Chapter 8

The d and f-Block Elements

Solutions

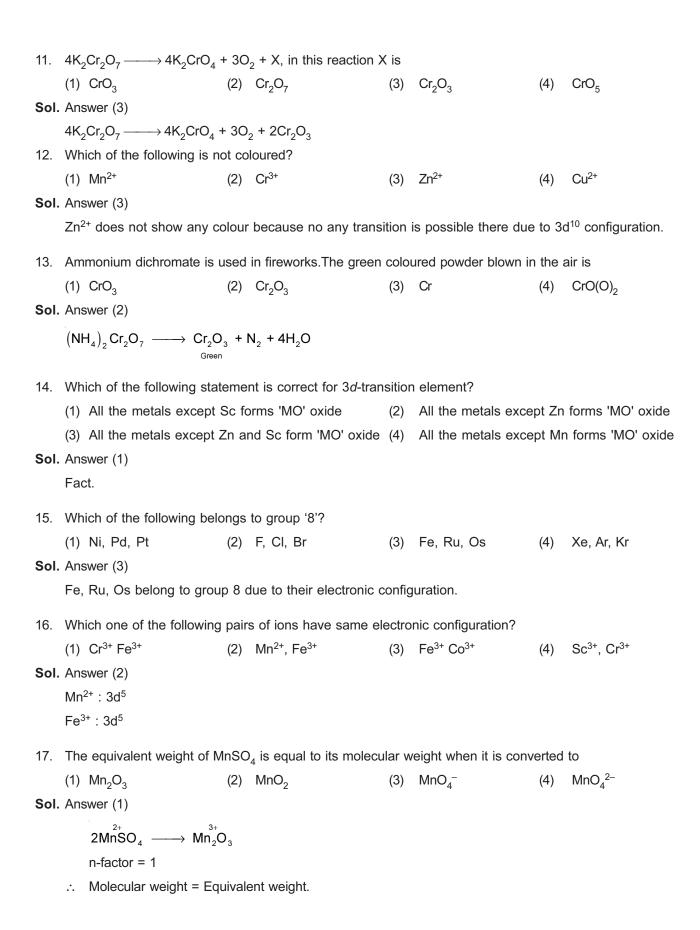
SECTION - A

Objective Type Questions

(The d-Blo	ock elem	nents)
------------	----------	--------

,							
1.	Coinage metals are						
	(1) Normal metals	(2)	Transition metals	(3)	Active metals	(4)	Highly electropositive
Sol.	Answer (2)						
	Generally, we consider C	u, Aç	, Au as coinage metal	s and	they come under to	ransitio	on metals.
2.	Pyrolusite is used to prepa	are p	otassium permanganat	e Mn	$O_2 \xrightarrow{X} MnO_4^{-2} \xrightarrow{Y}$	<u>′</u> →Mr	OO_4^-
	X and Y are						
	(1) Fuse with KOH/air, ele	ectro	ytic reduction	(2)	Fuse with KOH/air,	electi	olytic oxidation
	(3) Fuse with con. HNO ₃ /	air, e	lectrolytic reduction	(4)	All are correct		
Sol.	Answer (2)						
	$MnO_2 \xrightarrow{KOH/Air} MnO_4^{2-}$	E	$\frac{\text{dectrolytic}}{\text{Dxidation}} \rightarrow \text{MnO}_4^-$				
3.	Which one of the following	g exh	ibits highest oxidation s	state?	•		
	(1) Zr	(2)	V	(3)	Mn	(4)	Ni
Sol.	Answer (3)						
	Among the given, Mn exh	ibit h	ighest oxidation state,	i.e. +	7.		

4. A purple coloured solution is made alkaline with KOH and is treated with KI forming potassium iodate. The same solution is acidified with H₂SO₄ and again it is treated with KI. However this time instead of potassium iodate, iodine gas is released. The purple coloured solution is of


- (1) $K_2Cr_2O_7$
- (2) $K_2Cr_2O_4$
- (3) KMnO₄
- (4) K_2MnO_4

Sol. Answer (3)

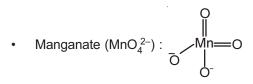
$$2KMnO_4 + H_2O + I^- \xrightarrow{Alkaline} 2MnO_2 + 2OH^- + KIO_3$$
 $KMnO_4 + H_2SO_4 + KI \longrightarrow Mn^{2+} + 8H_2O + 5I_2$

 \Rightarrow KMnO₄ is the required solution.

5.	Acidified solution of chromic acid on treatment with H		ives blue colour whice $Cr_2O_3 + H_2O + O_2$	ch is	due to
	(1) $CrO_3 + H_2O + O_2$		2 0 2 2		
	(3) $CrO_5 + H_2O$	(4)	$H_2Cr_2O_7 + H_2O + C$	O_2	
Sol	Answer (3)				
	$K_2Cr_2O_7 + H_2SO_4 + 4H_2O_2 \longrightarrow 2CrO_5 + 5H_2O +$ Blue	K ₂ S0	D_4		
6.	FeSO ₄ on heating gives				
	(1) SO_2 and SO_3 (2) SO_2 only	(3)	SO ₃ only	(4)	SO ₂ and O ₂
Sol	Answer (1)				
	$FeSO_4 \xrightarrow{\Delta} Fe_3O_4 + 2SO_3 + SO_2$				
7.	What are the species X and Y in the following?				
	$X + H_2O \longrightarrow H_2Cr_2O_7 \xrightarrow{OH^-} Y$				
	(1) CrO_4^{-2} , $Cr_2O_7^{-2}$ (2) CrO_3 , Cr_2O_3	(3)	H ₂ CrO ₄ , H ₂ Cr ₂ O ₇	(4)	CrO ₃ , CrO ₄ ⁻²
Sol	Answer (4)				
	CrO_3 + $\operatorname{H}_2\operatorname{O}$ \longrightarrow $\operatorname{H}_2\operatorname{Cr}_2\operatorname{O}_7$ $\stackrel{\operatorname{OH}^-}{\longrightarrow}$ $\operatorname{CrO}_4^ \stackrel{(X)}{\longrightarrow}$				
8.	The correct statement				
	(1) Green vitriol and blue vitriol are isomorphus				
	(2) KMnO ₄ and K ₂ Cr ₂ O ₇ are coloured due to d-d tran	sition	S		
	(3) Cu ₂ Cl ₂ and Ag ₂ S are coloured				
	(4) Upon strong heating paramagnetic gases are evol	ved b	y NaNO ₃ and AgNO ₃	3	
Sol	Answer (4)				
	Fact.				
9.	Which oxide of manganese is acidic in nature?				
Э.	(1) MnO	(2)	Mn O		
		(2)	Mn ₂ O ₇		
6-1	(3) Mn ₂ O ₃	(4)	MnO ₂		
301.	Answer (2)				
	Mn ₂ O ₇ is acidic in nature (fact).				
10.	The blue colour produced on adding $\rm H_2O_2$ to acidified			natior	n of
	(1) CrO_5 (2) Cr_2O_3	(3)	CrO ₄ ^{2—}	(4)	CrO ₃
Sol	Answer (1)				
	$K_2Cr_2O_7 + H_2SO_4 + 4H_2O_2 \longrightarrow 2CrO_5 + K_2SO_4$ Blue	+ 5H ₂	₂ O		

18.	Gun metal contains		
	(1) Cu, Sn, Zn	(2)	Cu, Ni
	(3) Cu, Ni, Fe	(4)	Cu, Sn, P
Sol.	Answer (1)		
	Gun metal contains (Cu, Sn, Zn) casting alloy.		
	The main alloying constituent is beside copper, tin wi	ith 1.	5 to 11%, Zn 1 – 9%
	Note: Cu, Ni, Fe are monel metal, not gun metal.		
19.	The colour of $\rm K_2Cr_2O_7$ and $\rm Fe^{2+}$ ions are respectively during	ie to	
	(1) d-d transition and charge transfer spectra	(2)	Charge transfer spectra and d-d transition
	(3) Crystal defects and charge transfer spectra	(4)	Charge transfer spectra and crystal defects
Sol.	Answer (2)		
	${ m K_2Cr_2O_7}$ \Rightarrow Colour due to charge transfer.		
	Fe^{2+} ions \Rightarrow Colour due to $d-d$ transition.		
20.	The element which does not show d ⁰ configuration in	n its h	nighest oxidation state
	(1) V (2) Mn	(3)	Cr (4) Fe
Sol	Answer (4)	(0)	(4)
301.	Highest oxidation state of Fe is +6 and Fe ⁶⁺ \Rightarrow 3d ² .		
	Thighest extraction state of Fe is Fe and Fe -> 5d .		
21.	CrO ₃ is coloured due to		
	(1) Crystal defect	(2)	Unpaired electrons
	(3) Charge transfer spectra	(4)	Low I.E.
Sol.	Answer (3)		
	In CrO ₃ colour is due to charge transfer (fact).		
22.	Which of the following occur when ${\rm AgNO_3}$ becomes, r	ed ho	ot?
			$AgNO_3 \longrightarrow Ag + NO + O_2$
	(3) $2AgNO_3 \longrightarrow AgNO_2 + O_2$	(4)	$2AgNO_3 \longrightarrow 2Ag + N_2 + 3O_2$
Sol.	Answer (1)		
	If $AgNO_3$ is red hot, it gets decomposed as		
	$2AgNO_3 \longrightarrow 2Ag + 2NO_2 + O_2$		
22	Miliah ang allau daga nat santain sannan		
23.	Which one alloy does not contain copper?	(2)	Ducas
	(1) Bronze	(2)	Brass
201	(3) German silver	(4)	Mischmetal
301.	Answer (4) Misch metal: 50% Co. 25% La. small amount of Nd.	and [Pr blanded with EaC
	Misch metal: 50% Ce, 25% La, small amount of Nd	anu f	i bieliueu wilii feu.

24.	The metal which can form cation having metal - metal bond								
	(1) Mercury	(2)	Copper	(3)	Osmium	(4)	Iron		
Sol.	Answer (1)								
	Hg forms Hg ₂ ²⁺								
25.	Value of magnetic momen be	t of	a divalent metal ion is	5.92	2 BM. Total number	of ele	ectron in its atom would		
	(1) 24	(2)	25	(3)	26	(4)	27		
Sol.	Answer (2)								
	In divalent state, <i>i.e.</i> M ²⁺								
	Given that $\mu = 5.92$ BM	4							
	 ⇒ Number of unpaired ele ⇒ 3d⁵ configuration 	ectro	ns = 5						
	∴ Among the given optio	ns it	should be 25.						
26.									
	(1) AgBr solution	(2)	Hypo solution	(3)	Na ₂ S ₄ O ₆ solution	(4)	FeC ₂ O ₄ solution		
Sol.	Answer (2)						- '		
	In black and white photography hypo solution is used.								
27.	Gold dissolves in aqua regi	ia to	give						
	(1) H[AuCl ₄]	(2)	AuNO ₃	(3)	H ₂ [AuCl ₆]	(4)	$Au(NO_3)_3$		
Sol.	Answer (1)								
	Au + Aqua regia	[Au0	Ol ₄].						
(The	e f-Block elements)								
28.	Ce(Z = 58) and $Yb(Z = 70)$	exh	ibits stable +4 and +2	oxida	ition states respectiv	ely. T	his is because		
	(1) Ce ⁴⁺ and Yb ²⁺ acquire	f ⁷ co	nfiguration	(2)	Ce ⁴⁺ and Yb ²⁺ acqu	iire f ⁰	configuration		
	(3) Ce ⁴⁺ and Yb ²⁺ acquire	f ⁰ an	d f ¹⁴ configuration	(4)	Ce ⁴⁺ and Yb ²⁺ acqu	iire f ⁷	and f ¹⁴ configuration		
Sol.	Answer (3)								
	Fact.								
29.	Transuranic elements begin	n with	1						
	(1) Np	(2)	Cm	(3)	Pu	(4)	U		
Sol.	Answer (1)								
	Transuranic elements are t	he e	lements, having atomic	num	nber greater than 92.				
	Atomic number of Np = 93								
	\Rightarrow Transuranic elements by	pegir	with Np.						


Previous Years Questions

1. The manganate and permanganate ions are tetrahedral, due to :

[NEET-2019]

- (1) The π -bonding involves overlap of p-orbitals of oxygen with d-orbitals of manganese
- (2) There is no π -bonding
- (3) The π -bonding involves overlap of p-orbitals of oxygen with p-orbitals of manganese
- (4) The π -bonding involves overlap of d-orbitals of oxygen with d-orbitals of manganese

Sol. Answer (1)

- \Rightarrow π -bonds are of $d\pi$ - $p\pi$ type
- Permanganate (MnO₄⁻) : Mn=O
 - \Rightarrow π -bonds are of $d\pi$ - $p\pi$ type
- 2. Which one of the following ions exhibits d-d transition and paramagnetism as well?

[NEET-2018]

(1)
$$CrO_4^{2-}$$

(2)
$$Cr_2O_7^{2-}$$

$$(4)$$
 MnO₄

Sol. Answer (3)

$$CrO_4^{2-} \Rightarrow Cr^{6+} = [Ar]$$

Unpaired electron (n) = 0; Diamagnetic

$$Cr_2O_7^{2-} \Rightarrow Cr^{6+} = [Ar]$$

Unpaired electron (n) = 0; Diamagnetic

$$MnO_4^{2-} = Mn^{6+} = [Ar] 3d^1$$

Unpaired electron (n) = 1; Paramagnetic

$$MnO_4^- = Mn^{7+} = [Ar]$$

Unpaired electron (n) = 0; Diamagnetic

3. The reason for greater range of oxidation states in actinoids is attributed to

[NEET-2017]

- (1) The radioactive nature of actinoids
- (2) Actinoid contraction
- (3) 5f, 6d and 7s levels having comparable energies
- (4) 4f and 5d levels being close in energies

Sol. Answer (3)

It is a fact.

4.	Which one of the following state (1) Europium shows +2 oxidation (2) The basicity decreases as the state of the following state oxidation (3) All the lanthanons are much oxidated o	[NEI	ET(Phase-2)-20	016]			
Sol.	(4) Ce(+4) solutions are widelyAnswer (3)Fact.	used as oxidizing agei	ni in	volumetric analysis			
5.	Jahn-Teller effect is not observed	d in high spin complexe	es of		[NEI	ET(Phase-2)-20	016]
	(1) d^7 (2)	d ⁸	(3)	d ⁴	(4)	d ⁹	
Sol.	Answer (2) Fact.						
6.	Which one of the following state	ements is corrected who	en S	O_2 is passed through a	cidified K	C ₂ Cr ₂ O ₇ solution	
	(1) Green $Cr_2(SO_4)$, is formed		(2)	The solution turns blue			
Sol.	(3) The solution is decolourized Answer (1) Fact		(4)	SO ₂ is reduced			
7.	The electronic configurations of	Eu (Atomic no. 63), Go	d (At	omic No. 64) and Tb (A	tomic No	o. 65) are	
						[NEET-20	016]
	(1) $[Xe]4f^{7}6s^{2}$, $[Xe]4f^{7}5d^{1}6s^{2}$ and	d [Xe]4f ⁹ 6s ²	(2)	[Xe]4f ⁷ 6s ² , [Xe]4f ⁸ 6s ² a	nd [Xe]4	$f^85d^16s^2$	
	(3) $[Xe]4f^65d^16s^2$, $[Xe]4f^75f^1$ and	I [Xe]4 <i>f</i> ⁹ 6s ²	(4)	[Xe]4f ⁶ 5d ¹ 6s ² , [Xe]4f ⁷ 5d	d ¹ 6s ² and	d [Xe]4f ⁸ 5d ¹ 6s ²	2
Sol.	Answer (1) Fact						
8.	Gadolinium belongs to 4f series configuration of gadolinium?	s. Its atomic number	is 64	. Which of the followin	g is the	correct electro	
	(1) $[Xe]4f^75d^16s^2$ (2)	$[Xe]4f^65d^26s^2$	(3)	[Xe] $4f^86a^2$ (4)	[Xe]4	f ⁹ 5s ¹	
Sol.	Answer (1)						
	Fact.						
9.	Because of lanthanoid contraction (Numbers in the parenthesis are		ving	pairs of elements have	nearly s	ame atomic ra [AIPMT-20	
	(1) Zr (40) and Ta (73)		(2)	Ti (22) and Zr (40)			
	(3) Zr (40) and Nb (41)		(4)	Zr (40) and Hf (72)			
Sol.	Answer (4)						
	Zr and Hf have same size.						

10.	The pair of compounds tha	t can	exist together is					[AIPMT-2014]
	(1) FeCl ₃ , SnCl ₂			(3)	FeCl ₂ , SnCl ₂	(4)	FeCl ₃ , KI	-
Sol.	Answer (3)						Ü	
	Both Fe and Sn are in low	er ox	kidation state. Therefor	e rec	lox is not possible.			
11.	The reaction of aqueous KN	MnO,	with H ₂ O ₂ in acidic con	dition	s gives			[AIPMT-2014]
	(1) Mn ⁴⁺ and O ₂					(4)	Mn⁴⁺ and	
Sol.	Answer (2)		2		S			2
	$2KMnO_4 + 3H_2SO_4 + 5$	H ₂ O	$_2 \longrightarrow K_2SO_4 + 2M$	InSO	4 + 8H ₂ O + 5O ₂			
12.	Magnetic moment 2.83 BM	l ie ai	ven by which of the follo	owinc	uione 2 (At nos Ti=2	2 Cr=	=24 Mn=3	95 Ni=28\
12.	Magnetic moment 2.03 bivi	ı ıs gı	ven by willon of the loll	JWIIIE	110115 ! (At. 1105. 11-2	.z, Oi-	-24, IVIII-2	[AIPMT-2014]
	(1) Ti ³⁺	(2)	Ni ²⁺	(3)	Cr³+	(4)	Mn ²⁺	[/::: 1111 2014]
Sol.	Answer (2)	()		(-)		()		
	$\sqrt{n(n+2)} = 2.83$							
	$n^2 + 2n = (2.83)^2$							
	∴ n = 2							
	$Ni^{2+} = 3d^8$							
	i.e., 2 unpaired electrons							
13.	Reason of lanthanoid contr	actio	n is					[AIPMT-2014]
	(1) Negligible screening ef	fect c	f 'f' orbitals	(2)	Increasing nuclear c	harge	!	
	(3) Decreasing nuclear cha	arge		(4)	Decreasing screening	ng effe	ect	
Sol.	Answer (1)							
	f-orbitals have poor shielding	ng ef	fect.					
14.	Which of the following lanth	nanoi	d ions is diamagnetic?	(At no	os. Ce=58, Sm=62, E	iu=63	, Yb=70)	[NEET-2013]
	(1) Sm ²⁺	(2)	Eu ²⁺	(3)	Yb ²⁺	(4)	Ce ²⁺	
Sol.	Answer (3)							
15.	Which of the following state	emen	ts about the interstitial	comr	ounds is incorrect?			[NEET-2013]
10.	(1) They are chemically rea			001116				[11221 2010]
	(2) They are much harder							
	(3) They have higher meltir		•					
	(4) They retain metallic con	•	·					
Sol.	Answer (1)							

16.	Which of the statements is n	ot true?				[AIPMT (Prelims)-2012]		
	(1) K ₂ Cr ₂ O ₇ solution in acidic	medium is orange						
	(2) K ₂ Cr ₂ O ₇ solution become	es yellow on increasing the	pH b	eyond 7				
	(3) On passing H ₂ S through							
	(4) Na ₂ Cr ₂ O ₇ is preferred ove							
Sol.	Answer (4)							
	$\mathrm{Na_2Cr_2O_7}$ is not preferred over analysis.	er K ₂ Cr ₂ O ₇ in volumetric an	alysis	. K ₂ Cr ₂ O ₇ is used as	prima	ary standard in volumetric		
17.	Which one of the following do	pes not correctly represent	the c	orrect order of the pro	opert	y indicated against it?		
	· ·	, .		·		[AIPMT (Mains)-2012]		
	(1) Ti < V < Cr < Mn : increa	sing number of oxidation s	states			- , , -		
	(2) $Ti^{3+} < V^{3+} < Cr^{3+} < Mn^{3+}$:	_						
	(3) Ti < V < Cr < Mn : increa	sing melting points						
	(4) Ti < V < Mn < Cr : increas	ing 2nd ionization enthalpy						
Sol.	. Answer (3)							
	The incorrect order of increasing melting point is							
	Ti < V < Cr < Mn							
	Melting point increases from than that of Ti.	T ₁ to chromium but decr	eases	s in case of Mn. Mn	has ı	melting point even lower		
18.	Which of the following exhibi	ts only +3 oxidation state	?			[AIPMT (Mains)-2012]		
	(1) U (2	2) Th	(3)	Ac	(4)	Pa		
Sol.	Answer (3)							
19.	Four successive members of standard potential (E° _{M2+M}) va		sition	metals are listed belo	ow. F	or which one of them the [AIPMT (Mains)-2012]		
		2) Ni (Z = 28)	(3)	Cu (Z = 29)	(4)	Fe $(Z = 26)$		
Sol.	Answer (3)							
20	Acidified K ₂ Cr ₂ O ₇ solution turn	ns areen when Na SO is a	hahha	to it. This is due to th	na for	mation of		
20.	Acidilled 1201207 Solution turn	is green when wa ₂ 00 ₃ is a	uucu	to it. This is due to ti	101	[AIPMT (Prelims)-2011]		
	(1) CrSO ₄ (2	2) Cr ₂ (SO ₄) ₃	(3)	CrO ₄ ²⁻	(1)	$Cr_2(SO_3)_3$		
Sal	Answer (2)	z) 01 ₂ (00 ₄) ₃	(5)	0104	(+)	012(003)3		
301.	Allswei (2)							
21.	For the four successive trans in which of the following order		and	Co), the stability of +	·2 oxi	dation state will be there [AIPMT (Prelims)-2011]		
	(At nos. $Cr = 24$, $Mn = 25$, F	Fe = 26, Co = 27)						
	(1) Cr > Mn > Co > Fe		(2)	Mn > Fe > Cr > C	ю			

(4) Co > Mn > Fe > Cr

(3) Fe > Mn > Co > Cr

Sol.	Answer (2)						
	More the number of unpa	aired electrons	s more will be the st	ability.			
	Hence, the correct order	· is, Mn > Fe >	> Cr > Co.				
22.	Which of the following ior	ns will exhibit c	olour in aqueous sol	utions ?		[AIPMT (Prelims)	-2010]
	(1) La ³⁺ (Z = 57)		(2)	$Ti^{3+}(Z=22)$			
	(3) $Lu^{3+}(Z = 71)$		(4)	Sc ³⁺ (Z = 21)			
Sol.	Answer (2)						
23.	Which one of the following	g ions has eled	ctronic configuration	[Ar] 3d ⁶ ?		[AIPMT (Prelims)	-2010]
	(1) Ni ³⁺		(2)	Mn³+			
	(3) Fe ³⁺		(4)	Co ³⁺			
Sol.	Answer (4)						
24.	Which of the following pa	irs has the sar	ne size ?			[AIPMT (Prelims)	-2010]
	(1) Fe ²⁺ , Ni ²⁺		(2)	Zr ⁴⁺ , Ti ⁴⁺			
	(3) Zr ⁴⁺ , Hf ⁴⁺		(4)	Zn ²⁺ , Hf ⁴⁺			
Sol.	Answer (3)						
25.	Which of the following ox	idation states i	is the most common	among the lanthar	noids ?	[AIPMT (Mains)	-2010]
	(1) 4	(2) 2	(3)	5	(4)	3	
Sol.	Answer (4)						
	Lanthanides show 3+ ox	idation state g	generally.				
26.	The correct order of decre	easing second	ionisation enthalpy o	of Ti(22), V(23), Cr(24) and	Mn(25) is	
						[AIPMT (Prelims)	-2008]
	(1) Ti > V > Cr > Mn		(2)	Cr > Mn > V > Ti			
	(3) V > Mn > Cr > Ti		(4)	Mn > Cr > Ti > V	,		
Sol.	Answer (2)						
	Cr > Mn > V > Ti						
	This is the order of the order of the orgains stable 3d ⁵ confiand form stable half filled that Ti.	iguration whicl	h describes it high 2	2nd ionization enth	nalpy. M	In also loses an el	ectron
27.	Number of moles of MnO	- required to c	oxidize one mole of fe	errous oxalate com	pletely	in acidic medium w	ill be
						[AIPMT (Prelims)	-2008]
	(1) 0.2 moles		(2)	0.6 moles			
	(3) 0.4 moles		(4)	7.5 moles			
Sol.	Answer (2)						

28.	Identify the incorrect statement among the following			[AIPMT (Prelims)-2007]
	(1) Shielding power of 4f electrons is quite weak			
	(2) There is a decrease in the radii of the atoms or ions	s as c	one proceeds from La to	Lu
	(3) Lanthanoid contraction is the accumulation of succ	essiv	ve shrinkages	
	(4) As a result of lanthanoid contraction, the properties with the 5d series of elements	of 4d	series of the transition e	elements have no similarities
Sol	. Answer (4)			
29.	Which one of the following ions is the most stable in aqu Mn = 25)	ueous	s solution? (Atomic num	nber. Ti = 22, V = 23, Cr = 24, [AIPMT (Prelims)-2007]
	(1) Mn ²⁺	(2)	Cr ³⁺	
	(3) V ³⁺	(4)	Ti ³⁺	
Sol	. Answer (2)			
	$Cr^{3+} \Rightarrow d^3$ configuration			
	$\it i.e.~t_{2g}$ orbitals is half filled \Rightarrow Stable aqueous compo	und.		
30.	More number of oxidation states are exhibited by the act is	ctinoi	ds than by the lanthanoi	ids. The main reason for this [AIPMT (Prelims)-2006]
	(1) More energy difference between 5f and 6d orbitals	than	that between 4f and 5d	orbitals
	(2) Lesser energy difference between 5f and 6d orbitals	s tha	n that between 4f and 5d	d orbitals
	(3) Greater metallic character of the lanthanoids than t	hat o	f the corresponding acti	noids
	(4) More active nature of the actinoids			
Sol	. Answer (2)			
31.	Copper sulphate dissolves in excess of KCN to give			[AIPMT (Prelims)-2006]
	(1) CuCN	(2)	[Cu(CN) ₄] ³⁻	
	(3) [Cu(CN) ₄] ²⁻	(4)	Cu(CN) ₂	
Sol	. Answer (2)			
	$CuSO_4 + KCN \longrightarrow K_3[Cu(CN)_4]$			

32. In which of the following pairs are both the ions coloured in aqueous solution?(At. no.: Sc = 21, Ti = 22, Ni = 28, Cu = 29, Co = 27) [AIPMT (Prelims)-2006]

(1) Ni²⁺, Ti³⁺

(2) Sc³⁺, Ti³⁺

(3) Sc³⁺, Co²⁺

(4) Ni²⁺, Cu⁺

Sol. Answer (1)

 $\mathrm{Ti^{3+}}\;(3\mathit{d^{1}})$ and $\mathrm{Ni^{2+}}\;(3\mathit{d^{8}})$ have unpaired electrons.

∴ Both Ti³⁺ and Ni²⁺ ions are coloured in aqueous solution.

33.	The number of moles of KN	∕InO₄	reduced one mole of K	l in al	kaline medium is		[AIPMT (Prelims)-2005]
	(1) One fifth	(2)	Five	(3)	One	(4)	Two
Sol.	Answer (4)						
	In alkaline medium						
	2MnO ₄ - + H ₂ O + I	→ 2M	nO ₂ + 2OH ⁻ + IO ₃				
	\Rightarrow 2 moles of KMnO ₄ are	red	uced by 1 mole of KI.				
34.	The aqueous solution conta Ti = 22, Mn = 25)	ainin	g which one of the follov	ving i	ons will be colourless	? (At	omic no. Sc = 21, Fe = 26, [AIPMT (Prelims)-2005]
	(1) Sc ³⁺	(2)	Fe ²⁺	(3)	Ti ³⁺	(4)	Mn ²⁺
Sol.	Answer (1)						
	Sc ³⁺ has 3d ⁰ configuration	with	no unpaired electron.	Ther	efore Sc ³⁺ is colourle	ess ir	n its aqueous solution.
35.	Four successive members one of them expected to ha					h the	ir atomic numbers. Which [AIPMT (Prelims)-2005]
	(1) Vanadium (Z = 23)	(2)	Chromium $(Z = 24)$	(3)	Iron $(Z = 26)$	(4)	Manganese (Z = 25)
Sol.	Answer (4)						
36.	The main reason for larger r	numb	er of oxidation states ext	nibited	d by the actinides than	the c	corresponding lanthanides, [AIPMT (Prelims)-2005]
	(1) Lesser energy differen	ce be	etween 5f and 6d orbital	s thar	n between 4f and 5d o	orbita	ls
	(2) Larger atomic size of a	ctini	des than the lanthanide	s			
	(3) More energy difference	e betv	ween 5f and 6d orbitals	than I	oetween 4f and 5d orl	bitals	
	(4) Greater reactive nature	e of th	ne actinides than the lar	nthani	des		
Sol.	Answer (1)						
	Because of the lesser ene achnoids exhibits more nu			nd 6a	d orbitals as compare	ed to	that of 4 <i>f</i> and 5 <i>d</i> orbitals,
37.	The catalytic activity of tra	nsitio	on metals and their cor	npou	nds is ascribed mair	nly to	
	(1) Their magnetic behavio	our		(2)	Their unfilled d-orbi	tals	
	(3) Their ability to adopt v	ariab	le oxidation states	(4)	Their chemical read	ctivity	
Sol.	Answer (3)						
	The ability to adopt variabl metals.	e oxi	dation state is the mair	reas	son which explains th	ne ca	talytic activity of transition
38.	Which one of the following	g eler	nents shows maximum	num	ber of different oxida	ation	states in its compounds?
	(1) Gd	(2)	La	(3)	Eu	(4)	Am
Sol.	Answer (4)						
	Americium (Am) being an +4, +6, and +5 oxidation			ber o	of oxidation states th	an la	nthanides. It exhibits +3,

39.	Without losing its concentra	ation	ZnCl ₂ solution cannot	be k	ept in contact with		
	(1) Pb	(2)	Al	(3)	Au	(4)	Ag
Sol.	Answer (2)						
	Aluminium (Al) is more rea	ctive	than Zn and it can di	splac	e Zn from its salt so	lution	
40.	Which ion is colourless?						
	(1) Cr ⁴⁺			(2)	Sc ³⁺		
	(3) Ti ³⁺			(4)	V ³⁺		
Sol.	Answer (2)			(-)	-		
	Sc ³⁺ does not have any un	naire	ed electron, hence it is	s colo	ourless.		
	$Sc^{3+} = 1s^2, 2s^2, 2p^6, 3s^2, 3$	•		, , , ,			
	.0, _0, _p, ,00,	- 10					
41.	General electronic configura						
	(1) $(n-2) f^{1-14} (n-1) d$				$(n-2) f^{10-14} (n-$		
	(3) $(n-2) f^{0-14} (n-1) c$	$1^{10} n$	ns^2	(4)	$(n-2) d^{0-1} (n-$	1) f ¹ -	^{- 14} ns ²
Sol.	Answer (1)						
	The general electronic con	figur	ation of lanthanides is	(n –	2) f^{1-14} $(n-1)$ d^{0-1}	^{- 1} ns ²	2
42.	Which of the following show	vs m	aximum number of ox	idatio	n states?		
	(1) Cr	(2)	Fe	(3)	Mn	(4)	V
Sol.	Answer (3)						
	Manganese show maximur	n nu	mber of oxidation state	es fro	om +2 to +7.		
43.	In the silver plating of copp	er, K	[Ag(CN) ₂] is used inste	ead c	of AgNO ₃ . The reasor	n is	
	(1) A thin layer of Ag is for		_		- 0		
	(2) More voltage is required	d					
	(3) Ag ⁺ ions are completely		noved from solution				
	(4) Less availability of Ag ⁺	ions	, as Cu can not displa	ce Ag	g from [Ag(CN) ₂] ⁻ ion	l	
Sol.	Answer (4)		·				
	Fact.						
4.4	0.00	· O. I.					
44.	CuSO ₄ when reacts with K to formation of the following			inso	luble in water. It is s	oluble	n excess of KCN, due
	(1) K2[Cu(CN)4]	(2)	$K_3[Cu(CN)_4]$	(3)	CuCN ₂	(4)	Cu[K Cu(CN) ₄]
Sol.	Answer (2)						
	$CuSO_4 + 2KCN \longrightarrow Cu$	CN +	+ K ₂ SO ₄				
	CuCN + 3KCN ——— K ₃ [0	Cu(C	$[N)_4$				

- 45. Which of the following is expected to be coloured in solutions?
 - (1) Cu⁺

(2) Cu²⁺

(3) Ti⁴⁺

(4) Sc³⁺

Sol. Answer (2)

$$Cu^{2+} = 1s^2$$
. $2s^2$. $2p^6$. $3s^2$. $3p^6$. $3d^9$

Cu²⁺ contains unpaired electron in d-subsheel and hence Cu²⁺ is coloured in solution.

- 46. The basic character of the transition metal monoxides follows the order (Atomic nos. Ti = 22, V = 23, Cr = 24, Fe = 26)
 - (1) VO > CrO > TiO > FeO

(2) CrO > VO > FeO > TiO

(3) TiO > FeO > VO > CrO

(4) TiO > VO > CrO > FeO

Sol. Answer (4)

- 47. The correct order of ionic radii of Y^{3+} , La^{3+} , Eu^{3+} and Lu^{3+} is (Atomic nos. Y = 39, La = 57, Eu = 63, Lu = 71)
 - (1) $Y^{3+} < La^{3+} < Eu^{3+} < Lu^{3+}$

(2) $Lu^{3+} < Y^{3+} < Eu^{3+} < La^{3+}$

(3) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$

(4) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$

Sol. Answer (2)

The correct order of ionic radii of Y³⁺, La³⁺, Eu³⁺ and Lu³⁺ is

$$Y^{3+} < Lu^{3+} < Eu^{3+} < La^{3+}$$

Due to lanthanide contraction, the size of 3+ ion decreases continuously from La to Iu, but Lu⁺³ ion has ionic size greater than that of Y⁺³ which is a d block element.

- 48. Among the following series of transition metal ions, the one where all metal ions have $3d^2$ electronic configuration is [At. Nos. Ti = 22, V = 23, Cr = 24, Mn = 25]
 - (1) Ti³⁺, V²⁺, Cr³⁺, Mn⁴⁺

(2) Ti⁺, V⁴⁺, Cr⁶⁺, Mn⁷⁺

(3) Ti⁴⁺, V³⁺, Cr²⁺, Mn³⁺

(4) Ti²⁺, V³⁺, Cr⁴⁺, Mn⁵⁺

Sol. Answer (4)

$$Ti = 3d^2$$
, $4s^2$; $V = 3d^3$, $4s^2$; $Cr^{4+} = 3d^5$, $4s^1$; $Mn = 3d^5$, $4s^2$

- \therefore Ti⁺², V⁺³, Cr⁺⁴ and Mn⁺⁵ have 3d² configuration.
- 49. Lanthanides are
 - (1) 14 elements in the sixth period (atomic number 90 to 103) that are filling 4f sublevel
 - (2) 14 elements in the seventh period (atomic number = 90 to 103) that are filling 5f sublevel
 - (3) 14 elements in the sixth period (atomic number = 58 to 71) that are filling the 4f sublevel
 - (4) 14 elements in the seventh period (atomic number = 50 to 71) that are filling 4f sublevel
- Sol. Answer (3)

Lanthanides are member of 6th period and starts from atomic number 58 to 71. They are 14 element in which filling of electrons takes place in 4*f* sublevel.

- 50. Which of the following statement is not correct? (1) La(OH)₂ is less basic than Lu(OH)₃ (2) In lanthanide series ionic radius of Lu⁺³ ion decreases
 - (3) La is actually an element of transition series rather lanthanides
 - (4) Atomic radius of Zr and Hf are same because of lanthanide contraction

Sol. Answer (1)

As we go right in a period, the basic character decreases.

- 51. Which one of the elements with the following outer orbital configurations may exhibit the largest number of oxidations states?
 - (1) $3d^24s^2$
- (2) $3d^34s^2$
- (3) $3d^54s^1$
- $3d^54s^2$

Sol. Answer (4)

 $3d^54s^2$ will show highest numbers of oxidation states.

- 52. The highest possible oxidation state shown by osmium in its compound is
 - (1) +4

(2) + 8

(3) +6

(4) +10

Sol. Answer (2)

OS shows 8+ oxidation state (maximum).

SECTION - C

Assertion - Reason Type Questions

A: FeO is basic in character.

R: Oxides of Transition metals are basic when metal is in lower oxidation state.

Sol. Answer (1)

Both are correct and correct explanation (fact).

A: Ti (IV) complexes are white.

R: Ti (IV) has no electrons in d subshell.

Sol. Answer (1)

 $Ti^{4+} \Rightarrow 3d^0 \Rightarrow \text{no } d\text{-}d \text{ transition} \Rightarrow \text{no colour.}$

A: Ce⁴⁺ is a good oxidizing agent.

R: Sm2+ is a good reducing agent.

Sol. Answer (2)

Both the statements are true.

But, reason is not the correct explanation for oxidizing character of Ce⁴⁺.

4. A: Equivalent mass of $K_2Cr_2O_7$ when it acts as an oxidizing agent in acidic medium is M/6.

R: During reduction, oxidation number of chromium changes from +6 to +3.

Sol. Answer (1)

In acidic medium, n-factor of K2Cr2O7 is 6

∴ Equivalent mass = $\frac{M}{6}$

5. A: All Cr–O bond length in $K_2Cr_2O_7$ are equal.

R : Both the Cr are present in dsp^2 hybrid state.

Sol. Answer (4)

In $K_2Cr_2O_7$, some Cr–O bonds have double bond and some are single bond, so bond lengths are different and Cr is sp^3 hybridized.

6. A: FeCl₃ reacts with KCNS to give blood red colour.

R: FeCl₃ reacts with KCNS to form potassium ferro-ferricyanide.

Sol. Answer (3)

$$FeCl_3 + KCNS \longrightarrow Fe(CNS)_3 + 3KCI$$
(Yellow)
(Blood red ferric thincyanate)

7. A: La(OH)₃ is less basic than Lu(OH)₃.

R: Basic character of hydroxides of lanthanides increase on moving from La⁺³ to Lu⁺³.

Sol. Answer (4)

As we go right in a period the basic nature of hydroxides decreases.

8. A: KMnO₄ is purple in colour due to charge transfer.

R: In MnO_4^- , Mn is in + 7 oxidation state and thus has no electron present in d orbitals.

Sol. Answer (1)

KMnO₄ is purple.

In $\mathrm{Mn^{7^+}}$ no any d electron, so d-d transition is not possible. Hence charge transfer.

9. A: CuSO₄.5H₂O on heating to 250°C losses all the five H₂O molecules and becomes anhydrous.

 $\rm R$: All the five $\rm H_2O$ molecules are co-ordinated to the central $\rm Cu^{+2}$ ion.

Sol. Answer (3)

$$CuSO_4 \cdot 5H_2O \xrightarrow{\Delta} CuSO_4 + 5H_2O$$

All the 5H₂O molecules are not bonded to the central atom.

10. A: Cr₂O₇⁻² is orange in colour.

R: It is due to the presence of unpaired electrons in d-subshell of Cr.

Sol. Answer (3)

 $Cr_2O_7^{-2} \Rightarrow \text{orange colour} \Rightarrow \text{true}$

Here Cr is in 6+ \Rightarrow 3 d^0 4 s^0 \Rightarrow no any unpaired electron in d-subshell.

11. A: Mn shows exceptional M.P. in 3d series.

R: Its outer configuration is $4s^2 3d^5$.

Sol. Answer (1)

Mn shows exceptional MP. Due to its very stable configuration i.e. $3d^5 4s^2$.

12. A: I.E. of 5*d* elements > 4d elements in general.

R: It is due to lanthanide contraction.

Sol. Answer (1)

I.E. 5d elements > I.E. 4d elements due to lanthanide contraction.

13. A: There is very less gap between the value of radii of 4d and 5d elements.

R: Size of 5d is more than 4d subshell.

Sol. Answer (2)

The gap between radii of 4d and 5d elements is very less due to lanthanide contraction and size of 5d is greater than size of $4d \Rightarrow$ True.

14. A: Mn₂O₇ is acidic in nature.

R: Mn has +7 oxidation state.

Sol. Answer (1)

 Mn_2O_7 acidic in nature \Rightarrow True. In 7+ state Mn has high tendency to accept electron.

15. A: NiCl₂ is more stable than PtCl₂.

R: K₂PtCl₆ is more stable than K₂NiCl₆.

Sol. Answer (2)

 NiCl_2 is more stable than $\operatorname{PtCl}_2 \Rightarrow \operatorname{True}$

 K_2PtCl_6 is more stable than $K_2NiCl_6 \Rightarrow True$

Reason is CFSE.

16. A: $Cr_2O_7^{2-}$ becomes equilibrium with CrO_4^{2-} at PH > 5.

R : $Cr_2O_7^{2-}$ is tetrahedral having Cr - O - Cr angle 109°28′.

Sol. Answer (4)

$$CrO_4^{2-} \stackrel{P^H = 4}{\longleftarrow} Cr_2O_7^{2-}$$

In $K_2 Cr_2O_7$ the Cr–O–Cr angle is 126°.

17. A: In CrO_5 oxidation state of Cr is +10.

R: Cr₂O₇²⁻ (aq) is yellow in colour.

Sol. Answer (4)

In CrO₅, oxidation state of Cr is 6+.

 $\text{Cr}_2\text{O}_7^{2-}$ (aq) is orange in colour.

18. A: Cu^{2+} is the only ion (M^{2+}) which has positive E_{red}^{o} (M^{2+}/M) in 3d series.

R : Cu has lower hydration enthalpy as comparision to its I.E. and $\Delta H_{\text{atm}}.$

Sol. Answer (1)

Both the statements are correct with proper explanation.

19. A: Hg is a liquid transition metal.

R: It has strong metallic bonding.

Sol. Answer (4)

Hg is not a transition metal and there is no any strong metallic bonding that is why it is liquid.

20. A: Lanthanides have +3 as most common oxidation state.

R: Electrons of 4f in lanthanides rarely participate in bonding.

Sol. Answer (1)

Lanthanides, most commonly shows 3+ oxidation state because the 4f electrons do not participate in bonding.