Chapter 3

Classification of Elements and Periodicity in Properties

Solutions

SECTION - A

Objective Type Questions

(Modern Periodic Law and The Present form of The Periodic Table)

- 1. Ca²⁺ is isoelectronic with
 - (1) Mg²⁺ (2) Kr (3) Ar (4) Na⁺
- Sol. Answer (3)

Isoelectronic means same number of electrons.

Ca²⁺ = 18

Ar = 18

- 2. An atom of an element has electronic configuration 2, 8, 1. Which of the following statement is correct?
 - (1) The valency of element is 7
 - (2) The element exists as a triatomic molecule
 - (3) The element is metalloid
 - (4) The element forms basic oxide
- Sol. Answer (4)

Electronic configuration indicates that 1 e⁻ is present in outermost shell.

It will easily lose electrons

 \therefore It is metal and form basic oxide

$$2 \operatorname{Na} + \frac{1}{2} \operatorname{O}_2 \longrightarrow \operatorname{Na}_2 \operatorname{O}$$

- 3. The symbol of element with atomic number Z = 109
 - (1) Unp (2) Uns (3) Uno (4) Une
- Sol. Answer (4)

109 = Une

4.	Pd has except	tional electro	nic configuration of 4	d ¹⁰ 5s ⁰ . It	belong	to		
	(1) 4 th period,	group 11		(2	2) 5 th p	eriod, group 10		
	(3) 6 th period,	•		(4	, . 4) 3 rd p	eriod, group 16		
Sol	Answer (2)	0		,	, 1			
		⁾ member of	4d series i.e., 5th per	iod and 10	0 th grou	ıp.		
5.	All elements ir		•		U			
	(1) Three con			(2	2) Thre	e complete subshe	ells	
	(3) Three vale	ence electron	S	(4) 1) Thre	e electrons less th	nan oct	et
Sol	Answer (2)							
	3rd period = 3	3d ¹⁰ , 3s ² , 3p ⁶	three subshells are I	ast electro	ons ent	ers in <i>d</i> -subshell.		
	∴ It is <i>d</i> -bloo	-						
6.	Which one of	the following	represents a d-block	element?	,			
	(1) [Rn] 6d ¹⁰	7s² 7p²		(2	2) [Xe]	4f ¹ 5d ¹ 6s ²		
	(3) [Xe] 4 <i>f</i> ¹⁴ 5	5d ¹ 6s ²		(4	4) [Xe]	5d ¹ 6s ²		
Sol	Answer (4)							
	Last electrons	enters in d-	subshell					
	∴ It is d-bloo	ck elements.						
7.	Which of the f	ollowing set	of atomic number rep	resents or	nly repr	esentative elemen	ts?	
	(1) 55, 12, 48	3, 53		(2	2) 13, 2	23, 54, 83		
	(3) 3, 33, 53,	87		(4	4) 22, 3	33, 55, 66		
Sol	Answer (3)							
	Representative	e element ind	cludes S \propto p-block					
	Li at no. = 3	1 <i>s</i> ², 2 <i>s</i> ²						
	As at 33	1 <i>s</i> ², 2 <i>s</i> ², 2µ	0 ⁶ , 3 <i>s</i> ² , 3 <i>p</i> ⁶ , 4 <i>s</i> ² , 3 <i>d</i> ¹⁰	, 4 <i>p</i> ³				
	l at 53	5s², sp ⁵						
	Fr at 87	7s ¹						
8.	Which of the f	ollowing pair	s of atomic numbers	represents	s eleme	ents belonging to the	he sam	ne group?
	(1) 11 and 20		(2) 12 and 30	(3	3) 13 a	nd 31	(4)	14 and 33
Sol	Answer (3)							
	Atomic numbe	-						
	Atomic numbe	C C	·					
9.		of elements p	present in 5th period o	of modern	ı period	ic table is		
	(1) 2		(2) 8	(3	3) 18		(4)	32
Sol	Answer (3)							
			nts are present in fifth	period <i>i.e</i>).,			
	2, 8, 8, 18	8, 18, 32						
	1 st 2 nd 3 rd	k f f						
	³ 4	th 5 th 6 th						

(Periodic Trends in Physics Properties)

- 10. The electronegativity follows the order
 - (1) F > O > Cl > Br(2) F > Cl > Br > O(3) O > F > Cl > Br(4) Cl > F > O > Br

Sol. Answer (1)

F > O > Cl > Br [down the group e⁻ negativity decreases] left to right e⁻ negativity increases

:. F have more electron affinity than 'O',

```
O have more than Cl due to same
Cl and Br have less
```

11. The correct order of shielding effect of s, p, d and f orbitals is

(1)
$$s > p > d > f$$
 (2) $s f$ (3) $s (4) $s > p < d < f$$

Sol. Answer (1)

s is more closer to nucleus *i.e.*, shielding effect α distance from nucleus.

 \therefore s > p > d > f

- 12. Which of the following statement is incorrect?
 - (1) The ionization potential of nitrogen is greater than that of oxygen
 - (2) The electron affinity of fluorine is greater than that of chlorine
 - (3) The ionization potential of Mg is greater than aluminium
 - (4) The electronegativity of fluorine is greater than that of chlorine
- Sol. Answer (2)

Electron affinity of F is less than chlorine because of smaller size more will be the repulsion towards new electron.

- 13. Increase in atomic size down the group is due to
 - (1) Increase in number of orbit
 - (2) Increase in number of protons and neutrons
 - (3) Increase in number of protons
 - (4) Increase in number of protons, neutrons and electrons
- Sol. Answer (1)

On moving down the group no. of shells are added

- .:. Size increases
- 14. In which of the following pairs the radii of second species is greater than that of first?
 - (1) K, Ca
 - (2) H, He
 - (3) Mg⁺, Mg²⁺
 - (4) O²⁻, O⁻
- Sol. Answer (2)

He has more size than 'H' because of $(1s^2)$ completely filled s-subshell.

- 15. The successive ionization energies for element X is given below

Find out the number of valence electrons for the element X.

(1) 3 (2) 4 (3) 2 (4) 1

Sol. Answer (4)

Difference between IE_1 and IE_2 is high then the number of valence electron in the element is one.

16. If you are given Avogadro's number of atoms of a gas 'X'. If half of the atoms are converted into $X_{(g)}^{+}$ by energy ΔH . The IE of X is

(1)
$$\frac{2\Delta H}{N_A}$$

(2) $\frac{2N_A}{\Delta H}$
(3) $\frac{\Delta H}{2N_A}$

(4)
$$\frac{N_A}{\Delta H}$$

Sol. Answer (1)

 $\frac{1}{2}$ N_A atoms have ionisation energy = Δ H

 N_A atom have ionisation energy = $\frac{\Delta H \times 2}{N_A}$

 Find the formula of halide of a metal whose successive ionization enthalpies are x, 2x, 5x, 100x kJ mol⁻¹ respectively

(1) MX (2) MX_2 (3) MX_3 (4) M_2X

Sol. Answer (3)

There is large difference between 3rd and 4th I.E.

 \therefore +3 oxidation state will be more stable and the formula of halide is MX₃.

- 18. Which of the following equation represents first enthalpy of ionization ?
 - (1) $\operatorname{Hg}_{(s)} \longrightarrow \operatorname{Hg}^{+}_{(g)} + e^{-}$ (2) $\operatorname{Hg}_{(l)} \longrightarrow \operatorname{Hg}^{+}_{(g)} + e^{-}$ (3) $\operatorname{Hg}_{(g)} \longrightarrow \operatorname{Hg}^{+}_{(g)} + e^{-}$ (4) $\operatorname{Hg}^{+}_{(g)} \longrightarrow \operatorname{Hg}^{-}_{(g)}^{2^{+}} + e^{-}$

Sol. Answer (3)

I.E. is the amount of energy required to remove an electron from an isolated gaseous atom.

- The energy required to convert all atoms present in 1.2 g magnesium to Mg²⁺ ions if IE, and IE₂ of magnesium are 120 kJ mol⁻¹ and 240 kJ mol⁻¹ respectively
 - (1) 18 kJ (2) 36 kJ (3) 360 kJ (4) 24 kJ

Sol. Answer (1)

	Moles of Mg = $\frac{1.2}{24}$ = 0.05 moL		
	$\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+} + 2^{\mathrm{e}-} \qquad \qquad \mathrm{I.E.} = \mathrm{I.E_1} + \mathrm{I.E_2} = 120$	0 + 240	
	1 moL = 360 kJ/moL		
	0.05 moL $\xrightarrow{\text{energy required}}$ = 360 × 0.05 = 18	3 kJ	
20.	The process requiring absorption of energy is		
	(1) $F \rightarrow F^-$	(2) $H \rightarrow H^+$	
	(3) $CI \rightarrow CI^{-}$	(4) $O \rightarrow O^-$	
Sol	. Answer (2)		
	I.Energy is the absorption of energy.		
21.	The least electronegative element has the following ele	ectronic configuration	
	(1) ns^2np^5 (2) ns^2np^4	(3) ns^2np^3 (4) ns^2np^6	
Sol	. Answer (4)		
	Full filled electronic configuration element do not attract	ct electron	
	<i>i.e.,</i> ns ² , np ⁶		
22.	Which of the following is correct order of metallic chara	acter for Si, Be, Mg, Na and P?	
	(1) P < Si < Be < Na < Mg	(2) P < Si < Be < Mg < Na	
	(3) Na > Be > Mg > Be > P	(4) Na > Si > Mg > Be > P	
Sol	. Answer (2)		
	Left to right metallic character decreases		
	Top to bottom metallic character increases		
	P (less metallic due to smaller size) < Si < Be < N		
23.	With which of the following electronic configuration an		
	(1) $1s^2 2s^2 2p^3$	(2) $1s^2 2s^2 2p^6 3s^1$	
0.1	(3) $1s^2 2s^2 2p^6$	(4) $1s^2 2s^2 2p^5$	
	Answer (2)	· · · · · · · · · · · · · · · · · · ·	
24.	The electronic configuration having maximum difference	-	
	(1) $1s^2 2s^2 2p^6 3s^2$ (3) $1s^2 2s^2 2p^6 3s^2 3p^2$	(2) $1s^2 2s^2 2p^6 3s^2 3p^1$ (4) $1s^2 2s^2 2p^6 3s^1$	
Sal		(4) $1s^2 2s^2 2p^3 3s^3$	
301	Answer (4) After removing $1 e^{-}$ it will get stable peble gas configure	ration	
25	After removing 1 e^- it will get stable noble gas configur The electronic configurations of the elements X X Z		oct
25.	The electronic configurations of the elements X, Y, Z a metallic character?	and a are given below. Which element has the highe	51
	(1) X = 2, 8, 4	(2) Y = 2, 8, 8	
	(3) Z = 2, 8, 8, 1	(4) J = 2, 8, 8, 7	

Sol. Answer (3)

Element Z have 1 electron in 4th shell

: it will easily lose to get noble gas configuration.

SECTION - B

Previous Years Questions

The element Z = 114 has been discovered recently. It will belong to which of the following family group and 1. electronic configuration? [NEET-2017]

(2) Carbon family, [Rn] $5f^{14}6d^{10}7s^27p^2$

(4) Nitrogen family, [Rn] 5f¹⁴6d¹⁰7s²7p⁶

- (1) Halogen family, [Rn] 5f¹⁴6d¹⁰7s²7p⁵
- (3) Oxygen family, [Rn] $5f^{14}6d^{10}7s^27p^4$
- Sol. Answer (2)
 - Z = 114 belong to Group 14, carbon family
- In which of the following options, the order of arrangement does not agree with the variation of property indicated 2. against it? [NEET-2016]
 - (1) Li < Na < K < Rb (increasing metallic radius)
 - (2) $AI^{3+} < Mg^{2+} < Na^+ < F^-$ (increasing ionic size)
 - (3) B < C < N < O (increasing first ionisation enthalpy)
 - (4) I < Br < CI < F (increasing electron gain enthalpy)

Sol. Answer (3 & 4)

For option (3) :

The correct order for 1st ionisation energy is B < C < O < N.

For option (4) :

The correct order for magnitude of electron gain enthalpy is I < Br < F < CI

The species Ar, K⁺ and Ca²⁺ contain the same number of electrons. In which order do their radii increase? 3.

[AIPMT-2015]

(1) $K^+ < Ar < Ca^{2+}$	(2) Ar < K ⁺ < Ca ²⁺
(3) Ca ²⁺ < Ar < K ⁺	(4) Ca ²⁺ < K ⁺ < Ar

- Sol. Answer (4)
- Which of the following orders of ionic radii is correctly represented ? 4
 - (1) $H^- > H^+ > H$ (2) Na⁺>F⁻>O²⁻
 - (4) Al³⁺>Mg²⁺>N³⁻ (3) O²⁻ > F⁻ > Na⁺

Sol. Answer (3)

- 5. Identify the **wrong** statement in the following.
 - (1) Atomic radius of the elements increases as one moves down the first group of the periodic table
 - (2) Atomic radius of the elements decreases as one moves across from left to right in the 2nd period of the periodic table
 - (3) Amongst isoelectronic species, smaller the positive charge on the cation, smaller is the ionic radius
 - (4) Amongst isoelectronic species, greater the negative charge on the anion, larger is the ionic radius
- Sol. Answer (3)
 - In isoelectronic species *i.e.*, same number of electrons.

(more the positive charge; smaller will be the size) more the negative charge; larger will be the size

[AIPMT (Prelims)-2012]

[AIPMT-2014]

6.	What is the value of electron gain enthalpy of Na^+ if IE	E ₁ of Na = 5.1 eV?	[AIPMT (Mains)-2011]
	(1) +2.55 eV	(2) +10.2 eV	
	(3) -5.1 eV	(4) -10.2 eV	
Sol	Answer (3)		
	Electron gain enthalpy is negative of I.E. <i>i.e.</i> , -5.1 eV		
7.	Which of the following represents the correct order of ind elements O, S, F and CI ?	creasing electron gain enthalpy	with negative sign for the [AIPMT (Prelims)-2010]
	(1) CI < F < O < S	(2) O < S < F < CI	
	(3) F < S < O < Cl	(4) S < O < Cl < F	
Sol	Answer (2)		
8.	The correct order of the decreasing ionic radii among th	e following is electronic species	sare
			[AIPMT (Prelims)-2010]
	(1) Ca ²⁺ > K ⁺ > S ^{2−} > Cl [−]	(2) Cl ⁻ > S ²⁻ > Ca ²⁺ > K ⁺	
	(3) S ²⁻ > Cl ⁻ > K ⁺ > Ca ²⁺	(4) K ⁺ > Ca ²⁺ > Cl ⁻ > S ²⁻	
Sol	Answer (3)		
9.	Among the elements Ca, Mg, P and Cl, the order of ir	ncreasing atomic radii is	[AIPMT (Mains)-2010]
	(1) Mg < Ca < Cl < P	(2) CI < P < Mg < Ca	
	(3) P < Cl < Ca < Mg	(4) Ca < Mg < P < Cl	
Sol	Answer (2)		
	Mg P Cl ∫left to right size decrease down the group size incr	es reases∫	
	i.e., Ca > Mg > P > Cl		
10.	Amongst the elements with following electronic configurate energy?	ations, which one of them may h	ave the highest ionization [AIPMT (Prelims)-2009]
	(1) Ne [3s ² 3p ²]	(2) Ar [3d ¹⁰ 4s ² 4p ³]	
	(3) Ne [3s ² 3p ¹]	(4) Ne [3s ² 3p ³]	
Sol	Answer (4)		
	Half filled stability $3s^2 3p^3$		
11.	Identify the correct order of the size of the following		[AIPMT(Prelims)-2007]
	(1) Ca²⁺ < Ar < K⁺ < Cl⁻ < S²⁻	(2) $Ca^{2+} < K^+ < Ar < S^{2-} < Cl^{-}$	-
	(3) Ca ²⁺ < K ⁺ < Ar < Cl [−] < S ^{2−}	(4) Ar < Ca ²⁺ < K ⁺ < Cl ⁻ < S ²	-
Sol	Answer (3)		
12.	Which one of the following arrangements represents the of of the given atomic species ?	correct order of electron gain ent	halpy (with negative sign) [AIPMT (Prelims)-2005]

(1) Cl < F < S < O (2) O < S < F < Cl (3) S < O < CI < F

(4) F < CI < O < S

Sol. Answer (2)

CI have more electron gain enthalpy than F {due to smaller size of F and 'O' it will show repulsion}

S have more electron gain enthalpy than O

- \therefore Order will be O < S < F < Cl
- 13. Which one of the following arrangements represents the correct order of least negative to most negative electron gain enthalpy for C, Ca, AI, F and O?
 - (1) Ca < Al < C < O < F
 - (2) AI < Ca < O < C < F
 - (3) AI < O < C < Ca < F
 - (4) C < F < O < AI < Ca
- Sol. Answer (1)

C < O < F

Left to right electronegativity increases

Down the group electronegativity decreases

- \therefore Ca < Al < C < O < F
- 14. The electronic configuration of an element is $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^2$. What is the atomic number of the element, which is just below the above element in the periodic table?
 - (1) 36 (2) 49 (3) 50 (4) 54
- Sol. Answer (3)

Atomic number of element = 32, below element have atomic number 32 + 18 = 50.

- 15. Which of the following ion is the largest in size?
 - (1) K^+ (2) Ca^{2+} (3) Cl^- (4) S^{-2}
- Sol. Answer (4)

All are isoelectronic and more the negative charge more will be the size.

- 16. The electronic configuration of inner transition elements is
 - (1) ns¹
 - (2) $ns^2np^5nd^{10}$
 - (3) $ns^{0-2}(n-1) d^{1-10}(n-2) f^{1-14}$
 - (4) $ns^2 (n-1) d^{0-1} (n-2) f^{1-14}$
- Sol. Answer (4)

 $ns^{2}(n-1)d^{0-1}(n-2)f^{1-14}$

- 17. Which of the following has the smallest size?
 - (1) Al^{3+} (2) F^- (3) Na^+ (4) Mg^{2+}
- Sol. Answer (1)

More the positive charge smaller will be the size for isoelectronic elements.

- 18. Which one of the following is correct order of the size of aluminium species?
 - (1) $AI > AI^+ > AI^{2+}$
 - (2) $AI^{2+} > AI^+ > AI$
 - (3) $AI^{2+} = AI^+ = AI$
 - (4) All of these
- Sol. Answer (1)

Size of positive charge atom *i.e.*, cation is always lesser than parent atom due to increase in effective nuclear charge *i.e.*, $AI > AI^{\oplus} > AI^{2+}$

19. The first ionization potentials (eV) of N and O respectively are

(1)	8.29, 8.29	(2)	11.32, 11.32
(3)	8.29, 11.32	(4)	11.32, 8.21

Sol. Answer (4)

N ($2s^2$, $2p^3$) have half filled more ionisation than 'O' ($2s^2$, $2p^4$) stability potential not half filed

- $\therefore \begin{cases} N = 11.32 \text{ eV} \\ O = 8.21 \text{ eV} \end{cases}$
- 20. Correct order of Ist ionization potential among elements Be, B, C, N, O is
 - (1) B < Be < C < O < N (2) B < Be < C < N < O

 (3) Be < B < C < N < O (4) Be < B < C < O < N
- Sol. Answer (1)

Left to right in period I.E increases and half filled have more I.E.

1st I.E [B < Be (more I.E. due to half filled) < C < O < N (more I.E. than 'O' due to half filled)]

- 21. An atom has electronic configuration $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$, you will place it in which group of periodic table?
 - (1) Fifth (2) Fifteenth
 - (3) Second (4) Third
- Sol. Answer (1)

 $3d^3$, $4s^2 = 5$ placed in fifth group

- 22. Ionic radii are
 - (1) Inversely proportional to effective nuclear charge
 - (2) Inversely proportional to square of effective nuclear charge
 - (3) Directly proportional to effective nuclear charge
 - (4) Directly proportional to square of effective nuclear charge
- Sol. Answer (1)

lonic radii $\sim \frac{1}{\text{effective nuclear charge}}$

- 23. Four successive members of the first row transition elements are listed below with their atomic numbers. Which one of them is expected to have the highest third ionisation enthalpy?
 - (1) Vanadium (Z = 23)
 - (2) Chromium (Z = 24)
 - (3) Manganese (Z = 25)
 - (4) Iron (Z = 26)

Sol. Answer (3)

Mn = 25 = $4s^2$, $3d^5$ after removing 2 electrons from 4s Mn will get stable configuration *i.e.*, $3d^5$

3rd I.E. will be more

- 24. The element with highest electronegativity will belong to
 - (1) Period 2, group 17 (2) Period 3, group 17
 - (3) Period 2, group 18 (4) Period 2, group 1

Sol. Answer (1)

Most electronegative is 'F', which belongs to group 17 and period 2.

- 25. The first, second and third ionisation energies of AI are 578, 1817 and 2745 kJ mol⁻¹ respectively. Calculate the energy required to convert all the atoms of AI to AI⁺³ present in 270 mg of AI vapours
 - (1) 5140 kJ (2) 51.40 kJ (3) 2745 kJ (4) 514.0 kJ
- Sol. Answer (2)

Moles of AI = $\frac{270 \times 10^{-3}}{27} = 10^{-2}$ moles

$$AI \longrightarrow AI^{3+} + 3I^{-}$$

Total I.E. = 578 + 1817 + 2745 = 5140 kJ/mol

for 1 mol have I.E = 5140

 10^{-2} mol have I.E will be = 5140 × 10^{-2} = 51.40 kJ

26. The size of ionic species is correctly given in the order

- (1) $Na^+ > Mg^{+2} > Cl^{+7} > Si^{4+}$ (2) $Na^+ > Mg^{+2} > Si^{4+} > Cl^{+7}$
- (3) $Cl^{+7} > Si^{+4} > Mg^{+2} > Na^{+}$ (4) $Cl^{+7} > Na^{+} > Mg^{+2} > Si^{+4}$
- Sol. Answer (2)

For isoelectronic more than negative charge smaller will be the size

- \therefore Na⁺ > Mg²⁺ > Si⁴⁺ > Cl⁺⁷
- 27. Match the following, regarding nature of the oxides

	Column-I		Column-ll		
a.	H ₂ O	(i)	Basic		
b.	Na ₂ O	(ii)	Amphoteric		
C.	ZnO	(iii)	Acidic		
d.	SO3	(iv)	Neutral		
(1)	a(ii), b(i), c(iii), d(iv)			(2)	a(iv), b(i), c(iii), d(ii)
(3)	a(iv), b(i), c(ii), d(iii)			(4)	a(ii), b(i), c(iv), d(iii)

Sol. Answer (3)

$H_2O \longrightarrow Neutral$	ZnO = amphoteric
$Na_2O \longrightarrow Basic$	SO_3 = Acidic

(2) Li⁺

28. Be²⁺ is isoelectronic with which of the following ions?

(1) H⁺ **Sol.** Answer (2)

	e		e
Н	1	H⁺	0
Li	3	Li⁺	2
Be	4	Be ²⁺	2

SECTION - C

(3) Na⁺

(4) Mg²⁺

Assertion-Reason Type Questions

- 1. A : Be and Al show diagonal relationship.
 - R : Be and AI are diagonal to each other in the periodic table.

Sol. Answer (2)

2. A : The first ionisation energy of AI is lower than magnesium.

R: Atomic radius of AI is smaller then magnesium.

Sol. Answer (2)

- 3. A : He and Be have similar outer shell electronic configuration of type ns^2 .
 - R : Both are chemically inert.

Sol. Answer (3)

4. A: Electron affinity of oxygen is higher than sulphur.

R : Number of valence orbitals containing electrons are different.

Sol. Answer (4)

5. A : Ionization enthalpy decreases on moving down the group.

R: Force of attraction between nucleus and electrons decreases on moving down the group.

Sol. Answer (1)

6. A : Atomic radii decreases in a period upto halogen.

R : van der Waal radii of Cl is larger than its covalent radii.

Sol. Answer (2)

- 7. A: Lanthanum (Z: 57) is lanthanoid.
 - R : Valence electrons are present in 4f orbital.

Sol. Answer (4)

8. A : Na_2O is more basic than Al_2O_3 .

R : Sodium is less electropositive than aluminium.

Sol. Answer (3)

- 9. A: F is most electronegative element of periodic table.
 - R : CI is having highest electron affinity.
- Sol. Answer (2)
- 10. A: Cu, Ag, Au are known as coinage metal.
 - R : Coinage metals are *d*-block metals.
- Sol. Answer (2)

