
BIOMOLECULES

BIOMOLECULE

All the carbon compounds that we get from living tissues can be called 'biomolecules'. However, living organisms have also got inorganic elements and compounds in them.

	Lipids (Not a polymer) • Not strictly
Relative abundance of	 biomacromolecule M.wt < 800 Da Cell membrane
carbon and hydrogen of	fragments form
living organism > Earth	vesicles which are
crust	not water soluble.

ELEMENT ALANALYSIS

Elemental analysis gives elemental composition of living tissues in the form of hydrogen, oxygen, chlorine, carbon etc.

		Weight	→ Wet weight
\succ	Living tissue	Dry	•
			→ Dry weight

Dried living tissue

 Burn
 'Ash' (contains only Inorganic elements)

 All carbon compounds
 inorganic elements)

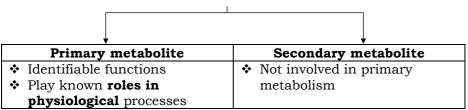
Comparison of Elements Present in Non-living and Living Matter

Element	% Weight of Earth's	Human body
	crust	
Hydrogen (H)	0.14	0.5
Carbon (C)	0.03	18.5
Oxygen (O)	46.6	65.0
Nitrogen (N)	very little	3.3
Sulphus (S)	0.03	0.3
Sodium (Na)	2.8	0.2

Calcium (Ca)	3.6	1.5
Magnesium (Mg)	2.1	0.1
Silicon (Si)	27.7	negligible

- > Order of element in Earth crust $\rightarrow 0 > Si > Ca > Na > Mg > H > C > S > N$
- > Order of element in Human body $\rightarrow 0 > C > N > Ca > H > S > Na > Mg > Si$
- Analytical technique

Structure of compound


Average Composition of Cells in Descending order

Component	% of the total cellular mass
Water	70-90
Proteins	10-15
Nucleic acids	5-7
Carbohydrates	3
Lipids	2
Ions	1

True Macromolecular fraction = Polysaccharides + Polypeptides + Polynucleotides

Water is the most abundant chemical in living organism Oxygen is the most abundant element in living organism

METABOLITES

E.g., Sugars, amino acids lipids, nitrogen bases, etc.	 Seems to have no direct function in growth and development of organisms Many of them are useful to human welfare E.g., Rubber, drugs, spices and pigments Some have ecological importance E.g., Flavonoids, antibiotics
	etc.

Some Secondary Metabolites

Pigments	Carotenoids, Anthocyanins	
Alkaloids	Morphine, Codeine	
Terpenoides	Monoterpenes, Diterpenes	
Essential oils	Lemon grass oil	
Toxins	Abrin, Ricin	
Lectins	Concanavalin A	
Drugs	Vinblastine, curcumin	
Polymeric substances	Rubber, gums, cellulose	

CARBOHYDRATES

1. Monosaccharides/sugar

✤ Single unit

No. of Carbon	5 <i>C</i>	6 <i>C</i>
Formula	$C_5 H_{10} O_5$	$C_6 H_{12} O_6$
Example	Ribose	Glucose
Structure	HOCH ₂ O OH OH	CH ₂ OH OH OH OH OH

2. Polysaccharides

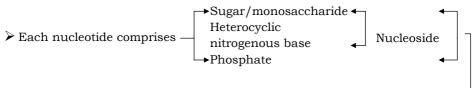
- ✤ Acid-insoluble pool
- Long chains of sugars
- Linked together by glycosidic bond formed by dehydration

Homopolysaccharides

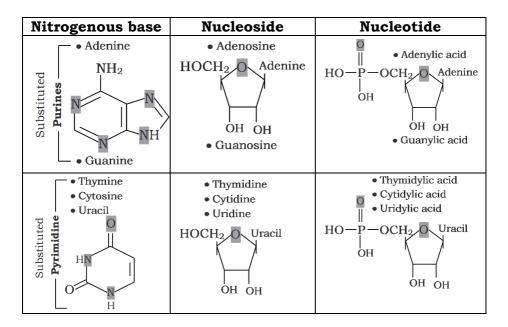
Heteropolysaccharides

−∗ Same monomer units

* Different monomer units

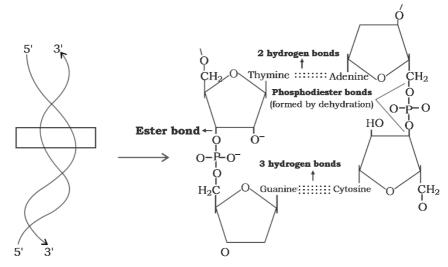

Features	Glycogen	Starch	Inulin	Cellulose	Chitin
Found in	Animals	Plants	Plants	Plants	Animals
Function	Storage	Storage		Cell wall	Exoskeleton
				(Structural)	of arthropods
Monomer	Glucose		Fructose	Glucose	N-acetyl
					glucosamine
Colour	Red	Blue		No	No
with I_2					

Chitin-Building blocks of Glycosamine and N-acetylgalatcosamine


- Complex polysaccharide
- Exoskeleton of arthropods Homopolymers
- Glycogen \rightarrow Right end is reducing while left end is non-reducing
- Starch hold I_2 in helical portion
- Cellulose can not hold I_2 as no helical portion
- Cotton fibre \rightarrow Cellulose
- Paper is made from plant pulp

NUCLEIC ACIDS (Acid Insoluble Fraction)

\succ Polymer of nucleotides


Nucleotide 🔶

Watson-Crick model of B-DNA

- > DNA exists as double helix (secondary structure).
- Two polynucleotide strands are helically coiled around a common axis.
- > The two polynucleotide strands are **antiparallel** i.e., run in opposite direction and **complementary** to each other.
- > Ribose sugar and uracil exist in RNA (Ribonucleic acid)
- > 2'-deoxyribose sugar and thymine exists in DNA [Deoxyribonucleic Acid]

- > DNA and RNA act as genetic material.
- Phosphate moiety links 3'-carbon of one sugar of one nucleotide to 5'-carbon of sugar of succeeding nucleotide.
- Nitrogen bases are perpendicular to backbone and faces inside.
- > At each step of ascent, strand turns **36**°.
- > 1 turn = 10 base pairs
- ≻ 1 complete turn = 34Å
- > Rise per base pair = 3.4 Å

LIPIDS

Generally water insoluble

- Could be simple fatty acids (R COOH) where R group could be
 - Methyl ($-CH_3$), ethyl ($-C_2H_5$), higher no. of $-CH_2$ (C-1 to 19)

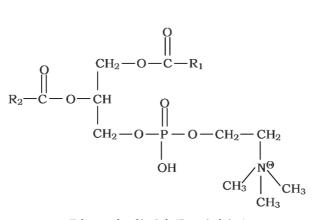
> Types of fatty acids

Parameter	Saturated	Unsaturated
No. of $C = C$	No	One or more
double bonds		

Example Palmitic acid (16 carbon		Arachidonic acid (20
	including carboxyl	carbon
	carbon)	including carboxyl carbon)
	$CH_3 - (CH_2)_{14} - COOH$	

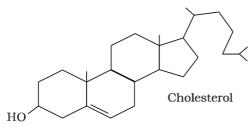
Many lipids are esters of fatty acids and glycerol

Туре	No. of fatty acids	Glycerol (trihydroxy propane)
Monoglyceride	1	$1 CH_2 - CH - CH_2$
Diglyceride	2	1
Triglyceride	3	1 ОН ОН ОН


	Melting point	State in winters	Examples
 Fats	Higher	Solid	Ghee, Butter
Oils	Lower	Liquid	Gingelly oil

$$\begin{array}{c} & & & & \\ & & & \\ & & \\ & & \\ R_2 - C - O - CH & \\ & & \\ R_2 - C - O - CH & \\ & & \\ & & \\ CH_2 - O - C - R_3 \end{array}$$

Triglyceride (R, R and R are fatty acids)


Some lipids have phosphorous and phosphorylated organic compound called **phospholipids** e.g., Lecithin - **found in cell membrane**

Neural tissues structure - More complex lipids

Phospholipid (Lecithin)

Cholesterol have lipid like properties

AMINO ACIDS

- > Organic compounds containing an amino group and an acidic group as substituents on same carbon i.e., α-carbon, hence called α-amino acids.
- Substituted methane, four substituent groups occupying four valency positions.
- Chemical and physical properties of amino acids are essentially of amino, carboxyl and R-functional groups.

Types of amino acids

I. On the basis of **R-group**

R-group	Amino acids
—Н	Glycine
-CH ₃	Alanine

(methyl)	
$-CH_2 - OH$	Serine
(hydroxy methyl)	

II. On the basis of **Nature** of amino acids

Nature	Amino acids
Acidic	Glutamic acid
Basic	Lysine
Neutral	Valine
Aromatic	Tyrosine, tryptophan, phenylalanine

III. On the basis of **Body's requirement**

Non-essential	Essential
Synthesised	Not synthesised by
by body	body
Not required	Required in diet
in diet	
10 in number	10 in number

Mnemonics: VILL PMT THA

Zwitterionic Form

- > A particular property of amino acids is the ionisable nature of $-NH_2$ and COOH group.
- > In solutions of different pH, the structure of amino acids changes.

$$H_{3}N^{+}-CH-COOH \rightleftharpoons H_{3}N^{+}-CH-COO^{-} \rightleftharpoons H_{2}N-CH-COO^{-}$$

Zwitterionic form

(Both positive and negative charge)

STRUCTURE OF PROTEINS

- Each protein is a heteropolymer of amino acids linked by peptide bonds (formed by dehydration) and only 20 types of amino acids participate in their formation.
- > Dietary proteins are the source of essential amino acids.
- > Biologists describe structure of proteins at four levels:

Level	Typical	Structure
Primary	 Positional information of sequence of amino acids Protein thread as extended rigid rod 	NH2 Left end N-terminal • C-terminal • First amino acid • Last amino acid
Secondary	 Thread folded in the form of a helix i.e., similar to revolving stair case Only right handed helices observed in proteins 	Alpha-Helix Beta-plate sheet
Tertiary	 3-dimensional view, like hollow woolen ball This structure is absolutely necessary for 	Hydrogen bond Disulphide bond

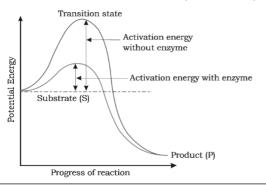
	many biological activities of proteins	
Quaternary	 More than one polypeptide chains are involved e.g., Haemoglobin consists of 4 subunits: 2α and 2β. It is based on how individual polypeptide are arranged with respect to each other. 	

SOME PROTEINS AND THEIR FUNCTIONS

Protein	Functions	
Collagen	Intercellular ground substance	
Trypsin	Enzyme	
Insulin	Hormone	
Antibody	Fights infections agents	
Receptor	Sensory reception (smell, taste, hormone)	
GLUT-4	Enables glucose transport into cells	

- **Collagen** is the most abundant protein in **animal** world.
- **RuBisCO** is the most abundant protein in the whole of the **biosphere**.

ENZYMES (BIOCATALYST)


Properties:

- > **Tertiary** structure.
- > **Unchanged** at the end of reaction.
- > Highly specific. > Not used up in the reaction.
- > Proteinaceous in nature except **ribozymes (nucleic acids).**
- > Increases rate of reaction by **lowering activation energy**.
- > Have **active site**/pockets where **substrate** binds.
- Inorganic catalysis work efficiently at high temperatures and high pressures while enzymes get denatured at high temperature (>40°C) except enzymes of thermophilic organisms (can tolerate 80° – 90°C).
- For metabolic conversion, substrate 'S' has to bind the enzyme at its active site and results in obligatory formation of 'ES' complex (Transient phenomenon), essential for catalysis.
- Structure of substrate gets transformed into structure of products(s).

```
E + S \rightleftharpoons ES \rightarrow EP \rightarrow E + P

'Altered structural states'

(unstable)
```


- Difference in average energy content of 'S' from that of transition state is called '**Activation energy**'.
- Transition state High energy unstable state.

- 'P' is at lower level than 'S' Reaction is **exothermic**.
- 'S' is at lower level than 'P' Reaction is **endothermic**.

FACTORS AFFECTING ENZYME ACTIVITY

> Temperature

- ***** Enzyme shows **highest activity at optimum** temperature.
- ◆ Low temperature → Enzyme is temporarily **inactive**.
- ♦ High temperature → Tertiary structure of enzymes destroyed due to **denaturation**.

≻ pH

- ✤ Enzyme shows highest activity at optimum pH.
- Rate of reaction declines both below and above optimum pH.

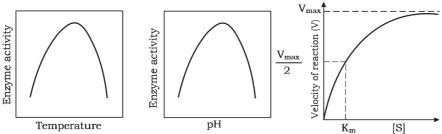
Substrate concentration

Initially rate of reaction increases with increase in substrate concentration but becomes constant when all enzymes get saturated with substrate.

> Binding of specific chemicals (Inhibitors)

When binding of chemicals shuts off enzyme activity, the process is called **inhibition** and chemical is called **inhibitor**. $V_{max} = Maxim$

 $V_{max} = Maximum$ rate of reaction


Michaelis constant $[K_M] = Concentration$

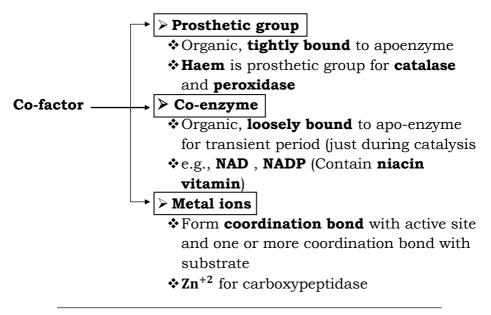
at which the reaction velocity reaches half its maximum velocity.

Competitive inhibitor:

- Inhibitor resemble the substrate and compete with substrate for the active site of enzymes.
- Closely resembles substrate in molecular structure and inhibits enzyme activity.

- Consequently, substrate can not bind and as a result enzyme action declines.
- E.g.,Malonate closely resembles the substrate succinate in structure.
- Inhibition of succinic dehydrogenase by malonate. Application: Control of bacterial pathogens.

Note: Effect of the competitive inbibitor can be reversed by increasing the concentration of the substrate.


CLASSIFICATION AND NOMENCLATURE OF ENZYMES

Most of these enzymes have been classified into different groups based on the type of reactions they catalyse. Enzymes are divided into 6 classes each with 4-13 subclasses and named accordingly by a four-digit number.

Class	Name	Function
Ι	Oxidoreductases/	Enzymes which catalyse
	dehydrogenases:	oxidoreduction between two
		substrates S and S'
		S reduced + S' oxidised \rightarrow S
		oxidised + S' reduced
II	Transferases:	Catalyse a transfer of a group,
		G (other than hydrogen)
		between a pair of substrates S
		and S'
		$S - G + S' \rightarrow S + S' - G$

III	Hydrolases:	Catalyse hydrolysis of ester,	
		ether, peptide, glycosidic, <i>C</i> –	
		C, C – halide or $P-N$ bonds.	
IV	Lyases:	Catalyse removal of groups	
		from sub-strates by	
		mechanisms other than	
		hydrolysis leaving double	
		bonds.	
		$ \begin{array}{c} X & C \\ & \\ C - C \rightarrow X - Y + C = C \end{array} $	
V			
V	Isomerases:	Catalyse inter-conversion of	
		optical, geometric or positional	
		isomers.	
VI	Ligases:	Catalyse the linking together of	
		two compounds, e.g., enzymes	
		which catalyse joining of C-O,	
		C-S, C-N, P-O etc. bonds.	
	C	CO-FACTORS	
	Enzymes		
*		•	
Simple	Simple enzymes Conjugated enzymes		
• Only	Only protein		
	Apo-enzyme	(inactive) Co-factor	
	Protein par	rt	
	Non-protein part	↑	
	1 1		

Catalytically active

Catalytic activity is lost if co-factor is removed