(A) Its Mol. wt. RACE # 17 PHYSICAL CHEMISTRY | | | | | MAX. TIME : 60 Min | |----|---|--|---|-------------------------------------| | 1. | Calculate 'n' factor of following acids - | | | | | | (i) HCl | (ii) H ₃ PO ₂ | (iii) H ₃ PO ₃ | (iv) H ₃ PO ₄ | | | (v) HCOOH | (vi) HNO ₂ | (vii) $H_4P_2O_7$ | (viii) CO ₂ | | | (ix) SO ₃ | $(x) N_2O_5$ | | | | 2. | Calculate 'n' factor of following bases - | | | | | | (i) Mn(OH) ₂ | (ii) Al(OH) ₃ | (iii) NH ₄ OH | (iv) Zn(OH) ₂ | | | (v) Sr(OH) ₂ | (vi) NH ₃ | (vii) Na ₂ O | (viii) MgO | | | (ix) K ₂ O | $(x) Al_2O_3$ | | | | 3. | Calculating n-factor of the following as oxidising agent - | | | | | | (i) $Cr_2O_7^{2-}$ | (ii) CrO_4^{2-} | (iii) H_2O_2 | (iv) O ₃ | | | (v) CH ₄ (In combustion reaction) | | (vi) C ₃ H ₈ (In combustion reaction) | | | | (vii) F_2 (viii) MnO_4^- (basic medium) | | | | | | (ix) HNO ₃ (conv | erting into N ₂ O) | | | | | (x) $\mathrm{Cl_2O_5}$ (converting into Cl -) | | | | | 4. | Calculate n-factor of the following as reducing agent | | | | | | (i) $H_2C_2O_4$ | | (ii) $Na_2C_2O_4$ | | | | (iii) $\mathrm{H_2C_2O_4}$. $\mathrm{KHC_2O_4}$ | | (iv) FeC_2O_4 | | | | (v) $\mathrm{H_2C_2O_4.2NaHC_2O_4.2H_2O}$ | | (vi) H_2O_2 | | | | (vii) HCl | | (viii) KNO_2 | | | | (ix) Na ₂ S ₂ O ₃ (in the change : S ₂ O ₃ ²⁻ \rightarrow S ₄ O ₆ ²⁻) | | | | | | (x) $Na_2S_2O_3$ (in | the change : $S_2O_3^{2-} \rightarrow$ | SO_4^{2-}) | | | 5. | Equivalent weight of NH_3 in the change $N_2 \rightarrow NH_3$ is: | | | | | | (A) $\frac{17}{6}$ | (B) 17 | (C) $\frac{17}{2}$ | (D) $\frac{17}{3}$ | | 6. | In the reaction, $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-$, the eq. wt. of $Na_2S_2O_3$ is equal to its : | | | | | | (A) Mol. wt. | (B) Mol. wt./2 | (C) 2 x Mol. wt. | (D) Mol. wt./6 | | 7. | In the reaction, VO + $Fe_2O_3 \rightarrow FeO + V_2O_5$, the eq. wt. of V_2O_5 is equal to its : | | | | | | (A) Mol. wt. | (B) Mol. wt./8 | (C) Mol .wt./6 | (D) Mol. wt./2 | | 8. | The eq. wt. of iodine in, $I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$ is: | | | | | | | | | | PHYSICAL /R # 17 E-1 /2 (C) Mol. wt./4 (D) None of these (B) Mol. wt./2 9. Molecular weight of KBrO₃ is M. What is its equivalent weight, if the reaction is: $BrO_3^- \rightarrow Br^-$ (acidic medium) - (A) M - (B) M/4 - (C) M/6 - (D) 6M - 10. In the reaction : $A^{-n_2} + xe^- \rightarrow A^{-n_1}$, here x will be - $(A) n_1 + n_2$ - (B) $n_2 n_1$ - (C) $n_1 n_2$ - (D) $n_1 \cdot n_2$ - 11. The equivalent weight of Na₂S₂O₃ as reductant in the reaction, $Na_2S_2O_3+H_2O+Cl_2 \rightarrow Na_2SO_4+2HCl+S$ is : - (A) (Mol. wt.)/1 - (B) (Mol. wt.)/2 - (C) (Mol. wt.)/6 - (D) (Mol. wt.)/8 - **12.** In a reaction 4 mole of electrons are transferred to one mole of HNO₃ when it acts as an oxidant. The possible reduction product is : - (A) (1/2) mole N_2 - (B) (1/2) mole N₂O - (C) 1 mole of NO, - (D) 1 mole NH₃ - 13. The equivalent weight of MnSO₄ is half of its molecular weight when it is converted to :- - $(A) Mn_2O_3$ - (B) MnO, - (C) MnO₄ - (D) MnO_4^{-2} **14.** $Cr_2O_7^{-2} + I^- + H^+ \rightarrow Cr^{+3} + I_2 + H_2O$ The equivalent weight of the reductant in the above equation is :- (At. wt. of Cr=52, I=127) - (A) 26 - (B) 127 - (C) 63.5 - (D) 10.4 PHYSICAL /R # 17