Centre of Mass, Centre of
Gravity & Principle of
Moments

The centre of mass of a solid hemisphere of radius 8 cm is

x cm from the centre of the flat surface. Then value of x is
[NA Sep. 06, 2020 (ID)]

TOPIC

A square shaped hole of side / =% is carved out at a

. a . .
distance d = E from the centre ‘O’ of a uniform circular

disk of radius a. If the distance of the centre of mass of the

- . . a
remaining portion from Ois o value of X (to the nearest

integer) is [NA Sep. 02, 2020 (ID]

A rod of length L has non-uniform linear mass density

2
x
given by p(x)=a + b(f) » where a and b are constants

and 0 <x <L. The value of x for the centre of mass of the

rod is at: [9 Jan. 2020 II]
3( a+b 3(2a+b
2 L = L

@ 2[2a+bj ®) 4[3a+bj
4( a+b 3(2a+b
= = L

© 3[2a+3bj @ 2[3a+bj

The coordinates of centre of mass of a uniform flag shaped
lamina (thin flat plale) of mass 4 kg. (The coordinates of
the same are shown in figure) are: |8 Jan. 2020 I]

(0,3) 2.3)

0.0 (1,0

(a) (1.25m, 1.50 m) (d) (0.75 m, 1.75 m)

(¢) (0.75m, 0.75 m) (d) (1 m, 1.75 m)

As shown in fig. when a spherical cavity (centred at O) of
radius 1 is cut out of a uniform sphere of radius R (centred
at C), the centre of mass of remaining (shaded) part of
sphere is at G, i.e on the surface of the cavity. R can be
determined by the equation: [8 Jan. 2020 II]

(a R*+R+1H(2-R)=1

(b) (RR-R-1)2-R)=1

() RR—R+1)(2-R)=1

d) R+R-1)Q2-R)=1

Three point particles of masses 1.0 kg, 1.5 kg and 2.5 kg
are placed at three corners of a right angle triangle of
sides 4.0 cm, 3.0 cm and 5.0 cm as shown in the figure.
The center of mass of the system is at a point:

[7 Jan. 2020 I]

2.5kg

4 cm 5cm

1.0kg 1.5kg
3 cm

(a) 0.6 cmright and 2.0 cm above 1 kg mass
(b) 1.5 cmright and 1.2 cm above 1 kg mass
(¢) 2.0 cmright and 0.9 cm above 1 kg mass

(d) 0.9 cm right and 2.0 cm above 1 kg mass
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Three particles of masses 50 g, 100 g and 150 g are placed
at the vertices of an equilateral triangle of side 1 m (as
shown in the figure). The (x, y) coordinates of the centre of
mass will be : y [12 Apr. 2019 I1]

my;=150¢g
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© (™" @ |5 ™"

Four particles A, B, C and D with masses m, = m, m_ =
2m, m_= 3m and m_ = 4m are at the corners of a square.
They have accelerations of equal magnitude with
directions as shown. The acceleration of the centre of

mass of the particles is : [8 April 2019 I]
_>
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5
A uniform rectangular thin sheet ABCD of mass M has
length a and breadth b, as shown in the figure. If the shaded

portion HBGO is cut-off, the coordinates of the centre of

mass of the remaining portion willbe:  [8 Apr. 2019 II]
(0,b) (a, b)
A . B
¢
A22
Ef-------- :O ———————— G
D ! C
(0, 0) F (a.0)
3a 3bj Sa SbJ
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10.

11.

12.

13.

The position vector of the centre of mass r_ of an
asymmetric uniform bar of negligible area of cross-

section as shown in figure is: [12 Jan. 2019 I]

Py
ad

L 2L 3L

13 5 - 5., 13,
focm=—Lx+=-Lp (b) Tcm=—Lx+—L
(@) Tcm g b g y (b) 3 X 2 b

11

- 11, -
(©) ?cm=§L$c+§Lj; (d) rcngLx+§Ly

8
A force of 40 N acts on a point B at the end of an L-shaped
object, as shown in the figure. The angle 6 that will produce
maximum moment of the force about point A is given by:
[Online April 15, 2018]
A

1
tan® =— B
@ tn0= T
(b) tan©=2
4m
1
©) tanOzE ﬁe
(d) tan6=4 Y=t

In a physical balance working on the principle of moments,
when 5 mg weight is placed on the left pan, the beam
becomes horizontal. Both the empty pans of the balance
are of equal mass. Which of the following statements is
correct? [Online April 8, 2017]

(@) Leftarm islonger than the right arm
(b) Both the arms are of same length
(c) Leftarm isshorter than the right arm

(d) Every object that is weighed using this balance
appears lighter than its actual weight.

In the figure shown ABC is a uniform wire. If centre of

BC
mass of wire lies vertically below point A, then AB is

close to : [Online April 10, 2016]
A
60°
C
(a) 1.85 (b) 1.5
(c) 1.37 (d 3
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15.

16.

17.

18.

19.

Distance of the centre of mass of a solid uniform cone
from its vertex is z),. If the radius of its base is R and its

height is h then z 1s equal to : [2015]
sho ) 307 L
@ ¢ ® 3k © xk D7

A uniform thin rod AB of length L has linear mass

X
density p (x) =a + T where x is measured from A. If

7
the CM of the rod lies at a distance of (—jL from A,

12
then @ and b are related as : [Online April 11, 2015]
@ a=2b (b) 2a=5b
(c) a=b d) 3a=2b

A thin bar of length L has a mass per unit length A, that
increases linearly with distance from one end. If its total
mass is M and its mass per unit length at the lighter end is
A, then the distance of the centre of mass from the lighter

end is: [Online April 11, 2014]
A L2 L a2
@ =-2 0 S+
2 4M 3 8M
L a2 oL AL
o 5 o 5

A boy of mass 20 kg is standing on a 80 kg free to move
long cart. There is negligible friction between cart and
ground. Initially, the boy s standing 25 m from a wall. Ifhe
walks 10 m on the cart towards the wall, then the final
distance of the boy from the wall will be

[Online April 23, 2013]
(@ 15m (b) 125m (¢) 155m (d) 17m
A thin rod of length ‘L’ is lying along the x-axis with its
ends at x = 0 and x = L. Its linear density (mass/length)

n
) ) x
varies with x as k(z) , where 1 can be zero or any

positive number. If the position x,  of the centre of mass
of the rod is plotted against ‘n’, Which of the following
graphs best approximates the dependence of x,, on n?

[2008]
)‘CM XCM
@) b 5]
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A circular disc of radius R is removed from a bigger circular
disc of radius 2R such that the circumferences of the discs
coincide. The centre of mass of the new disc is
o/R form the centre of the bigger disc. The value of a is

[2007]
(a) 1/4 (d) 1/6

) 13 (c) 112

20.

21.

22,

Consider a two particle system with particles having masses
m, and m,. Ifthe first particle is pushed towards the centre
of mass through a distance d, by what distance should the
second particle is moved, so as to keep the centre of mass

at the same position? [2006]
my m
d d
(a) m (b) m + my
m
—d
© @ d

A body A of mass M while falling vertically downwards

. . 1
under gravity breaks into two parts; a body B of mass 3

M and a body C of mass % M. The centre of mass of
bodies B and C taken together shifts compared to that of
body 4 towards [2005]

(@) does not shift

(b) depends on height of breaking

(c) body B

(d) body C

A ‘T shaped object with dimensions shown in the figure,
is lying on a smooth floor. A force ‘ ' is applied at the

point P parallel to AB, such that the object has only the
translational motion without rotation. Find the location of

P with respect to C. [2005]
A B T
— 2
F l
c
2 4
@ ¢ O 35 © ¢ @ =
i [ Angular Displacement, N
(I‘()PI( " H Velocity and Aceleration Et:-%

23. A bead of mass m stays at point P(a, b) on a wire bent in

the shape of a parabola y = 4Cx? and rotating with angular
speed o (see figure). The value of w is (neglect friction) :

[Sep. 02, 2020 ()]

(a) 2.2gC

2gC
© \ b
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24.

25.

26.

27.

A cylindrical vessel containing a liquid is rotated about
its axis so that the liquid rises at its sides as shown in the
figure. The radius of vessel is 5 cm and the angular speed
of rotation is w rad s~!. The difference in the height,
h (in cm) of liquid at the centre of vessel and at the side

will be : [Sep. 02, 2020 (D)]
<10 cm—
20 507
@ S5¢ ®) Hg
25m° 20
© g @ S5

A spring mass system (mass m, spring constant £ and
natural length /) rests in equilibrium on a horizontal disc.
The free end of the spring is fixed at the centre of the disc.
Ifthe disc together with spring mass system, rotates about
it’s axis with an angular velocity ®, (k>> m®?) the relative
change in the length of the spring is best given by the

option: [9 Jan. 2020 II]
2 mo? 2mo’
@) \E ( p J ® =
2 2
me me
© = @ =

A particle of mass m is fixed to one end of a light spring
having force constant £ and unstretched length /. The other
end is fixed. The system is given an angular speed ® about
the fixed end of the spring such that it rotates in a circle in
gravity free space. Then the stretch in the spring is:

[8 Jan. 2020 I]

mlo? mlo?
b R
@) k—om ®) k—m?
mlo? mlo?
—_— d
© k + mo? @ k+mo

A uniform rod of length / is being rotated in a horizontal
plane with a constant angular speed about an axis passing
through one of its ends. If the tension generated in the rod
due to rotation is T(x) at a distance x from the axis, then
which of the following graphs depicts it most closely?

[12 Apr. 2019 1]

P-79
T(x)
(a)
] x
T(x)
(b)
I
T(x)
(©
I x
T(x)
(d)
I X

28. A smooth wire of length 27r is bent into a circle and kept

in a vertical plane. A bead can slide smoothly on the wire.
When the circle is rotating with angular speed @ about
the vertical diameter AB, as shown in figure, the bead is
at rest with respect to the circular ring at position P as
shown. Then the value of @’ is equal to :

[12 Apr. 2019 II]

) (0]

(b) 2g/(r3)
(d) 2g/r

5
e
(© (g\/g)/r

29. Along cylindrical vessel is half filled with a liquid. When

the vessel is rotated about its own vertical axis, the liquid
rises up near the wall. If the radius of vessel is 5 cm and its
rotational speed is 2 rotations per second, then the
difference in the heights between the centre and the sides, in

cm, will be : [12 Jan. 2019 IT]
@ 20 (b) 0.1
(c) 0.4 (d) 1.2
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30.

31.

32.

33.

A particle is moving with a uniform speed in a circular
orbit of radius R in a central force inversely proportional
to the n power of R. If the period of rotation of the

particle is T, then: [2018]
(a) Toc R32 foranyn. (b) T oc R+
(© TocROHD2 (d) TocR™2

The machine as shown has 2 rods of length 1 m connected
by a pivot at the top. The end of one rod is connected to
the floor by a stationary pivot and the end of the other rod
has a roller that rolls along the floor in a slot.

As the roller goes back and forth, a 2 kg weight moves up
and down. Ifthe roller is moving towards right at a constant
speed, the weight moves up with a : [Online April 9,2017]

Fixed pivot

Mov:ble roller
constant speed
decreasing speed
increasing speed

(@)
(b)
(©

(d) speed which is %th of that of the roller when the

weight is 0.4 m above the ground
A slender uniform rod of mass M and length ¢ is pivoted
at one end so that it can rotate in a vertical plane (see
figure). There is negligible friction at the pivot. The free
end is held vertically above the pivot and then released.
The angular acceleration of the rod when it makes an angle
@ with the vertical is [2017]

z

0
X
(a) %cose (b) %cose
(c) %sine (d) %sine

Concrete mixture is made by mixing cement, stone and
sand in a rotating cylindrical drum. Ifthe drum rotates too
fast, the ingredients remain stuck to the wall of the drum
and proper mixing of ingredients does not take place. The
maximum rotational speed of the drum in revolutions per
minute (rpm) to ensure proper mixing is close to :

(Take the radius of the drum to be 1.25 m and its axle to
be horizontal): [Online April 10, 2016]
(a) 27.0 (b) 04 (c) 1.3 (d) 8.0

34.

3s.
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36.

37.

38.

A cubical block of side 30 cm is moving with velocity
2 ms~! on a smooth horizontal surface. The surface has a
bump at a point O as shown in figure. The angular velocity
(in rad/s) of the block immediately after it hits the bump,
is [Online April 9, 2016]

a=30cm

/

(@ 133 (b) 50 (c) 94 d) 67

Two point masses of mass m; = fM and m, = (1 -f) M (f
<1) are in outer space (far from gravitational influence of
other objects) at a distance R from each other. They move
in circular orbits about their centre of mass with angular

velocities o, for m; and ®, for m,. In that case
[Online May 19, 2012]

—

o—
(@)

@ (I-Ho =fo
(b) ®, = ®, and independent of

© fml =(1 —f)(D2
(d) ®, = ®, and depend on f

Torque, Couple and
Angular Momentum

Four point masses, each of mass m, are fixed at the corners
of a square of side /. The square is rotating with angular
frequency o, about an axis passing through one of the
corners of the square and parallel to its diagonal, as
shown in the figure. The angular momentum of the square
about this axis is : [Sep. 06, 2020 (I)]

(a) mPo (b) 4 mPw

(¢) 3 mPlw (d) 2 mPow

A thin rod of mass 0.9 kg and length 1 m is suspended, at
rest, from one end so that it can freely oscillate in the
vertical plane. A particle of move 0.1 kg moving in a straight
line with velocity 80 m/s hits the rod at its bottom most
point and sticks to it (see figure). The angular speed
(in rad/s) of the rod immediately after the collision will be
[NA Sep. 05, 2020 (ID)]
A person of 80 kg mass is standing on the rim of a circular
platform of mass 200 kg rotating about its axis at 5
revolutions per minute (rpm). The person now starts
moving towards the centre of the platform. What will be
the rotational speed (in rpm) of the platform when the
person reaches its centre

[NA Sep. 03, 2020 (I)]
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39.

40.

41.
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A block of mass m = 1 kg slides with velocity v = 6 m/s
on a frictionless horizontal surface and collides with a
uniform vertical rod and sticks to it as shown. The rod is
pivoted about O and swings as a result of the collision
making angle 6 before momentarily coming to rest. If
the rod has mass M =2 kg, and length /= 1 m, the value

10 m/s?)
[Sep. 03, 2020 (T)]

of 0 is approximately: (take g =

(b) 55°
(d) 49°

!
(AN

A uniform rod of length '' is pivoted at one of its ends on

a vertical shaft of negligible radius. When the shaft rotates

at angular speed o the rod makes an angle 0 with it (see

figure). To find O equate the rate of change of angular

momentum (direction going into the paper)
2

nf—zwz sinBcos O about the centre of mass (CM) to the

torque provided by the horizontal and vertical forces F,
and F', about the CM. The value of 0 is then such that :
[Sep. 03, 2020 (ID)]

2g

cosO = cosO =
(@) . (b) e
(c) cosO= i (d) cosO= 32

lo 2o’

777774 777774

0 25 50 75 100

1 1 1

A B
Shown in the figure is rigid and uniform one meter long
rod 4B held in horizontal position by two strings tied to
its ends and attached to the ceiling. The rod is of mass 'm'
and has another weight of mass 2 m hung at a distance of
75 cm from A. The tension in the string at A is :

[Sep. 02, 2020 (I)]
(b) 2mg
(d) 1 mg

(a) 0.5mg
(c) 0.75 mg

42.

43.

44.

45.

46.

A uniform cylinder of mass M and radius R is to be pulled
over a step of height a (a < R) by applying a force F at its
centre 'O' perpendicular to the plane through the axes of
the cylinder on the edge of the step (see figure). The
minimum value of F'required is : [Sep. 02, 2020 (D]

Ia

R 2
(@) Mg, |1— 2 j () Mg e a -1
© Mg @ Mg,/l—p

Consider a uniform rod of mass M =4m and length / pivoted
about its centre. 4 mass m moving with velocity v making

angle 0 = % tothe rod’s long axis collides with one end of

the rod and sticks to it. The angular speed of the rod-mass
system just after the collision is:
[8 Jan. 2020 I]

3y by
@ /a1 ® =7
V2w 4v
© 57 @37

A particle of mass m is moving along a trajectory given by
X =Xy +acoswt

Y=y, +bcosm,t

The torque, acting on the particle about the origin, at =0
is: [10 Apr 2019 1]

A 27
@ m(-xpb+ya)ork  (b) TMoa®; k
(c) zero (d) —m(xob(”% —N a0)12 )k
The time dependence of the position of a particle of mass
m=21s given by ;(t) =2ti- 3t2} . Its angular momentum,
with respect to the origin, at time t=2is:

[10 Apr. 2019 II]

(@ 48(i+]) () 36%

© -34(k-i) (@) sk

A metal coin of mass 5 g and radius 1 cm is fixed to a thin
stick AB of negligible mass as shown in the figure The
system is initially at rest. The constant torque, that will
make the system rotate about AB at 25 rotations per second
in 5s, is close to: [10 Apr. 2019 II]

A
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(a) 4.0x10° Nm (b) 1.6x10° Nm

(c) 7.9x10° Nm (d) 2.0x10° Nm
47. A rectangular solid box of length 0.3 m is held
horizontally, with one of its sides on the edge of a
platform of height 5Sm. When released, it slips off the
table in a very short time t=0.01 s, remaining essentially
horizontal. The angle by which it would rotate when it

hits the ground will be (in radians) close to :
[8 Apr. 2019 1I]

_Z_Z’Tzzzz_z’z
h

/
(a) 0.5 (b) 0.3 (c) 0.02 (d) 0.28
48. A particle of mass 20 g is released with an initial velocity
5 m/s along the curve from the point A, as shown in the
figure. The point A is at height h from point B. The particle
slides along the frictionless surface. When the particle

reaches point B, its angular momentum about O will be :
(Take g =10 m/s?) [12 Jan. 2019 II]

O
A T
a=10m
oy '
A
hiIOm
v
B

(a) 2kg-m?/s
(c) 6kg-m?/s

(b) 8 kg-m?/s

(d) 3kg-m?/s

49. A slab is subjected to two forces Eand F—zof same
magnitude F as shown in the figure. Force E is in XY-
plane while force F, acts along z-axis at the point

(2? + 3;) The moment of these forces about point O will

be : [11 Jan. 2019 1]
Z —»
F

1

_’

F,
» )V
30°
ﬁ

(b) (3?—2} —31})F

o1
!

/ 6m

X

(a) (3?—2} +312)F

© (3E+2}—31})F (d) (3E+2}+31})F

50. The magnitude of torque on a particle of mass 1 kg is 2.5
Nm about the origin. Ifthe force actingon itis 1 N, and the
distance of the particle from the origin is 5m, the angle
between the force and the position vector is (in radians):

[11 Jan. 2019 II]

Y Y s T
@s ©®3 ©F @ 5

51. To mop-clean a floor, a cleaning machine presses a
circular mop of radius R vertically down with a total
force F and rotates it with a constant angular speed
about its axis. If the force F is distributed uniformly
over the mop and if coefficient of friction between the
mop and the floor is p, the torque, applied by the
machine on the mop is: [10 Jan. 2019 1]
(@ nFR/3 (b) nwFR/6

2
(c) unFR2 (d) 5“ puFR

52. Arigid massless rod of length 3/ has two masses attached
at each end as shown in the figure. The rod is pivoted at
point P on the horizontal axis (see figure). When released
from initial horizontal position, its instantaneous angular
acceleration will be: [10 Jan. 2019 II]

— 21

(] . ®

SM. P M,
g g
- b) =
@ 137 ® 3
g g
- 4 2=
© 5 @ 3

53. An L-shaped object, made of thin rods of uniform mass
density, is suspended with a string as shown in figure. If
AB = BC, and the angle made by AB with downward
vertical is 0, then: [9 Jan. 2019 I]

A
.

o)

B 90° |
X

C
tanezL b 6—1
(a) 2 3 () tan - 2
tanezi d) t 6—1
(© N (@ tan0=7

54. A B
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55.

56.

57.

A uniform rod 4B is suspended from a point X, at a variable
distance from x from A4, as shown. To make the rod
horizontal, a mass m is suspended from its end 4. A set of
(m, x) values is recorded. The appropriate variable that
give a straight line, when plotted, are:

[Online April 15, 2018]

1
(@) m% (b) m? © mx  (d) mx?

A thin uniform bar of length L and mass 8m lies on a smooth
horizontal table. Two point masses m and 2m moving in
the same horizontal plane from opposite sides of the bar
with speeds 2v and v respectively. The masses stick to the

L L
bar after collision at a distance 3 and % respectively

from the centre of the bar. If the bar starts rotating about
its center of mass as a result of collision, the angular speed
ofthe bar will be: [Online April 15, 2018]

L/6 L3 |2v
—<—>
s |

—

\% 6v 3v \%
(a) oL (b) 5L (© 5L (d) 3L

A particle of mass m is moving along the side of a square
of'side 'a', with a uniform speed v in the x-y plane as shown

in the figure : [2016]
y
D a C
\
ayVv VAa
v
A
2 B
\
o 45° R a

Which of the following statements is false for the angular
momentum T, about the origin?

— R ~
(a) L=mv {E + a} K when the particle is moving from
BtoC.
T mV A . . .
by L= E Rk when the particle is moving from D to A.
(¢ L=- E Rk when the particle is moving from A to B.

— R N
(d L=mv {E - a} K when the particle is moving from

CtoD.

A particle of mass 2 kg is on a smooth horizontal table
and moves in a circular path of radius 0.6 m. The height
of the table from the ground is 0.8 m. If the angular speed
of the particle is 12 rad s, the magnitude of its angular
momentum about a point on the ground right under the
centre of the circle is : [Online April 11, 2015]
() 14.4kgm?’s’! (b) 8.64kgm’s!

(c) 20.16 kg m%s™! (d) 11.52 kg m%s!

58.

59.

60.

61.

62.

63.

64.
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A bob of mass m attached to an inextensible string of

length / is suspended from a vertical support. The bob

rotates in a horizontal circle with an angular speed ® rad/s

about the vertical. About the point of suspension: [2014]

(@) angular momentum is conserved.

(b) angular momentum changes in magnitude but not in
direction.

(c) angular momentum changes in direction but not in
magnitude.

(d) angular momentum changes both in direction and
magnitude.

A ball of mass 160 g is thrown up at an angle

of 60° to the horizontal at a speed of 10 ms~!. The angular

momentum of the ball at the highest point of the trajectory

with respect to the point from which the ball is thrown is

nearly (g= 10 ms2) [Online April 19, 2014]

(@) 1.73kgm?/s (b) 3.0kgm?s

(c) 3.46kgm?/s (d) 6.0kgm?s

A particle is moving in a circular path of radius a, with a

constant velocity v as shown in the figure. The centre of

circle is marked by ‘C’. The angular momentum from the

origin O can be written as: [Online April 12, 2014]
y
a
O <6

(a) va(1+ cos20) (b) va (1+cos0)
(c) vacos 20 (d) va
A particle of mass 2 kg is moving such that at time ¢, its
position, in meter, is given by 7(f) = 5/ — 2t2j . Theangular
momentum of the particle at ¢ = 2s about the origin in
kgm2slis: [Online April 23, 2013]
@ —80k (b) (07-16/)
() —40k @ 40k
A bullet of mass 10 g and speed 500 m/s is fired into a door
and gets embedded exactly at the centre of the door. The
door is 1.0 m wide and weighs 12 kg. It is hinged at one end
and rotates about a vertical axis practically without friction.
The angular speed of the door just after the bullet embeds
into it will be : [Online April 9, 2013]
(a) 6.25 rad/sec (b) 0.625 rad/sec
(c) 3.35rad/sec (d) 0.335rad/sec
A stone of mass m, tied to the end of a string, is whirled
around in a circle on a horizontal frictionless table. The
length of the string is reduced gradually keeping the
angular momentum of the stone about the centre of the
circle constant. Then, the tension in the string is given by
T = Ar", where A4 is a constant, r is the instantaneous
radius of the circle. The value of n is equal to

[Online May 26, 2012]
@ -1 (b)y -2 () —4 d -3
A thin horizontal circular disc is rotating about a vertical
axis passing through its centre. An insect is at rest at a



65.

66.

67.

68.

69.

point near the rim of the disc. The insect now moves along
a diameter of the disc to reach its other end. During the
journey of the insect, the angular speed of the disc.[2011]
(@) continuously decreases

(b) continuously increases

(c) first increases and then decreases

(d) remainsunchanged

A small particle of mass m is projected at an angle 6 with
the x-axis with an initial velocity v, in the x-y plane as

shown in the figure. At a time ¢ < Vosin® , the angular
g
momentum of the particle is [2010]
Y.
Yo

X

@ -mg vot2 cos0j (b) mg Vot cos Ok

A 1 -
(©) —%mgvot2 cos@k  (d) Emgvot2 cos 0i

where 7, and k are unit vectors along x, y and z-axis

respectively.

Angular momentum of the particle rotating with a central
force is constant due to [2007]
(@) constant torque

(b) constant force

(c) constant linear momentum

(d) zerotorque

A thin circular ring of mass m and radius R is rotating
about its axis with a constant angular velocity ®. Two
objects each of mass M are attached gently to the
opposite ends of a diameter of the ring. The ring now

rotates with an angular velocity o' = [2006]
o(m+2M) o(m—2M)
(a ” (m+2M)
om om
© onr ) @ o 2m)

A force of —Fk acts on O, the origin of the coordinate

system. The torque about the point (1, -1)is  [2006]
z
9 Y
X
@ F@-)) (b) -F@+))
(¢) F@i+)) (d) -F@-))

A solid sphere is rotating in free space. If the radius of
the sphere is increased keeping mass same, which one
of the following will not be affected ? [2004]

70.

71.

(a) Angular velocity

(b) Angular momentum

(c) Moment of inertia

(d) Rotational kinetic energy

Let F be the force acting on a particle having position
vector 7, and T be the torque of this force about the
origin. Then [2003]
(@) F.T=0and F.T#0

(b) F.T#0and F.T=0

() F.T#0and F.T#0

(d) F.T=0and F.T=0

’7
’7

A particle of mass m moves along line PC with velocity v
as shown. What is the angular momentum of the particle
[2002]

about P?

72.

73.

74.

Moment of Inertia and
Rotational K.E.

Shown in the figure is a hollow icecream cone (it is open at
the top). Ifits mass is M, radius of'its top, R and height, H,
then its moment of inertia about its axis is :

R [Sep. 06, 2020 (I)]
<>
H
2 2 2
@ - ( HEL)
MH? MR?
© 3 (d) T

The linear mass density of a thin rod AB of length L varies

from A to B as A(x) =2 (1 +%j, where x is the distance

from A. IfM is the mass of the rod then its moment of inertia
about an axis passing through A and perpendicular to the

rod is : [Sep. 06, 2020 (II)]
@) ERVE (b) KRV

12 18
(c) EIVIE () EAVIE

5 7

A wheel is rotating freely with an angular speed ® on a
shaft. The moment of inertia of the wheel is I and the mo-
ment of inertia of the shaft is negligible. Another wheel
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75.

76.

77.

78.

of moment of inertia 31 initially at rest is suddenly coupled
to the same shaft. The resultant fractional loss in the
kinetic energy of the system is : [Sep. 05, 2020 (I)]

s o1
@ )

3
() 0 @ 5

ABC is a plane lamina of the shape of an equilateral
triangle. D, E are mid points of 4B, AC and G is the
centroid of the lamina. Moment of inertia of the lamina
about an axis passing through G and perpendicular to the
plane ABC is /. If part ADE is removed, the moment of

L . .. NI
inertia of the remaining part about the same axis is —*

where N is an integer. Value of N is .
[NA Sep. 04, 2020 (I)]

B C

A circular disc of mass M and radius R is rotating about
its axis with angular speed o,. If another stationary disc

R
having radius 5 and same mass M is dropped co-axially

on to the rotating disc. Gradually both discs attain
constant angular speed ®,. The energy lost in the process
is p% of the initial energy. Value of p is .
[NA Sep. 04, 2020 (I)]

Consider two uniform discs of the same thickness and
differentradii R, = R and R, = o.R made of the same material.
Ifthe ratio of their moments of inertia /; and ,, respectively,
about their axes is /; : [, = 1 : 16 then the value of a is :
[Sep. 04, 2020 (II)]

(@) 242 (b) 2

(c) 2 (d) 4
y O!
O. 80 cm
J’ 2 X
< 60cm—>

For a uniform rectangular sheet shown in the figure, the
ratio of moments of inertia about the axes perpendicular to
the sheet and passing through O (the centre of mass) and
O' (corner point) is : [Sep. 04, 2020 (II)]
(a) 2/3
(c) 1/8

(b) 1/4
d) 1/2

79.

80.

81.

82.

P-85

Moment of inertia of a cylinder of mass M, length L and
radius R about an axis passing through its centre and
perpendicular to the axis of the cylinder is

R* I
I=M e +E . If such a cylinder is to be made for a

given mass of a material, the ratio L/R for it to have minimum

possible 7 is : [Sep. 03, 2020 ()]

2 3
@ 3 ®) 3

3
(c) \g (d) \E

An massless equilateral triangle EFG of side 'a' (As shown
in figure) has three particles of mass m situated at its
vertices. The moment of inertia of the system about the

N
line EX perpendicular to EG in the plane of EF G is 2 ma’

where N is an integer. The value of NV is .
[Sep. 03, 2020 (ID)]

X
F

E a G
Two uniform circular discs are rotating independently in

the same direction around their common axis passing
through their centres. The moment of inertia and angular
velocity of the first disc are 0.1 kg-m? and 10 rad s
respectively while those for the second one are 0.2 kg-m?
and 5 rad s7! respectively. At some instant they get stuck
together and start rotating as a single system about their
common axis with some angular speed. The kinetic energy
of the combined system is : [Sep. 02, 2020 (IT)]

10 20
@ 57 (b) 57

5 2
(c) gJ (d) gJ

Three solid spheres each of mass m and diameter d are

stuck together such that the lines connecting the centres

form an equilateral triangle of side of length d. The ratio
Iy

N of moment of inertia I of the system about an axis
A

passing the centroid and about center of any of the spheres

I, and perpendicular to the plane of the triangle is:

[9 Jan. 2020 I]
E
@ 5 eq
15 Ae/
(b) e} v"“'.
(¢) e}
13
(d) s



P-86
83.

84.

85.

86.

One end of a straight uniform 1 m long bar is pivoted on
horizontal table. It is released from rest when it makes
an angle 30° from the horizontal (see figure). Its angular

speed when it hits the table is given as Jns™! , where n is
an integer. The value of n is . [9 Jan. 2020 I]

30\

A uniformly thick wheel with moment of inertia I and

radius R is free to rotate about its centre of mass (see
fig). A massless string is wrapped over its rim and two
blocks of masses m, and m, (m, > m,) are attached to the
ends of the string. The system is released from rest. The
angular speed of the wheel when m, descents by a distance
h is: [9 Jan. 2020 II]

- 2 \gh -1/2
(@) m —m,)g

| (my +my)R* +1 |

- -1/2
2(my +my)gh

(®) | (my +my)R? +1 |
r ( ) —1/2
my —nm,
[ S e A gh
© | (my +my)R? +1 | m,
r —1/2
my +m, ny
(d) gh

| (my +my)R* +1 |

As shown in the figure, a bob of mass m is tied by a
massless string whose other end portion is wound on a
fly wheel (disc) of radius r and mass m. When released
from rest the bob starts falling vertically. When it has
covered a distance of h, the angular speed of the wheel
will be: [7 Jan. 2020 1]

1 |4gh 3
@ — KN (b) ” 2gh
1 [2gh Y
() ~ =N (d) "\ 4gh

The radius of gyration of a uniform rod of length /, about

/
an axis passing through a point 4 away from the centre
[7 Jan. 2020 I]

3
(d) \/%l

of the rod, and perpendicular to it, is:

1 7
® ! © \/4—;

1
(a) Zl

87.

88.

89.

90.

91.

Mass per unit area of a circular disc of radius a depends
on the distance r from its centre as 6(r) = A + Br. The
moment of inertia of the disc about the axis, perpendicular
to the plane and passing through its centre is:

[7 Jan. 2020 II]

o (2

o o (f8) 2

A circular disc of radius b has a hole of radius a at its centre
(see figure). If the mass per unit area of the disc varies as

%o
[TJ , then the radius of gyration of the disc about its axis

passing through the centre is : [12 Apr. 2019 1]

2, .2

a +b” +ab a+b
R e N O

2, .2

a +b" +ab a+b
(© \’f (d) 3

I
. . . . . 1
Two coaxial discs, having moments of inertia I, and ER are

o
5
about their common axis. They are brought in contact with
each other and thereafter they rotate with a common angular
velocity. IfE and E, are the final and initial total energies,
then (E—E)is : [10 Apr. 2019 1]

rotating with respective angular velocities », and

@ Ao bt Lot
12 6 24
A thin disc of mass M and radius R has mass per unit area
o(r) = kr? where ris the distance from its centre. Its moment
of inertia about an axis going through its centre of mass
and perpendicular to its plane is : [10 Apr. 2019 I]

(c) %I@f d) -

MR? b 2MR?
(a) 3 (b) 3
MR? MR?
(©) 5 (d 5

A solid sphere of mass M and radius R is divided into two
™ .
unequal parts. The first part has a mass of e and is

converted into a uniform disc of radius 2R. The second
part is converted into a uniform solid sphere. Let I, be
the moment of inertia of the new sphere about its axis.
The ratio /1, is given by : [10 Apr. 2019 II]

@) 185 (b) 140  (c) 285 d) 65
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92.

93.

94.

9s.

96.

97.

P-87

A stationary horizontal disc is free to rotate about its axis.
When a torque is applied on it, its kinetic energy as a
function of ©, where 6 is the angle by which it has rotated,
is given as k02 Ifits moment of inertia is I then the angular

acceleration of the disc is: [9 April 2019 1]
k k kg 2%k
—0 -0 —0
@0 ® S0 ©3° @ 7

Moment of inertia of a body about a given axis is 1.5 kg
m? Initially the body is at rest. In order to produce a
rotational kinetic energy of 1200 J, the angular
acceleration of 20 rad/s* must be applied about the axis
for a duration of: [9 Apr. 2019 II]

(a) 2.5s (b) 2s (c) 5s (d) 3s

A thin smooth rod of length L and mass M is rotating
freely with angular speed o, about an axis perpendicular
to the rod and passing through its center. Two beads of
mass m and negligible size are at the center of the rod
initially. The beads are free to slide along the rod. The
angular speed of the system, when the beads reach the
opposite ends of the rod, will be: [9 Apr. 2019 II]

Mw, M,
@) M+m ®) M +3m

Mo, Mo,
© M +6m @ M +2m

A thin circular plate of mass M and radius R has its density
varying as p(r) = p, » with p  as constant and r is the
distance from its center. The moment of Inertia of the
circular plate about an axis perpendicular to the plate and
passing through its edge is / = a MR The value of the

coefficient a is: [8 April 2019 1]
® Y © %

@ Y% @ %

Let the moment of inertia of a hollow cylinder of length 30

cm (inner radius 10 cm and outer radius 20 cm), about its

axis be 1. The radius of a thin cylinder of the same mass

such that its moment of inertia about its axis is also I, is:
[12 Jan. 2019 1]

(@ 12cm (b) l6cm

(¢) l4cm (d) 18cm

The moment of inertia of a solid sphere, about an axis

parallel to its diameter and at a distance ofx from it, is ‘I(x)’.

Which one of the graphs represents the variation of I(x)

with x correctly? [12 Jan. 2019 11]
I(x) I(x)
(a) (b)
O—>x o) X
I(x) I(x)
(c) (d)
o) x 0O—>x

98.

99.

100.

101.

An equilateral triangle ABC is cut from a thin solid sheet
of wood. (See figure) D, E and F are the mid-points of its
sides as shown and G is the centre of the triangle. The
moment of inertia of the triangle about an axis passing
through G and perpendicular to the plane of the triangle is
I,. If the smaller triangle DEF is removed from ABC, the
moment of inertia of the remaining figure about the same

axisis I. Then : [11 Jan. 2019 I]
D E
B F
1 3
I=—1 I==1
@ T=1clo (b) 1=31g
9 Iy
I=—1 I=—
(©) T (d) 4

a string is wound around a hollow cylinder of mass 5 kg

and radius 0.5 m. If the string is now pulled with a

horizontal force of 40 N, and the cylinder is rolling

without slipping on ahorizontal surface (see figure), then

the angular acceleration of the cylinder will be (Neglect

the mass and thickness of the string) [11 Jan. 2019 II]
40N

(a) 20 rad/s? (b) 16 rad/s?

(¢) 12rad/s? (d) 10rad/s?

A circular disc D; of mass M and radius R has two
identical discs D, and D, of the same mass M and radius
R attached rigidly at its opposite ends (see figure). The
moment of inertia of the system about the axis OO’,
passing through the centre of D,, as shown in the figure,

will be : [11 Jan. 2019 IT]
o
W
D, 9 D,

Dl
(a) MR? (b) 3MR2
(©) %MR2 (d) %MR2
Two identical spherical balls of mass M and radius R

each are stuck on two ends of a rod of length 2R and
mass M (see figure). The moment of inertia of the
system about the axis passing perpendicularly through
the centre of the rod is: [10 Jan. 2019 II]




88
137 17 105. From a uniform circular disc of radius R and mass 9 M, a
(a) — MR? (b) — MR? R
15 15 small disc of radius 3 isremoved as shown in the figure.
(c) 209 MR? (d) 152 MR? The moment of inertia of the remaining disc about an
15 15 axis perpendicular to the plane of the disc and passing,
m through centre of disc is : [2018]
102. Two masses m and - are connected at the two ends of
a massless rigid rod of length /. The rod is suspended by 2R
a thin wire of torsional constant k at the centre of mass 3

103.

104.

of the rod-mass system (see figure). Because of
torsional constant k, the restoring toruque is 1= k0 for
angular displacement 0. If the rod is rotated by 0, and
released, the tension in it when it passes through its mean

position will be: [9 Jan. 2019 I]
Lvpss
ol
m/2
3k0,” 2k0,’ k0,° k0,°
b d
(a) ; (b) ] () ; (d) Y,

A rod of length 50 cm is pivoted at one end. It is raised
such that if makes an angle of 30° from the horizontal as
shown and released from rest. Its angular speed when
it passes through the horizontal (in radsﬁl) will be

(g=10 ms?) [9 Jan. 2019 II]
=K% 30°
30
@ |7 ®) 30
20 30
c = d o
© 3 (d) 5
Seven identical circular planar disks, each of mass M and

radius R are welded symmetrically as shown. The moment
of inertia of the arrangement about the axis normal to the

plane and passing through the point P is: [2018]
@ SMRY () DMR? (o) MR (¢) ©IMR?

106.

107.

108.

109.

¢

(a) 4MR?> (b) % MR? (c) 10 MR? (d) %71\/[[8

A thin circular disk is in the xy plane as shown in the
figure. The ratio of its moment of inertia about z and z' axes

will be [Online April 16, 2018]
z -4
1:4 y
X
(@ 1:2 (b)y 1:4 (¢ 1:3 d 1:5
A thin rod MN, free to rotate in the vertical plane about the

fixed end N, is held horizontal. When the end M is released

the speed of this end, when the rod makes an angle o with

the horizontal, will be proportional to: (see figure)
[Online April 15, 2018]

M N
I—%)UDI
(@) <Jcosa (b) cosa
(©) sina (d sina

The moment of inertia of a uniform cylinder of length ¢ and
radius R about its perpendicular bisector is I. What is the

ratio ¢/R such that the moment of inertia is minimum ?
[2017]

3 3 J3
@ 1 ® 5 © \g @ =
Moment of inertia of an equilateral triangular lamina ABC,
about the axis passing through its centre O and
perpendicular to its plane is I | as shown in the figure. A
cavity DEF is cut out from the lamina, where D, E, F are
the mid points of the sides. Moment of inertia of the

remaining part of lamina about the same axis is :
[Online April 8, 2017]

7 15 b
(a) glo (b) Elo ‘

31, 311, y S
SR VAVAN
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110.

111.

. . R . . . .
A circular hole of radius — is made in a thin uniform

disc having mass M and radius R, as shown in figure. The
moment of inertia of the remaining portion of the disc about
an axis passing through the point O and perpendicular to

the plane of the disc is : [Online April 9, 2017]
219MR?
@ e
256
2
237MR R
® 55
512
2
19MR
© =51
2
197 MR
d ——
256
From a solid sphere of mass M and radius R a cube of

maximum possible volume is cut. Moment of inertia of cube
about an axis passing through its center and perpendicular

to one of its faces is : [2015]
4MR? . 4MR?

(a) 9 \/gn (b) 3 \/gn
MR? MR?

(©) (d)

32421 16v2n

112.Consider a thin uniform square sheet made of a rigid

material. Ifits side is ‘@’ mass m and moment of inertia |
about one of its diagonals, then :[Online April 10, 2015]

2 2 2
@ I>—= (b) o < J< e
12 24 12
2 2
ma ma
c) I= d) I=—-
©) 24 @ 12
113. A ring of mass M and radius R is rotating about its axis

with angular velocity o. Two identical bodies each of mass

m are now gently attached at the two ends of a diameter of

the ring. Because of this, the kinetic energy loss will be:
[Online April 25, 2013]

m(M +2m) 5 5 Mm 252
/=7 ——— R
@ T 0RO G
Mm 252 (M + m)M 252
—_— ———o°R
© M +2m) @ " +2m)
114. This question has Statement 1and Statement 2. Of the four

choices given after the Statements, choose the one that
best describes the two Statements.

Statement 1: When moment of inertia / of a body rotating
about an axis with angular speed ® increases, its angular
momentum L is unchanged but the kinetic energy K
increases if there is no torque applied on it.

Statement 2: L = /o, kinetic energy of rotation

1

= Elwz [Online May 12, 2012]

(a) Statement 1 is true, Statement 2 is true, Statement
2 is not the correct explanation of Statement 1.
(b) Statement 1 is false, Statement 2 is true.

115.

116.

117.

118.

119.

120.

P-89

(c) Statement 1 is true, Statement 2 is true, Statement
2 is correct explanation of the Statement 1.
(d) Statement 1 is true, Statement 2 is false.
A solid sphere having mass m and radius r rolls down an
inclined plane. Then its kinetic energy is
[Online May 7, 2012]

5 2

(@) 7 rotational and el translational
2 : 5 .

(b) 7 rotational and 7 translational
2 . 3 .

(c) 3 rotational and 3 translational
1 1

(d) 3 rotational and 3 translational

A circular hole of diameter R is cut from a disc of mass M
and radius R; the circumference of the cut passes through
the centre of the disc. The moment of inertia of the
remaining portion of the disc about an axis perpendicular
to the disc and passing through its centre is

[Online May 7, 2012]

o (B o (e

3 2 13 2
o (3 @ (3w
A mass m hangs with the help of a string wrapped around
a pulley on a frictionless bearing. The pulley has mass m
and radius R. Assuming pulley to be a perfect uniform

circular disc, the acceleration of the mass m, if the string
does not slip on the pulley, is: [2011]
g

2
@g B3 ©5F @ 3
A pulley of radius 2 m is rotated about its axis by a force
F = (20t — 5*) newton (where ¢ is measured in seconds)
applied tangentially. If the moment of inertia of the pulley
about its axis of rotation is 10 kg-m? the number of rotations
made by the pulley before its direction of motion is
reversed, is: [2011]
(a) more than 3 but less than 6
(b) more than 6 but less than 9
(¢c) morethan9
(d) lessthan3
A thin uniform rod of length / and mass m is swinging
freely about a horizontal axis passing through its end. Its
maximum angular speed is . Its centre of mass rises to

a maximum height of [2009]
llo 1 Pe?

@ g ® 375
1 %0? 1 Pw?

© (d) 3 g

Consider a uniform square plate of side ‘a’ and mass ‘M’.
The moment of inertia of this plate about an axis
perpendicular to its plane and passing through one of its
corners is [2008]
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121.

122.

123.

124.

125.

5., 1 5 126. Aparticle performing ur}ifoan ci.rcular motion has angular
(a) gMa (b) EMa frequency is doubled & 1.ts kinetic energy halved, then the
new angular momentum is [2003]
© —Md? @ ZMa? @ L b) 2L
12 3 4 L
For the given uniform square lamina 4BCD, whose centre (c) 4L @ —
is0, [2007]  127. Moment of inertia of a circular wire of mass M and radius
R about its diameter is [2002]
D F C (@ MR*2 (b) MR*> (c) 2MR*> (d) MR%/4
i 128. Initial angular velocity of a circular disc of mass M is
® . Then two small spheres of mass m are attached gently
20 to diametrically opposite points on the edge of the disc.
. What is the final angular velocity of the disc?  [2002]
S o 5o o (e

@) Iuc=~2 Ige () 2,0 =1Igr

(© Iyp =3Ik ) Tyc=1Igr

Four point masses, each of value m, are placed at the
corners of a square ABCD of side /. The moment of inertia
of'this system about an axis passing through A4 and parallel

to BD is [2006]
@  2me? ®)  BZme?

©)  3me? A e

The moment of inertia of a uniform semicircular disc of

mass M and radius r about a line perpendicular to the

plane of the disc through the centre is [2005]
2 5 1
—Mre’ b) —Mr

(@) S Mr ® 5

© SMr @ Mr

One solid sphere 4 and another hollow sphere B are of

same mass and same outer radii. Their moment of inertia
about their diameters are respectively /, and 7 Such that

[2004]
(@ I1,<I b 1,>1,
'y _d_A
(c) IA:IB (d) g_dB

where d; and dj; are their densities.

A circular disc X of radius R is made from an iron plate of

thickness 7, and another disc Y of radius 4R is made from an

t
iron plate of thickness e Then the relation between the

moment of inertia /,,and [, is [2003]
() Iy =321y (b) Iy =161y
(c) Iy=Iyx (d) Iy =641y

M M
© (M+4m) ! @ [M+2m) ©

129.A uniform sphere of mass 500 g rolls without slipping
on a plane horizontal surface with its centre moving at a
speed of 5.00 cm/s. Its kinetic energy is:

[8 Jan. 2020 II]
(b) 8.75 x 103 J
d) 1.13x107J

(a) 8.75 x 104
(©) 6.25x10]

130.

Consider a uniform cubical box of side a on a rough floor
that is to be moved by applying minimum possible force F
at a point b above its centre of mass (see figure). If the
coefficient of friction is p = 0.4, the maximum possible value

b
of 100 x ” for box not to topple before moving is

. [NA 7 Jan. 2020 II]

131.A solid sphere and solid cylinder of identical radii approach
an incline with the same linear velocity (see figure). Both

roll without slipping all throughout. The two climb
maximum heights hsph and hcyl on the incline. The ratio

hsph

is given by : [8 Apr. 2019 11]

cyl

w |~

2 14
@ 75 (b) 1 ©) 15 (d)
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132.The following bodies are made to roll up (without Figure). If they roll on the incline without slipping such
slipping) the same inclined plane from a horizontal plane: sin 0,
that their accelerations are the same, then the ratio m

\)

R
(1) a ring of radius R, (ii) a solid cylinder of radius > is: [Online April 9, 2014]A

R
and (iii) a solid sphere of radius ek If, in each case, the

speed of the center of mass at the bottom of the incline
is same, the ratio of the maximum heights they climb is:

[9 April 2019 I
(a) 4:3:2 (b) 10:15:7
(c) 14:15:20 (d 2:3:4
133. A homogeneous solid cylindrical roller of radius R and 2
.

mass M is pulled on a cricket pitch by a horizontal
force. Assuming rolling without slipping, angular

acceleration of the cylinder is: [10 Jan. 2019 1] 8
© @ -
3F F 14
(@) TmR () 3mR 137. A loop of radius r and mass m rotating with an angular
velocity m,, is placed on a rough horizontal surface.
8 oF The initial Veloqity of the centre of the hoop is Zefo.What
© T—= d 75 will be the velocity of the centre of the hoop when it ceases
2mR 3mR to slip ? [2013]
134. A roller is made by joining together two cones at their Ty, ro,
vertices O. It is kept on two rails AB and CD, which are (a) 4 (b) 3
placed asymmetrically (see figure), with its axis
perpendicular to CD and its centre O at the centre of line () IO (d) roy,
joining AB and Cd (see figure). It is given a light push so 2
that it starts rolling with its centre O moving parallel to 138. A tennis ball (treated as hollow spherical shell) starting
CD in the direction shown. As it moves, the roller will from O rolls down a hill. At point A the ball becomes air
tend to: [2016] borne leaving at an angle of 30° with the horizontal. The

ball strikes the ground at B. What is the value of the
distance AB ?
(Moment of inertia of a spherical shell of mass m and radius

2
R about its diameter = 3 mRz)

[Online April 22, 2013]

(a) gostraight.
(b) turn left and right alternately.
(¢) turnleft. L\ e

@ wmright. 02mi\__JA B

135. A uniform solid cylindrical roller of mass ‘m’ is being

2.0m

pulled on a horizontal surface with force F parallel to the (a) 1.87m (b) 2.08 m
surface and applied at its centre. If the acceleration of the (c) 1.57m (d) 1.77m
cylinder is ‘a’ and it is rolling without slipping then the 139. A thick-walled hollow sphere has outside radius R,). It rolls
value of ‘F’ is: [Online April 10, 2015] down an incline without slipping and its speed at the bottom
5 is v;. Now the incline is waxed, so that it is practically
(a) ma (b) —ma frictionless and the sphere is observed to slide down
3 (without any rolling). Its speed at the bottom is observed
(c) Ema (d) 2 ma to be 5v0/4.. The radiu.s of gyrajcion of the hollow sphere
2 about an axis through its centre is [Online May 26, 2012]
136. A cylinder of mass M and sphere of mass M, are placed (a) 3Ry2 (b) 3Ry/4

at points A and B of two inclines, respectively (See (c) 9R,/16 (d) 3R,
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140. A solid sphere is rolling on a surface as shown in figure, 7
with a translational velocity v ms~!. If it is to climb the (a) \/@ (b) |- gh
inclined surface continuing to roll without slipping, then
minimum velocity for this to happen is 7

[Online May 12, 2012] © 3¢ (d)

141. A round uniform body of radius R, mass M and moment of

10
—gh
7g

—
inertia / rolls down (without slipping) an inclined plane
making an angle 0 with the horizontal. Then its

h acceleration is [2007]
gsinf gsinf
. @ —E o
~Y. 1-MR"/1 1+1/MR
v gsinf @ gsinf
) ———— &>y
© M 1-1/MR?
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3.

P-93

(3) Centre of mass of solid hemisphere of radius R lies at

3R
adistance 3 above the centre of flat side of hemisphere.

3R 3x8
hcm = ? = ]
(23.00) Let o be the mass density of circular disc.

=3cm

Original mass of the disc, m, = ta’c

a2
Removed mass, m = Y c

( 2 a*) 2(47{—1)6

Remaining, mass, m'=| na“ —— | o =
g L 4JG a 2
Y
a
“>>
X
a
> 1
5>
New position of centre of mass
2
My, — mx na® xO—%x%
Xew = = 2
mO —m 2 a
na®——
B —a’/8 _-—a _ -a _ a
= ; = — = ——=—
(n——] 2 20n-D) 8t-2 23
4
Sox=23
(b) Given,

. ) x )
Linear mass density, p(X)=a+ b(zj

j xdm | |

Xem =
SE—
Idm dx

L
Idm = Ip(x)dx
0

L 2
=I a+b[£j dx=aL+b—L
0 L 3

H_ints & Solutions

(b)

(a)

Xem =
aL+b—
3L(2a+b
= Xem =—
M=y [351 +bj
oy an @i
o(C,
0.2)1
o
0, Dt C,
0.5
(0, 0) o oo "
For given Lamina
Xy
m =1,C =(1.5,2.5)
m,=3,C,=(0.5,1.5)
¥ MmN +myx, 1.5+1.5 —0.75
o my +m, 4 '
an my +my, 2.5+4.5 —1.75
my + n,

.. Coordinate of centre of mass of flag shaped lamina

(0.75,1.75)

Mass of sphere = volume of sphere x density of

sphere
4

=—nR’?
3 p

4
Mass of cavity M cayity = Eﬂ(1)3p
Mass of remaining
4 3 4 3
M(Remaining) = ETCR p _En(l) p

Centre of mass of remaining part,

0% _Min+Myn
COM =01, + M,
B nR%}o + B (1)’ (—p)}[R -1
=—-(2-R)=

4 4
gnR3p+§n(1)3 (-p)
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R-1
(3 ) _> & Mx0- x4
(R -1) 44 _a
R-D . m-M 12
2 T 4
(R-D(R"+R+1)
= (R+R+1)2-R)=1 and vey = —>
12
6. (@ 2.5 kg So CM coordinates one
0,4
S5cm a a Sa
Xn=———=—
om T2 TR 12
1.0 kg 1.5k b b 5b
3em  0X8 dyg=o-22-2
(0,0 (3, 0) e NETRT
_mx; +myxy +m3x3 10. (a) 2=m (L.L)
o my +my +my L
1m 2L~ 5L
_1><0+1.5><3+2.5><O_l.5><3_09cm 2 (_ 0)
cm 1+1.5+2.5 s — |2
2L m 3L
y Mty timsys ¢
o my +my +my
_1x0+1.5x0+2.5x4 2.5x4 —2em
o 1+1.5+2.5 5 , x .
Hence, centre of mass of system is at point (0.9, 2) x-coordinate of centre of mass is
; 50x0+100x1+150x0.5 7 2mL + 2mL + > "
- @, = 50+100+150 2™ Xem = 2 2L
4m 8
(0.5,?) y-coordinate of centre of mass is
2m><L+m><(£)+m><0
Yo - LA
om 4m 8
11. (¢) Toproduce maximum moment of force line of action
of force must be perpendicular to line AB.
(0.0) (1.0) A
0
5()><0+100><0+150><\/2§ 3 4m
yCﬂ'l = = _m
50+100+150 4 o
2 B
8. (a) Acceleration of centre of mass (a_ ) is given by 1 "
_ o ma A mydy ... E tane=z=5
- m+my +........ 12. (c¢) According to principle of moments when a system is
(2m) a}' L3mxal +ma (—f) +4mx a(~ j) stable qr balance, the anti-clockwise moment is equal to
= o+ 3mt dm+ clockwise moment.
N N oo i.e., load x load arm = effort x effort arm
_ 2ai —2aqj _ ﬁ(lf _ j) When 5 mg weight is placed, load arm shifts to left side,
10 5 hence left arm becomes shorter than right arm.
9. (d) With respect to point 0, the CM of the cut-off portion 1
a b X (px)(2)2 + Pyy/z
— . 13. (c¢) Centre of mass x_, =
44 2 plx+y)
. MX —mx y y2
X - 4L =L
Using, Xy M—m =5+ ¥ x2
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14.

15.

16.

18.

B (0,0) y

CBey 1443

"ABx 2
(d) Let density of cone = p.

=1.37

Iydm
Centre of , =5
entre of mass, yc J- am

h
2
yredyp h
{ IO r* ydy .
= > =7 > (1)
—nRhp —R°h
3 3

A

yl A

Dy |
‘k

BC

For a cone, we know that
A N

R n " n
h 3 4 h
[37°ay 3% ;
-0 — 0 _ -
yem= pER 74h
(b) Centre of mass of the rod is given by:
L 2
I(ax+b%)dx
0
Xem = L b
j(w%)dx
0
2 2
A )
__2 3 __\2 3
aL+b— a+é
2
a+é
7L 2 3
N —_
™ b
a+—
2

On solving we get, b = 2a
(c) 17. (d)

X n
(a) The linear mass density A = k(zj

P-95

20.

Here ESI

With increase in the value of n, the centre of mass shift
towards the end x = L This is satisfied by only option (a).

L L L n
[xdm  [x(udv) jk(%) xdx

Yem = OL - OL - OL n
d A dv kY| ax

o e 0

{ 2 T

(n+2)L" || L(n+1)
k x}’l+1 L n+ 2
(n+1)L" 0

L
2

For n=0,xcpy =—=;n=1,

2L _» 3L
Xcm BEE n=2, Xcpr =T;....

For n — oox,,, = L

Moment of inertia of a square plate about an axis through
its centre and perpendicular to its plane is.

(b) Let o be the mass per unit area of the disc.

Then the mass of the complete disc

= o(n(2R)?)

The mass of the removed disc =c (nR?) = noR>

Let us consider the above situation to be a complete disc
of radius 2R on which a disc of radius R of negative mass
is superimposed. Let O be the origin. Then the above
figure can be redrawn keeping in mind the concept of
centre of mass as :

2 R
4noR a

0) —n0R2
(6n(2R)2) xo+(—6(nR2))R

X =
e 4ncR* — noR>
_ —TEGR2 xR
o 3noR>
R 1
Xem =3 =ch:>0¢=§

. XXX —>
(¢) Initially, m, t

m
O(origin) :



—x1)+
o mEX)+myx, myx,
my +my
Let the particles is displaced through distanced away from
centre of mass

=nmpxy) (1)

x-d x—d’
d € € d

m,

M O(origin)
o= md=x)+my(xy —d)

my +my
=0= mld—mlxl +myXxy —mzd'
my
=d'=—d
", [From (1).]

21. (a) The centre of mass of bodies B and C taken together
does not shift as no external force acts. The centre of mass
of the system continues its original path. It is only the
internal forces which comes into play while breaking.

S
22. (d = >
()AI ° 1 B

A
Y1

sz

v

F— P o2

«—«

| 1(0,0)

C
To have translational motion without rotation, the force

F hastobe applied at centre of mass. i.e. the point ‘P’has

to be at the centre of mass
Taking point C at the origin position, positions of y, and y,
arer, = 2l,r,=land ml=mand m,=2m

_my tmyy,  mx20+2mx{ 40

my +my 3m 3
23. (a) y=4Cx? :% = tan 6 = 8Cx
X
AtP, tan0=8Ca
y
L2 @ me acosd
N
0 2
""" @ Pan oMl
mg’s,
0 N X
v e}
mgsjnd 0 mgcoso

For steady circular motion

me*acosO = mgsin®

N /&ne
a
o= /Lgaczz /2gC
a

24. (c) Here, pdro’r = pgdh

:>w2]§rdr— h
_gjdh
0 0

Fdn

(Given R =5 cm)

pe o’R* 250
28 g
25. (c¢) Freebody diagram in the frame of disc
P me* (Ao +x)

me? (£ +x) = kx

mEOmZ
= X=

k —mo?
For k >> me?

2
X  m

o ko
At elongated position (x),
2
m
Foga =——

T

26. (b)
= mr(,oz

ke =m0+ x)o?

(- r=L+x here)
kx = mlo? + mxw?

2
mlw

k—mo

T X
27. (d) J.(—dT) = J.(dm)(sz
0 I

or T= _m(lo (l2 —xz)

It is a parabola between 7 and x.
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28. (b) Nsin 6=maw’(r/2) (1) The rotational speed of the drum

v \/E /10
Sp=—=, ==, —
R VR V125

The maximum rotational speed of the drum in revolutions
per minute

o(rpm) = % /% =27

34. (b) Angular momentum, mvr =I®
Moment of Inertia (I) of cubical block is given by

R
2 mzz
o _ _I" 2 2 . =—
or tan 30°= 2g I:mR__Fi R2 R
6 V2 m — 4| —
1 wzr 6 \/E
or =,
B 2 :>co—£— 3 —E—Srad/s
, 28 8R 2x03 2 '
e, 3° 35. (b) Angular velocity is the angular displacement per
. ing v:=u?+ su= o AO
29. (a) Using v-=u~+2gy [.-u=0at(0,0)] unit time i.e., @ =~
v2=2gy [.v=0X] At
Here o, = ®, and independent of f.
Y 1 2
® 36. (c¢) Angular momentum, [, = /e
X
0,0) S
2.2 2 2 Axis e ~
:y:(o X :(2><2TC) x(0.05) ~2em m
2 20 )
2 1 my?
30. (¢) mo R =Force o (Force=—7) 4
m 0"‘ o'/
N L S n+l N2 N\ S
Rn+1 o+l 5 o
R 2
Timeperiod T = 2n 2 >
®

n+l
Time period, T oc R 2
31. (b) decreasing speed

2
I =m(0)*+ m[%} x 2+ m(~21)?

32. (c¢) Torque at angle 6 _ 2mi* L omil? = 3mi>
= Mg sin 0 !
T=AMgsm D) Angular momentum L = I® = 3ml*®
Also t=la 37. (20)

lo = Mgsineé

®
M, L
ol [+ 2] o
—.a = SINov— rod —
3 SR 3
lo sin 0 3gsin0 mo—>v
= —_— g— V. o=— .. ..
3 2 2/ Before collision  After collision

33. (a) For justcomplete rotation ) o )
(2) ! P Using principal of conservation of angular momentum we

V= /Rg at top point have
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L=L,=mvL=Iw» 2
i =Ly = mv :l(i zzj 2V~ Jmgl(1 - cos6)
(v \ 2\3 51
2va=L—+mL2J0) 3 s
3 = 2mv =2mgl(1—cos0)
X
(0.9%12 5)
= 0.1x80x1=| +0.1xT o 33 o0 1-2T — coso
10 2x10 50
301 4 23
38:(_+_)03:>8=—m or, €086 =— S 0=63°.
10 10 10 50 0=03

= @ = 20 rad/sec 40. (d) Vertical force =mg

[ .
38.(9.00) Horizontal force = Centripetal force = mo” —sin 0
Here M, = 200 kg, m = 80 kg 2

Using conservation of angular momentum, L. = L ! .
i A .
: Torque due to vertical force = mgisme

I . 1
Torque due to horizontal force = mo? Esm 95 cos0

Lo, =1L,

2
I, =(1M+1m)=(%+mze2}

1
I, =5M0R2 and ®; =5 rpm

2
0, =[M0R +mR2]>< >
2

MR
2 Net Torque = Angular momentum
5R* (80+100) 2
T R2 X 100 =9 rpm. mgisine—mofisineicose=ﬂm2 sinBcos 0
. . 2 2 2 12
39. (a) Using conservation of angular momentum ;
g
( 2mi?) =cosf=——-
mVl:Lmler ml J(D :mvlzémlzco:cozg'—v 20%
3 5l 41. (d) Nettorque, T, about B is zero at equilibrium
3x6 18 ST, x100-mg x50-2mg x25=0
or, ® = =— rad/s
5x1 5 =T, x100=100mg

A = T, = 1mg (Tension in the string at 4)
M=2kg

\_ VIIIIIIIIIIINIIIIIIIIIIINIIIIINIIII/4
T Iy 'y T
! 50cm | °
25 cm
1 4 * b d B
m=1kg l
Now using energy conservation, after collision mg
1 / 7
—lo?= 2mg —(1—cos0)+mgl(1—-cos0)
2 2 2 mg
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42.

43.

44.

45.

(a) r 46.
; R
A YR—d N
'Mgi X f $a
For step up, F'xR > Mgxx
47.
x=+R*—(R—-a)* from figure 48.
2
Mg 2 2 [R—aj
Fon =—=XyR"—(R—a)” =Mg,[1-
min R ( ) g R
()
| 4 m
About point O angular momentum
=L 49.
initial final
DAV W
202 12 4
oo O 3w
TN2L 7L
(b) Given that, x =x,+a cos mt
y=Yy, tbsinat
dx
sk v/
da
, g
= v, =-ao, sin (o), an A bw, cos(w,t)
50.
dve = , dvy L
gt &~ ao’ cos (@,0), o a,=- ba?, sin (w,t)
Att=0,x=x,+ta,y=y,
a=—an, a = 0
Now, 7 =T xF =m(rx)
51.

=[(xo+ a)f+ yoi] xm(—a w12 I) =+my a (91212
(d) We have given 7 =24 —3¢%]

Flatt =2)=4i 12

Velocity, V = % =2 — 61

V(att =2)=2i -12]

L = mvrsin 04 = m(F x V)

=2(4f —12])x (27 12 ]) = 48k 52.

(d) Angular acceleration,

0-0y 25x2n-0
t 5

o=

=10 wrad/s?

t=Ia
SR o ~[2)5x1073)104)10x
=1=4 4

=2.0x 10°Nm
(a)
(¢) According to work-energy theorem

1 » 1 »
mgh= EmVB —EmVA

2gh= vg-vi

2x10x10=y3 52
= v,=15m/s
Angular momentum about O,
L,= mvr
=20x103%20
L,= 6kg.m?s

(a) Given, F = g(—i) +F—\2/§(—})

i =0i+6]

Torque due to F, force

B3

- . = A~ [ F oo FJ3, 2 -
TR = X F = 6J>{5(_1)+T(_J)J =3F(k)
Torque due to F, force
g, = (20 +3]) x Fk = 3Fi + 2F(-j)
Toet = T, + g, =3Fi+2F(—j)+3F(k)
=(3i-2j+3K)F
Torque about the origin = F=FxF
=r Fsin0=2.5=1x5sin0
sin920.5=l
2

(a)

T
0="
=%

(d) Consider a strip of radius x and thickness dx,
Torque due to friction on this strip
Net torque = >, Torque on ring

R
_( WF.2nxdx
Idt = g—nRz

2uF R’
T=—5—
R* 3
= 2uFR
3
(a) Applying torque equation about point P.
t=Ia=[2M,20)*+5M,/*]o

P-99



P-100

= 5M,gl 4 Mgl = [2M20)°+ 5 M, ]
= M,g!=(13Mg/*)a

g

53. (d) Given that, the rod is of uniform mass density and

AB=BC

Let mass of one rod is m.
Balancing torque about hinge point.
mg (CIP) = mg (CZN)

mg[ésin 6] = mg(%cose — Lsin 9]

. L
= émgLsmG =5 cos0
2 2
sinf 1 fan 6 1
c0sf 3 On tanf=7
54. (a) Balancing torque w.r.t. point of suspension
l W24
mg x = Mg 2 X
, A 0/2-X
=>mx=M—-—-Mx i
2 v
Mg
1

1 ) @m
y=0—- C  Straight line equation.

55. (a)
56. (a) Weknow that [L|=mvr|

y
T p Vv C
a \V a
l a aq Vv
a
9) X

Sl

57.

58.

59.

60.
61.

62.
64.

65.

In none of the cases, the perpendicular

distancer | is [% + a]
(a) Angular momentum,
L, = mvr sin 90°

=2x06x12x1x1
[As V'=rwm, Sin 90° = 1]
So, L, = 14.4 kgm®/s

(¢) Torque working on the bob of mass mis, T=mg x £ sin
0. (Direction parallel to plane of rotation of particle)

As 1 is perpendicular to [ , direction of L changes but
magnitude remains same.

(¢) Given: m=0.160kg

0=60°
v=10m/s
- -
Angular momentum L = rxm v
=H mv cos 6
2 .2 2 .2
v“sin“© 0
_yisint0 e |m=Y SO
2g 2g

102 xsinZ 60°x cos 60°
2x10
=3.46 kgm?/s

(a)
(a) Angular momentum L=m (v Xr)

dr o
= 2kg(axr) =2 kg(4t jx 5i—2t%])

=2kg(20tk)=2kgx—20x2m?2s 'k

=-80k

(b) 63. (d)

(¢) Angular momentum, L =Io = L =mr?®

As insect moves along a diameter, the effective mass and
hence moment of inertia (I) first decreases then increases
so from principle of conservation of angular momentum,
angular speed o first increases then decreases.

(¢) L=m(FxV)

- . ) 1 A
L :m{vo cos 01 + (v s1n6t—5gt2)j}
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66.

67.

68.

69.

70.

71.

72.

P-101

X[vo cos 01 + (v sin 0 — gt)ﬂ
= mV COSs Gt{—%gt}lé

1 .
= —Emgvot2 cos 0k

dL,

(d) We know Torque E = y
t

where L—c = Angular momentum about the center of mass
of the body. Central forces act along the center of mass.
Therefore torque about center of mass is zero.

T= d—L =0

dt

(d) Applying conservation of angular momentum /'e’ = I®
(mR* + 2MR*»)w' = mR*w®
= (m+2m)R’0 = mR’0

= [, = constt.

e
m+2M
(¢) Torque T =7 xF = (i — j)x (~Fk)
= F[-ixk+jxk] =F(j+i)=F(i+))
[Sinceléxfzjand}'xlézﬂ

(b) Angular momentum will remain the same since
no external torque act in free space.

:m’zm{

(d) We know that T =7 x F’

<X

<l

Vector T is perpendicular to both 7 and F. We also
know that the dot product of two vectors which have an
angle of 90° between them is zero.

7T =0and F-T =0
(d) Angular momentum (L)
= (linear momentum) x (perpendicular distance of the line
ofaction of momentum from the axis of rotation)
As the particle moves with velocity V along line PC, the line
of motion passes through P.

S L=mvxr
=mvx0
=0

(d) Hollow ice-cream cone can be assume as several parts
of discs having different radius, so

I[={dl =[dm(r) ()

73.

_——
H =
/

v

—>—>

From diagram,

r R R

—=tanf=— =—h ii

) an 7o r % (i)
Mass of element, dm = p(nr?)dh ...(iii)

From eq. (i), (i) and (iii),

Area of element, dA = 2nrdl = 2nr dh
cos0

2Mhtan dh

Mass of element, dm = ———
RVR* + H? cos

(here, r = htan0)

H H 2
I=\dl = | dm(?) = | p(mr*)dh R
Jar = Jan) = [t (£.4)

Tl (2] |

, MR?
Solving we get, I = >
(b) dm

Al || | B
—xX—> <>
dx

Mass of the small element of the rod
dm=\-dx
Moment of inertia of small element,

dl = dm-x° =X0(1+%)~x2 dx

Moment of inertia of the complete rod can be obtained by
integration

I=Xx j‘(x2+£\ dx
- 00( r)

¥©ooxt t VAl
=hg|—+—| =ro| —+—
3 4L 0 3 4
ThoL’
= [ = i
12 (@)

Mass of the thin rod,
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L L
3oL
M:jxdxzjxo(ui)dx: 0
L 2
0 0
g2
3L
= l(%) B l=Lmp
12\ 3L 18

74. (d) Byangular momentum conservation, L, = L ’

ol/+3/x0=40'=>n'=

-

3/» 37
P>

INIRS

1
(KE),; = 51032

(KE), = %(31 + Do

Len(s)

Io?

8

AKE =2 1607 —L10? =2 12
2 8 8

3,2

. . CAkE g 3

.. Fractional loss in K.E. KE, 1[ , 4
S [0

75. (11) Let mass of triangular lamina = m, and length of side
=/, then moment of inertia of lamina about an axis passing
through centroid G perpendicular to the plane.

I, oc ml*

I, = kml?

B
Let moment of inertia of DEF = [ . about G

2 2
m\( 1 ml 1,
Lo L] ™o =20
S, 10{4)[2) 6 1 T 6

A

m/4

76.

77.

78.

Let 1ypp = Ippr = Lgre = 15
1 51,
3L 4L =1 =3L+ =1 =1, ="
2t = 2% T 10 2776
Hence, moment of inertia of DECB i.e., after removal part
ADE

Y AN E AN
16 16 16 16
Therefore valueof N=11.

1
(20) As we know moment of inertia disc, {4, = EMRZ
@, 5y o Q]
' @iz o
I, I, Ry(M)
P Ry=R/2

Using angular momentum conservation
Loy + Lo, = +1)xo,

MR?

MR? (MRz
xm+0= +

_4

2 2.2
Tnitial K.E., K, =10 =+ MRZ | 2 - MR7®
2 20 2 4
. 1({MR> MR*)16 , MR*&*

FinalKE., K, =—| —+——|C0 =

T2 2 8 )25 5
Percentage loss in kinetic energy % loss

MR’0’ MR*®’
-4 5 100=20%=P%
MR"®»
4

Hence, value of P=20.

(¢) Let p be the density of the discs and ¢ is the thickness
of discs.

Moment of inertia of disc is given by

MR® _ [p(nR*)(]R?

I =
2 2
I < R* (As p and ¢ are same)
4
I, (R) 16
—2=L—2 >—=a*=a=2
I \R

(b) Moment of inertia of rectangular sheet about an axis
passing through O,

_M 2 2 _M 2 2
I, = 12(a +b7) = 12[(80) +(60)7]

y O!
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79.

80.

From the parallel axis theorem, moment of inertia about O,

Iy = I, + M(50)

M 2
—(80° +60
lo___ 1 b1
.M
To (807 +60%)+ M (50)? 4
(¢) Let there be a cylinder of mass m length L and radius
R. Now, take elementary disc of radius R and thickness dx
at a distance of x from axis OO' then moment of inertia
about OO' of this element.
0
R
| ;
dx :Ol
R2
dl = dm +dmx?
R2 L2y,
:>1=jd1=jd’" v [ Savxa’
4 L
n=L/2
, MR*  MI?
Given: [ = +—
12
M VvV M MV MI?
=>I=—x—+ =1= +
4 nL 12 4l 12
dl mV M x2L
—=————+—""-2=0
dL 41':L2 12
2 2
=V ="ql = nR’L="nL
3 3
L_3
"R \2
(25)

Moment of inertia of the system about axis XE.

G

«— g —>

I=1p+1p+1;
_ 2 2 2
=1=m(rg) +m@rp)” +m(rg)

25

2
:>I=m><02+m(%) +ma® :%ma2 =" ma

20
SN =25,

81.

82.

83.

(b) Initial angular momentum = /;®, +/,®,

Let ® be angular speed of the combined system.
Final angular momentum = /0 + /,®

According to conservation of angular momentum

,+ L))o =1o,+1,0,

Lo, +Lo, 0.1x10+02x5 20
> W= = = —
I +1, 0.1+0.2 3

Final rotational kinetic energy

2
1 1 1 20
Kf 25[10)2 +E[2(,l)2 25(01+02) X(?)

Moment of inertia about ‘O’

{3t (3]

13

210=—Md2

10

2 2
And I, =2 EM[EJ +Md* +3M[i]
512 5712

21A=§Md2

10

13 2
.[_O_EMd BE
Iy By 2

10

(15) Here, length of bar, |=1m

angle, 6=30°

APE = AKE or mgh = %I@z

P-103
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84.

8S.

86.

87.

(a)

(a)

(c)

(a)

= m=+/15 rad/s

Using principal of conservation of energy

1 1
(m —my)gh =E(m1 +m2)v2 +51w2

1 1
—  (m—my)gh= E(ml +my)(@R)? +Elc02

(- v=0R)
2

()]
= (m —my)gh =

2 —
o oo |2l —my lgh
(ml + my )R +7

When the bob covered a distance ‘h’

(my + m2)R2 +1
[ ]

1 1
Using mgh =Emv2 +51m2

2

1 1
= Em(mr)2 +Ex%x o~ (0 v=or no slipping)

3
= mgh= > motr?

4
4
oo 180 _1 4k
32 r\ 3
Moment inertia of the rod passing through a point

0
7 away from the centre of the rod

I=1Ig+m??
2 2 2
oMy 2 IME
12 16 48
2
TMI
Using I = MK 2= 23 (K = radius of gyration)
= K= ll
\ 48
Given,

mass per unit area of circular disc, 6 =4 + Br
Area of the ring = 2 mrdr

Mass of the ring, dm = o2nrdr

Moment of inertia,

1= Idmr2 = I62nrdr.r2

r 3 Aa*  Bd
= 1=2nj(A+Br)r dr =2m| = —+=—
0

= I=2na4{£+&}
4 5

b
88. (c) 1= | (dm)

la

b
_ I[&xﬁcr drjrz_znﬂ“ﬁ b
a r 3

2
- %(lﬁ —a’)

Mass of the disc,

b
S0
m= J.szTU"dl’ :27'500 (b—a)
a

Radius of gyration,
1

k — J—
m

_|@roy /3 —d®)  a? b +ab
2nco(b—a) 3

89. (d) Asno external torque is acting so angular momen-

tum should be conserved
(I, + L) o=I,®, + Lo, [, = common angular velocity
of the system, when discs are in contact]

Loy
. _Il(})l‘l' 4 [szjw
C_—I_ N 1
el 4 3

1 2 1o 1. 9
Ef _Ei :5(11 +12)(DC —EII(DI —5120)2

50)1
Putl,=1/2and o, = wa Sm,/6
We get :
2
Lo
Er—E =_-171
Y,
90. (b) As from the question density (c) = kr?
R 4 4
R kR
Mass of disc M = I(krz )2nrdr = 2nk — = T
4 2
0
2M
>k=—— :
R4 (1)

.. Moment of inertia about the axis of the disc.
1= [dl=[(dm)r* = [cdAr®
= [(kr*)(2mrdr)r?

. [M j ‘
R 6 4
= I2nk rdr = kR~ _ R = EMRz
3 3
[putting value of k from eqn ....(1)]

0
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91. (b) Using parallel axis theorem
1 1}_ 16mp, R’

Sphere (Disk) 2R Sphere SI=10+ MR* = 27TP0R5 [_ +

35 15
8[2 1., 8.,
— e 5{3 Po } 5
96. (b)
97.

(d) According to parallel axes theorem

4 p3 v
V =—nR A
3 [ 8 J I= %mR2 +mx’
I = [mj @ R)2 1 _ [l % 4j MR? = EmR2 Hence graph (d) correctly depicts [ vs x.
8 2 \16 8 98. (a) Letmass ofthe larger triangle=M
I - E[Mj 2 Side of larger triangle = ¢
27508 Moment of inertia of larger triangle = ma?
2(M\[R*) MR* , M
S>h=—|—|—F7|=—— Mass of smaller triangle= "7
508 4 80
4 4 o oles L
Ew3p _ 18R N Length of smaller triangle = 5
—r—RD Moment of inertia of removed triangle
i)
It e
_1_14><80=140 419 )
s 4[5
1. 5 5 Liemoved — i 2
92. (d) EI(D =kQ Ioriginal M (3)2
1
I -0
or ®= 2_[]( ] 0 removed ~ Tg
So,1=1,—10 _ 1o
or o = d_(&) = z [d_Q = 2_k Q) 99 b 16 16
s 1 t 1 - () 40
% % 6 20 Q }—) a=Ra
! 1) . f
93. (b) w=oar=20¢ From newton’s second law
1. 5 40+f=mRey .. (1)
Given, 5[ o” =1200 Taking torque about 0 we get
1 40 xR-fxR=1Ia
0r5><1.5><(20t)2 =1200 40xR—_fxR=mR2q,
94. (¢) Lo= 1o, olving equation (i) and (ii)
- 2 _ 40 =16rad/s’
ML2 ML2 L O(—ﬁ— rad/s
— |0g =| —+2m| — | |®
ol 0 12 2) |
o . , MR?
Mo 100. (b) Moment of inertia of disc D, about OO’ =1, =
o, = [ 0 j 2
I\ M+6m M.O.10f D, about 0O’
95. (¢) Takinga circular ring of radius » and thickness dr as a 1{ MR> MR
mass element, so total mass, =1, _5[ 5 ] +MR? :T+MR2
A 2np R
M = [ pyrx 2mrdr = P02 M.O.I of D, about 0O’
0 2 2
5 -1 CUMRE R MR R
2npyR 3020 2 4

R
I = IpOrXZerrxrz =
0
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so, resultant M.O.Iabout OO" is [=1, + 1, + I,

2 2
:I:Mf +2(MR +MRZJ
MR’ MR’

+ 5 pOMR? =3 MR?
2 2
101. (a) ForBall

using parallel axes theorem, for ball moment of inertaia,
22

2 2 2 2
L = SMR +M(2R) =5 MR

22
For twoballs I , =2x 5 MR2=and,

M(2R)’ 2
Irod= —( ) =MR
12 3
Isystem = Iballs t Irod
2
_ By MRE_D3T e
5 3 15

k
102. (¢) As we know, (D=\/;

SE
m/ 3

m/2, 4 m

€, ©

2% CM //3

& S S

7

%) il
Tension when it passes through the mean position,

3k l 2
=mw2eg£ =m—26(2)— =ﬂ
3 o mes 3y
103. (d)
=50 cm Initial position
30°

1
Final position

By the low of conservation of energy,
P.E. of rod = Rotational K.E.

l . |
mg ESanZEIm

l . 1 m¢* , {1
:>mg§Sm30°:— o Dmg—x—=0

2 3 2 2 23
For complete length of rod,

) =1/3g/2(2f)=\/?rods_1

104. (d) Using parallel axes theorem, moment of inertia about ‘O’
I,=1,,+md

_ TMR?

2
+6(M><(2R)2):551\;[R

Again, moment of inertia about
point P, Ip:Io +md?

181

2
_MRT L MEGR)? = = MR?

105. (a) Let o be the mass per unit area.

The total mass of the disc
=oxTR2=9M
The mass of the circular disc cut

8]
= OXT|— =0
3

Let us consider the above system as a complete disc
of mass 9M and a negative mass M super imposed
on it.

Moment of inertia (/,) of the complete disc =

1
E9MR2 about an axis passing through O and

perpendicular to the plane of the disc.
M.I. of the cut out portion about an axis passing
through O' and perpendicular to the plane of disc

2
:lxMx(E)
2 3

M.I. (I,) of the cut out portion about an axis
passing through O and perpendicular to the plane of
disc

e (3]

[Using perpendicular axis theorem]
.. The total M.1. of the system about an axis passing
through O and perpendicular to the plane of the disc
is
I=1,+1,

2 2
_ Lomr? - lxMx(Ej +Mx(£j
2 2 3 3
_ 9MR* 9MR*  (9-1)MR’
2 18

= 4MR>
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106.

107.

108.

109.

(c) Aswe know, moment of inertia ofa disc about an axis
passing through C.G. and perpendicular to its plane,
_ mR?

1 -

22
Moment of inertia of a disc about a tangential axis
perpendicular to its own plane,

o (@
I, ==mR
* 72 DO,

r

. mR? /3mR?
IZ/IZ :2/ :1/3

2
When the rod makes an angle a

(a)

. /
Displacement of centre of mass = Ecosoc

/ /
mgacosoc = 510)2

2

/ ml®= 5
mg—coso =——
2 6

(*~ M.L of thin uniform rod
about an axis passing through its centre of mass and

2
perpendicular to therod 7 = %)

= o= f3gclosa

Speed of end = @ x/=,/3gcosal

i.e., Speed of end, ® oc+/cosa

(¢) As we know, moment of inertia of a solid cylinder
about an axis which is perpendicular bisector
I = mR2 +m_12
412 R
LI PN 250 0
4 3 ) ! >
_ﬂ K+£ ﬁ_ﬂ[i+2_l:|_0
T4lm 3| T a 4la 3
V _ 21 21'5[3
23 VT3
an* 1 3 1 [3
R = ul =2 or, —=,|=

:_
3 "R 2R \2

(b) According to theorem of perpendicular axes, moment
ofinertia of triangle (ABC)

I,=km? . (1)

BC=1

Moment of inertia of a cavity DEF

110.

111.

112.

P-107

From equation (i),
Ty
Ipgp =—
DEF 16
Moment of inertia of remaining part
b 151
I L0

remain — 10 _16 = 16
(b) Moment of Inertia of complete disc about 'O' point
MR?
Liotal = ——
Radius of removed disc = R/4
Mass of removed disc = M/16
[As M oc R?]
M.I of removed disc about its own axis (O')
_IM(R)?_ e

216\ 4 512

M.I of removed disc about O
removed disc = Icm + sz

_ MR? M(g)z _19MR?
512 16\ 4) 512

M.I of remaining disc
2
remaining = MR - EMR2
2 512

2
:ﬂMRz
512

2
(a) Herea=—f4=R

NG

4 3
—nR
Now, ﬂ: 3
M3
4 3
ERR NE) T
= 3 —TTC. a
5 l
NE)
2M

M

i

Moment of inertia of the cube about the given axis,
M'a®

B

I

oM [2 Jz

—— x| =R 2

_ B (3 _AMR™
6 9\/§n

(d) For a thin uniform square sheet

_ _ _ ma2
heh=hm g




o108
o ) M.I. of complete disc can also be written as
113. (¢) Kinetic energy (rotational) KR = EI(D ITotal =1 removed hole + Iremaining disc
o 1. _ 3MR? )
Kinetic energy (translational) KT = EMV (V = R(D) Total — remaining disc ...(ll)
M.L G iiaty Ling = MR? @,y = © Fromeq. (i and2(11),
M.L I = 2 2 1 > 3MR
(new) * (system) MR~“ +2mR MR ="+ [remaining dise
2 32
, Mo =

114.

115.

116.

@ (sysem) " M4 2m
Solving we get loss in K.E.
_ Mm
(M +2m)
(b) As L=Iwso L increases with increase in .

Kinetic eNEIY 1o tational) depends on an angular velocity
‘®’ and moment of inertia of the body /.

2R2

ie, KE. ~Le?
( )

rotational

1.
(b) K'Erotational = 5[(’)

12 5 ( 2 2)
=—Zwr'd® | 1Isol =—mr
25 Solid sphere 5

K.E

2
translational — Emv
. K 'Erotational _ g
- K.E 5

Hence option (b) is correct

translational

(d) M.L of complete disc about its centre O.

1

—— 2 .
ITotal o 2MR ()

Circular hole of
diameter R (radius = R/2)

Disc mass = M
radius = R

Mass of circular hole (removed)
M

(As M =nR* . M « R

M.I. of removed hole about its own axis

2
_ l[%) [5) - LMRZ
2\ 4 2 32

M.I. of removed hole about O’

_ 2
Iremoved hole — Icm + mx

_ MR +M[5)2
32 4\2

MR® MR® _3MR’
32 16 32

117.

118.

119.

Iremaining disc

2 2
_ MR” _3MR :[E)MRZ

2 32 32
(b) For translational motion,
mg—T=ma .. (D
For rotational motion,
TR=1a
m
T
m
mg

1
= TR= EmR2oc

Also, acceleration,  =Ra

1 1
ST =—mRo =—ma
2 2

Substituting the value of T is equation (1) we get mg -

1 2
—ma=ma=>a=—g
2 3

(a) Given,

Force, F = (20¢—5¢%)
Radius, »=2m
Torque, T=rf=Io
= 2(20¢—52)=100.
La=4t-F

32—@:41—12 :>T dco:j' (4t—tz)dt
! 0 0
:>w=2t2—§ (asw=0atr=0, 6s)
0 6( 5 t3\

{d@:{ th —;Jdt

36
=0=36rad=2rn=36= ”=£<6

(©) rm

\ N

Reference
DN \level for P.E.

NP

>|



System of Particles and Rotational Motion

120.

121.

1
The moment of inertia of the rod about O is Em/? 2 . The

1
kinetic energy of the rod at position A = ) Io? where I'is

the moment of inertia of the rod about O. When the rod is in
position B, its angular velocity is zero. In this case, the
energy of the rod is mgh where 4 is the maximum height to
which the centre of mass (C.M) rises

Gain in potential energy = Loss in kinetic energy

1(1
. mgh= %lmz =—(—m12j o’

23
2.2
= p o
6g
2
1 M
@) I, =——M(a® +a°)="——
12
n m
A
D
B
C
n' m
DB _2a _ a

Also, DO= —

so, > RN
By parallel axes the orem, moment of inertia of plate about
an axis through one of its corners.

2 2 2
a Ma®~ Ma
mm':[nn'+M[_'§] = 6 +T

2 2
_Ma” +3Ma =2Ma2
6 3
(d) Bythetheorem of perpendicular axes,
I=I+1o
Here, /is the moment of inertia of square lamina about an
axis through O and perpendicular to its plane.

1= I (By Symmetry of Figure)

zZ
Y
D'\/F C

I

|
AL
\ X
O
P
2R
2N,
KA AN
SN
. y

I .
Lo = = L
EF =5 ®

122.

123.

124.

125.

P-109

Again, by the same theorem /=1, +1,,=21, -

(- 1= I, by symmetry of the figure)
1 ..
IAC = 5 ...(ll)

From (i) and (ii), we get, I, = 1 ;-

S
U
oo n

I,.,= M.I due to the point mass at B +
M.I due to the point mass at D +
M.I due to the point mass at C.

on ()
o

2
=1, =2x m[%} +m(x20)

=ml%+2ml? =3ml?
(¢) Thedisc may be assumed as combination of two semi
circular parts. Therefore, circular disc will have twice
the mass of semicircular disc.

1
Moment of inertia of disc = 3 (2m)r?=Mr?

Let / be the moment of inertia of the uniform semicircular
disc

Mr?

= 20=2M" = 1=
(a) The moment of inertia of solid sphere 4 about its
diameter [ 4 = %MRZ.

The moment of inertia of a hollow sphere B about its
diameter /g = %MR2 .
sy < Ip

M
(d) We know that density ()= -5
volume(V")

M =dxV=dx(nR*xt).
The moment of inertia of a disc is given by I = EMRZ

1 1
1= EMfo = (dx nR* x )R?
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_ ﬂ_d i R 129. (a) K.E ofthe sphere=translational K.E + rotational K.E
2 2, 1.9
=—mv  +—Io
I, :%MyRi :%{n(4R2)(%) d}x(4R)2 2 2
Where, /=moment of inertia,
Iy ty R§( (xR 1 o = Angular, velocity of rotation
. o yaliale ; ) m = mass of the sphere
Y tyRy 2 x (4R) v = linear velocity of centre of mass of sphere

126.

127.

128.

1
(a) Rotational kinetic energy = 51 o’ ,

L
Angular momentum, L=Io = [ =—
)

CkE=1L o2t
2 2
_ 2KE
B (O]

When o is doubled and K.E is haled.
New angular momentum,

2K.E
2
L=——
20
L
L'==
= 4

(a) M.Iofacircular wire about an axis nn' passing through
the centre of the circle and perpendicular to the plane of the

circle= MR? Z
n Y

As shown in the figure, X-axis and Y-axis lie along diameter
ofthe ring . Using perpendicular axis theorem

I+1,=1,

Here, [,and / Y are the moment of inertia about the diameter.

=21, =MR*> [ I,=1I,(by symmetry)and I,= MR]
)

o Iy= 5 MR

(c) Moment of inertia of circular disc

1
I, =—MR?
2

When two small sphere are attached on the edge of the
disc, the moment of inertia becomes

1
I, = EMR2 +2mR?

When two small spheres of mass m are attached gently,
the external torque, about the axis of rotation, is zero and
therefore the angular momentum about the axis of rotation
is constant.

1
Il(})l 212(})2 = W) =[_1(Dl
1 5 2
LWy = EMR W = M (O]
2 Y Madm !

X
%MRZ +2mR?

130. (50) For the box to be slide

131. (¢)

2
-» Moment of inertia of sphere { = ngz

- K.E :lmv2 +%><%mR2 x @’

R

1(2 v 2
:>KE:—(—mR2+mR2j(—j
205 R

2
2KE=lmR2><Z><v—:l><l><£
2 5 R2 10 2 104

1 1 2 v 2 v
:>K.E:—mv2 +—><—mR2>< — TO=—
2 25 R

= KE =3T45><10_4 joule

= KE=8.75%10*joule

F=pmg=0.4mg T vF
For no toppling i
a a <
Fl—=+b|<mg— 2
[2 j 2 f I;zg TN

a a
= 04mg|—+b|<mg—
o b )<

= 02a+04b<05a

:>2SE
a 4

i.e. b<0.75 a but this is not possible.
As the maximum value of b can be equal to 0.5a4.

100b
a

50

For sphere,

1 1
Emv2 +lw*= Emgh

2

1 1(2 2 V2 Tv

— 2+ — | —=mR* |— = mgh = —

or 2mv+ Z[Sm ij mgh or h 10g
For cylinder
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h v /10g 14

R 32 /4g 15

1 1
132.(Bonus) mgh =5mvgm +Elcm0)2

1 - 1 Vem 2
:Emvcm+5[cm R

_ 1 lcm 2
_E[W - ]

1 mR? | 5
Forring: mgh =5 m+—==\Vep

R2

2
Vem .

Sh=

oQ

1 mR? )
For solid cylinder, mgh =75| M+ =5 |Vem

2R?
2
he 3V,
4g
_1f, .2 mR? 2
For sphere, mgh =7 5 g2 | m
7vczm
10g
. . 3.7
Ratio of heights 1:—:—=20:15:14
4 10
133. (d) —>»a
@ » F
Fr
F—fr=ma .(0)
2
R
fR=Io= ——a (i)
! 2
for pure rolling
a=oR ...(iif)
from (1) (2) and (3)
mRo

F———=moR
2

P-111

F = émRot
2
2F
o=—
3mR

134. (¢) Asshown in the diagram, the normal reaction of AB
on roller will shift towards O.
This will lead to tending of the system of cones to turn
left.

ma=F—f (1)

And, torque t = la

2
mR
22 o=
2 /R

- = (i)
Put this value in equation (i),

ma:F—ﬁor F:3-m_a
2 2

136.(d) As we know,

. mg sin O
Acceleration, a = mgsmy

m+ !
r2

M.g.sin®;,  M_.g.sin 6,
2 T o2
M_.R
1\/[C+l ¢ M +MCR
2 R? ¢ oR2

For cylinder, a; =

2 .
or, ac = Eg sSin GC

For sphere,
B Msg sin es _ Msg sin 65
s I 2 MR?
M, + —; M, +g 5
r R
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5 .
or, as=— gsin 0
7
given, a_ = a

: 2 . 5 .
ie., 5gsmeC =7gs1n6S

sin O

From conservation of angular momentum about any fix
point on the surface,
mrz(;)0 =2mro

5

sin 6, _ig_g
2, 1
3

= w:w0/2:>V=% ['.'v:rm]

138. (b) Velocity of the tennis ball on the surface of the earth

or ground

2gh
£ 5~ (where k = radius of gyration of spherical

e

shell = \/%R )

Horizontal range AB =

v? sin 20

g

2
2gh .
———— | sin(2x30°
[ 1+k* /R? J ( )
= =2.08m
g

(b) When body rolls dawn on inclined plane with
velocity V,, at bottom then body has both rotational
and translational kinetic energy.

Therefore, by law of conservation of energy,

PE =KE__ +KE

trans rotational

139.

= lmV02+lloaz
2 2

140.

141.

1 1 v
—mV§¢ +—mk* % .0
2 2 Rg
remo= !
Ry

When body is sliding down then body has only
translatory motion.

S PE =KE

trans

IEENS
274 ?

Dividing (i) by (i) we get

2
%mvg {1 + Kz}
PE. Ry 25

- 2
PE. %X%XmVoz 16 RS Ry 16

)

3
OI',K: —Ro.
4

(d) Minimum velocity for a body rolling without slipping

(b) Acceleration of the body rolling down an inclined
plane is given by.
_ gsin0
1
MR?

1+



