(A) Its Mol. wt.

RACE # 17 PHYSICAL CHEMISTRY

				MAX. TIME : 60 Min
1.	Calculate 'n' factor of following acids -			
	(i) HCl	(ii) H ₃ PO ₂	(iii) H ₃ PO ₃	(iv) H ₃ PO ₄
	(v) HCOOH	(vi) HNO ₂	(vii) $H_4P_2O_7$	(viii) CO ₂
	(ix) SO ₃	$(x) N_2O_5$		
2.	Calculate 'n' factor of following bases -			
	(i) Mn(OH) ₂	(ii) Al(OH) ₃	(iii) NH ₄ OH	(iv) Zn(OH) ₂
	(v) Sr(OH) ₂	(vi) NH ₃	(vii) Na ₂ O	(viii) MgO
	(ix) K ₂ O	$(x) Al_2O_3$		
3.	Calculating n-factor of the following as oxidising agent -			
	(i) $Cr_2O_7^{2-}$	(ii) CrO_4^{2-}	(iii) H_2O_2	(iv) O ₃
	(v) CH ₄ (In combustion reaction)		(vi) C ₃ H ₈ (In combustion reaction)	
	(vii) F_2 (viii) MnO_4^- (basic medium)			
	(ix) HNO ₃ (conv	erting into N ₂ O)		
	(x) $\mathrm{Cl_2O_5}$ (converting into Cl -)			
4.	Calculate n-factor of the following as reducing agent			
	(i) $H_2C_2O_4$		(ii) $Na_2C_2O_4$	
	(iii) $\mathrm{H_2C_2O_4}$. $\mathrm{KHC_2O_4}$		(iv) FeC_2O_4	
	(v) $\mathrm{H_2C_2O_4.2NaHC_2O_4.2H_2O}$		(vi) H_2O_2	
	(vii) HCl		(viii) KNO_2	
	(ix) Na ₂ S ₂ O ₃ (in the change : S ₂ O ₃ ²⁻ \rightarrow S ₄ O ₆ ²⁻)			
	(x) $Na_2S_2O_3$ (in	the change : $S_2O_3^{2-} \rightarrow$	SO_4^{2-})	
5.	Equivalent weight of NH_3 in the change $N_2 \rightarrow NH_3$ is:			
	(A) $\frac{17}{6}$	(B) 17	(C) $\frac{17}{2}$	(D) $\frac{17}{3}$
6.	In the reaction, $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-$, the eq. wt. of $Na_2S_2O_3$ is equal to its :			
	(A) Mol. wt.	(B) Mol. wt./2	(C) 2 x Mol. wt.	(D) Mol. wt./6
7.	In the reaction, VO + $Fe_2O_3 \rightarrow FeO + V_2O_5$, the eq. wt. of V_2O_5 is equal to its :			
	(A) Mol. wt.	(B) Mol. wt./8	(C) Mol .wt./6	(D) Mol. wt./2
8.	The eq. wt. of iodine in, $I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$ is:			

PHYSICAL /R # 17 E-1 /2

(C) Mol. wt./4

(D) None of these

(B) Mol. wt./2

9. Molecular weight of KBrO₃ is M. What is its equivalent weight, if the reaction is:

 $BrO_3^- \rightarrow Br^-$ (acidic medium)

- (A) M
- (B) M/4
- (C) M/6
- (D) 6M

- 10. In the reaction : $A^{-n_2} + xe^- \rightarrow A^{-n_1}$, here x will be
 - $(A) n_1 + n_2$
- (B) $n_2 n_1$
- (C) $n_1 n_2$
- (D) $n_1 \cdot n_2$
- 11. The equivalent weight of Na₂S₂O₃ as reductant in the reaction,

 $Na_2S_2O_3+H_2O+Cl_2 \rightarrow Na_2SO_4+2HCl+S$ is :

- (A) (Mol. wt.)/1
- (B) (Mol. wt.)/2
- (C) (Mol. wt.)/6
- (D) (Mol. wt.)/8
- **12.** In a reaction 4 mole of electrons are transferred to one mole of HNO₃ when it acts as an oxidant. The possible reduction product is :
 - (A) (1/2) mole N_2
- (B) (1/2) mole N₂O
- (C) 1 mole of NO,
- (D) 1 mole NH₃
- 13. The equivalent weight of MnSO₄ is half of its molecular weight when it is converted to :-
 - $(A) Mn_2O_3$
- (B) MnO,
- (C) MnO₄
- (D) MnO_4^{-2}

14. $Cr_2O_7^{-2} + I^- + H^+ \rightarrow Cr^{+3} + I_2 + H_2O$

The equivalent weight of the reductant in the above equation is :- (At. wt. of Cr=52, I=127)

- (A) 26
- (B) 127
- (C) 63.5
- (D) 10.4

PHYSICAL /R # 17