Coordinate Geometry

- 1. The distance between the point (a,b),(-a,-b) is
 - (a) $2\sqrt{a^2+b^2}$
 - (b) $2\sqrt{a^2-b^2}$
 - $(c)\sqrt{a^2+b^2}$
 - $(d) \sqrt{a+b}$
 - Ans. $2\sqrt{a^2+b^2}$
- 2. 2. The area of triangle whose vertices are (1,-1),(-4,6) and (-3,-5) is
 - (a) 21
 - (b) 32
 - (c) 24
 - (d) 25
 - **Ans. (c)** 24
- 3. The point (5,-3) lies in
- (a) 1st quadrant
- (b) 2nd quadrant
- (c) 3rd quadrant
- (d) 4th quadrant
- **Ans. d)** 4th quadrant
- 4. The distance between the points $(Cos\theta, Sin\theta)$ and $(Sin\theta, -Cos\theta)$ is
- (a) $\sqrt{3}$
- (b) 2
- (c) 1
- (d) $\sqrt{2}$
- Ans. (d) $\sqrt{2}$

5. If $\frac{(1,2)}{(x,y)}$, $\frac{(4,y)}{(x,6)}$ and $\frac{(3,5)}{(x,y)}$ are the vertices of a parallelogram taken in order.
Then is (a) (6, 2) (b) (6, 3) (c) (6, 4) (d) (3, 4)
Ans.(b) (6, 3)
6. The coordinates of the point which divides the join of $(-1,7)$ and $(4,-3)$ in the ratio 2:3 is (a) (1, 3) (b) (2, 3) (c) (3, 1) (d) (1, 1)
Ans. (a) (1, 3)
7. The coordinates of a point A, where AB is the diameters of a circle whose centre $\binom{(2,-3)}{}$ and B is $\binom{(1,4)}{}$ is (a) (3, -9) (b) (2, 9) (c) (3, -10) (d) (4, 5)
Ans. (c) (3, -10)
8. If the area of a quadrilateral ABCD is zero, then the four points A, B, C, D are (a) Collinear (b) Not collinear (c) Nothing can be said (d) None of these
Ans. (a) Collinear
9. The valve of K if the points $A(2,3)$, $B(4,K)$ and $C(6,-3)$ are collinear is (a) (1) (b) (-1) (c) (2) (d) (0)

Ans. (d) (0)

10. The mid-point of the line segment joining (2a,4) and (-2,3b) is (1,2a+1). The values of a and b is

- (a) a=2, b=2
- (b) a=1, b=3
- (c) a=2, b=3
- (d) a=1, b=1

Ans. (a) a=2, b=2

11. Coordinate of A and B are $^{\left(-3,\,\alpha\right)}$ and $^{\left(1,\,\alpha+4\right)}$. The mid-point of AB is $^{\left(-1,1\right)}$. The value of $^{\alpha}$ is

- (a) (-1)
- (b) (2)
- (c) (3)
- (d) (1)

Ans. (a) (-1)

12. The distance between P(a,7) and Q (1,3) is 5. The value of a is

- (a) (4, 2)
- (b) (-4, -2)
- (c) (4, -2)
- (d) (4, 1)

Ans. (c) (4, -2)

13. On which axis point $^{\left(-4,0\right)}$ lie

- (a) x-axis
- (b) y-axis
- (c) both
- (d) none of these

Ans. (a) x-axis

14. The distance of the point $(-4,-6)$ from the origin is (a) $\sqrt{53}$
(b) $2\sqrt{13}$
(c) $2\sqrt{12}$
$(d) \sqrt{13}$
Ans. (b) $2\sqrt{13}$
15. The coordinates of the mid-point of the line segment
joining $(-5,4)$ and $(7,-8)$ is (a) $(1,-2)$ (b) $(1,2)$ (c) $(1,3)$ (d) $(-1,-2)$
Ans. (a) (1, -2)
16. Two vertices of a $\triangle ABC$ are $A(1,-1)$ and $B(5,1)$. If the coordinates of its
centroid be $(\frac{5}{3},1)$, then the coordinates of the third vertex C is (a) (-1, -3)
(b) (1, 3)
(c) (-1, 3) (d) (1, 2)
Ans. (c) (-1, 3)
17. The abscissa of every point on y-axis is
(a) 0 (b) 1
(c) 2
(d) -1
Ans. (a) 0
18. The ordinate of every point on x -axis is
(a) 1 (b) 2
(c) 0

(d) -1

Ans. (c) 0

19. Find the distance between the following pairs of points:

- (i) (2, 3), (4,1)
- (ii) (-5, 7), (-1, 3)
- (iii) (a, b), (−a, −b)

Ans. (i) Applying Distance Formula to find distance between points (2, 3) and (4,1), we get

$$d = \sqrt{(4-2)^2 + (1-3)^2}$$

$$= \sqrt{(2)^2 + (-2)^2}$$

$$= \sqrt{4+4} = \sqrt{8} = 2\sqrt{2} \text{ units}$$

(ii) Applying Distance Formula to find distance between points (-5, 7) and (-1, 3), we get

$$d = \sqrt{[-1 - (-5)]^2 + (3 - 7)^2}$$

$$= \sqrt{(4)^2 + (-4)^2}$$

$$= \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2} \text{ units}$$

(iii) Applying Distance Formula to find distance between points (a, b) and (-a, -b), we get

$$d = \sqrt{(-a-a)^2 + (-b-b)^2}$$

$$= \sqrt{(-2a)^2 + (-2b)^2} = \sqrt{4a^2 + 4b^2}$$

$$= \sqrt{4(a^2 + b^2)} = 2\sqrt{a^2 + b^2}$$

20. Determine the ratio in which the line 2x+y-4=0 divides the line segment joining the points A(2,-2) and B (3,7).

Ans. Let the line 2x+y-4=0 divides the line segment joining $A^{(2,-2)}$ and B (3, 7) in

the ratio k:1 at point C. Then, the coordinates of C are $\left(\frac{3k+2}{k+1}, \frac{7k-2}{k+1}\right)$.

But C lies on 2x+y-4=0, therefore

$$2\left(\frac{3k+2}{k+1}\right) + \left(\frac{7k-2}{k+1}\right) - 4 = 0$$

$$\Rightarrow$$
 6k+4+7k-2-4k-4=0

$$\Rightarrow 9k-2=0$$

$$\Rightarrow k = \frac{2}{9}$$

Hence, the required ratio if 2:9 internally.

21. Find a relation between x and y if the points $^{(x,y),(1,2)}$ and $^{(7,0)}$ are collinear.

Ans. The points $A^{(x,y)}$. B (1, 2) and C (7, 0) will be collinear if Area of triangle = 0

$$\Rightarrow \frac{1}{2} [x(2-0)+1(0-y)+7(y-2)] = 0$$

$$\Rightarrow 2x - y + 7y - 14 = 0$$

$$\Rightarrow 2x+6y-14=0$$

$$\Rightarrow x+3y-7=0$$