ³⁺	Yellow/brown		
Nickel ion	Ni ²⁺	Green		
Chromium ion	Cr ³⁺	Green		
Manganese ion	Mn ²⁺	Pink		

Colourless ions	Symbol	Coloured ions	Symbol	Colour
Chloride ion	Cl-	Permanganate ion	MnO_4^-	Pink or Purple
Sulphate ion	SO ₄ ²⁻			
Carbonate ion	CO ₃ ^{2–}	Dichromate ion	Cr ₂ O ₇ ²⁻	Orange
Nitrate ion	NO ₃			
Hydride ion	H-	Chromate ion	CrO4 ²⁻	Yellow
Bicarbonate ion	HCO ₃			
Sulphide ion	S ²⁻			
Bromide ion	Br-			
Acetate ion	CH ₃ COO-			

> Action of Sodium hydroxide (NaOH) with solution of salts of metals:

Ion	Salt (Colour)	Reaction	Precipitate formed	Colour of the precipitate	Solubility of the precipitate in an excess of NH ₄ OH
Mg ²⁺	MgSO ₄ (Magnesium sulphate) (White)	$MgSO_4 + 2NaOH \rightarrow Mg(OH)_2 \downarrow + Na_2SO_4$	Mg(OH) ₂ (Magnesium hydroxide)	White	Insoluble
Fe ²⁺	FeSO ₄ (Ferrous sulphate) (Green)	$FeSO_4$ +2NaOH → $Fe(OH)_2$ ↓ +Na ₂ SO ₄	Fe(OH) ₂ (Ferrous hydroxide or Iron (II) hydroxide)	Dirty green	Insoluble
Fe ³⁺	FeCl ₃ (Ferric chloride) (Brown)	FeCl ₃ +3NaOH → Fe(OH) ₃ ↓ +3NaCl	Fe(OH) ₃ (Ferric hydroxide or Iron (III) hydroxide)	Reddish brown	Insoluble
Cu ²⁺	CuSO ₄ (Copper sulphate) (Blue)	$CuSO_4+2NaOH →$ $Cu(OH)_2 \downarrow +Na_2SO_4$	Zn(OH) ₂ (Zinc hydroxide)	Pale blue	Soluble
Zn ²⁺	ZnSO ₄ (Zinc sulphate) (Colourless)	$\begin{array}{c} ZnSO_4+2NaOH \rightarrow \\ Zn(OH)_2 \downarrow +Na_2SO_4 \\ Zn(OH)_2+2NaOH \rightarrow \\ (Excess) \\ Na_2ZnO_2+2H_2O \\ Sodium zincate \\ (Soluble) \end{array}$	Zn(OH) ₂ (Zinc hydroxide)	White gelatinous	Soluble
Pb ²⁺	Pb(NO ₃) ₂ (Lead nitrate) (Colourless)	$\begin{array}{l} Pb(NO_3)_2 + 2NaOH \rightarrow \\ Pb(OH)_2 \downarrow + 2NaNO_3 \\ Pb(OH)_2 + 2NaOH \rightarrow \\ (Excess) \\ Na_2 PbO_2 \downarrow + 2H_2O \\ Sodium plumbite \\ (Soluble) \end{array}$	Pb(OH) ₂ (Lead (II) hydroxide)	Chalky White	Soluble

Ca ²⁺	Ca(NO ₃) ₂	$Ca(NO_3)_2$ +2NaOH →	Ca(OH) ₂	White	Sparingly
	(Calcium nitrate) (Colourless)	$Ca(OH)_2 \downarrow +2NaNO_3$	(Calcium hydroxide)		Soluble

$\succ~$ Action of Ammonium hydroxide (NH4OH) with solution of salts:

Ion	Salt (Colour)	Reaction	Precipitate formed	Colour of the precipitate	Solubility of the precipitate in an excess of NH ₄ OH
Mg ²⁺	MgCl ₂ (Magnesium chloride) (White)	$MgCl_2$ +2NH ₄ OH → $Mg(OH)_2$ ↓ +2NH ₄ Cl	Mg(OH) ₂ (Magnesium hydroxide)	White	Insoluble
Fe ²⁺	FeSO ₄ (Iron (II) sulphate) (Green)	$FeSO_4 + 2NH_4OH \rightarrow Fe(OH)_2 \downarrow + (NH_4)_2SO_4$	Fe(OH) ₂ (Iron (II) hydroxide)	Dirty green	Insoluble
Fe ³⁺	FeCl ₃ (Iron (III) chloride) (Brown)	$\text{FeCl}_3 + 3\text{NH}_4\text{OH} \rightarrow \text{Fe}(\text{OH})_3 \downarrow + 3\text{NH}_4\text{Cl}$	Fe(OH) ₃ Iron (III) hydroxide)	Reddish brown	Insoluble
Cu ²⁺	CuSO ₄ (Copper sulphate) (Blue)	$\begin{aligned} & \text{CuSO}_4 + 2\text{NH}_4\text{OH} \rightarrow \text{Cu}(\text{OH})_2 \downarrow + (\text{NH}_4)_2\text{SO}_4 \\ & \text{Cu}(\text{OH})_2 + (\text{NH}_4)_2\text{SO}_4 + 2\text{NH}_4\text{OH} \rightarrow \\ & \text{[Cu}(\text{NH}_3)_4\text{] SO}_4 + 4\text{H}_2\text{O} \text{ (Excess)} \end{aligned}$	Cu(OH) ₂ (Copper (II) hydroxide) Tetraammine copper (II) sulphate	Pale blue Deep blue solution	Soluble
Zn ²⁺	ZnSO ₄ (Zinc sulphate) (Colourless)	$\begin{split} &ZnSO_4 + 2NH_4OH \rightarrow Zn(OH)_2 \downarrow + (NH_4)_2SO_4 \\ &Zn(OH)_2 + (NH_4)_2SO_4 + 2NH_4OH \rightarrow \\ &[Zn(NH_3)_4]SO_4 + 4H_2O \ (Excess) \end{split}$	Zn(OH) ₂ (Zinc(II) hydroxide) Tetraammine zinc(II) sulphate	White gelatinous colourless solution	Soluble (Soluble)
Pb ²⁺	Pb(NO ₃) ₂ (Lead (II) nitrate) (white)	$Pb(NO_3)_2$ +2NH ₄ OH → $Pb(OH)_2$ ↓+2NH ₄ NO ₃	Pb(OH) ₂ (Lead(II) hydroxide)	Chalky White	Soluble

> Action of Sodium hydroxide (NaOH) with zinc, aluminium and lead (action of alkalis on metals):

$$Zn + 2NaOH \xrightarrow{\Delta} Na_2ZnO_2 + H_2$$

Sodium zincate
(colourless)

$$2AI + 2NaOH + 2H_2O \xrightarrow{\Delta} 2NaAIO_2 + 3H_2$$

Sodium meta-alum in ate
(colourless)

$$Pb + 2NaOH \xrightarrow{\Delta} Na_2PbO_2 + H_2$$

$$Pb + 2NaOH \xrightarrow{a} Na_2PbO_2 + H_2$$

Conc. Sodium
Plumbite
(colourless)

Similarly, we can write reactions with potassium hydroxide (KOH).

> Action of alkalis on amphoteric metal oxides / metal hydroxides (Action with sodium hydroxide (NaOH):

Similarly, we can write reactions with KOH.

⊙= Key Words

- > Analysis: Involves the determination of chemical components present in a given sample in case of chemistry.
- Analytical chemistry: A branch of chemistry which deals with the experimental study of sample by qualitative as well as quantitative means.
- Qualitative analysis: Deals with the identification of unknown substances in a given sample by chemical tests.
- > Quantitative analysis: Deals with the determination of composition of a mixture.
- Precipitation: It is the process of formation of an insoluble solid substance in water by mixing which is called precipitate.
- Reagent: It is a substance which reacts with another substance.

🛇 🗝 Key Terms

- When the sodium hydroxide solution is added drop by drop to the solution of metallic salts, the metal hydroxide formed gets precipitated.
- > Colour of the precipitate identifies the specific metal ion.
- When ammonium hydroxide solution is added drop-wise to the solutions of metallic salts, precipitates of their hydroxides are formed, which are identified by their distinct colours.
- Some precipitated metallic hydroxides are soluble in excess of NH₄OH due to the formation of soluble amino compounds on further reaction with excess of NH₄OH.
- Certain metals like Zn, Al and Pb react with hot concentrated caustic alkalis (NaOH or KOH) to form the corresponding soluble salt and liberate hydrogen.
- Amphoteric oxides and hydroxides are those compounds which react with both acids and alkalis to form salt and water.