CHAPTER

Techniques of
Integration

OVERVIEW We have seen how integrals arise in modeling real phenomena and in
measuring objects in the world around us, and we know in theory how integrals are
evaluated with antiderivatives. The more sophisticated our models become, however,
the more involved our integrals become. We need to know how to change these
more involved integrals into forms we can work with. The goal of this chapter is
to show how to change unfamiliar integrals into integrals we can recognize, find in
a table, or evaluate with a computer.

As we saw in Section 4.1, we evaluate an indefinite integral by finding an antideriva-
tive of the integrand and adding an arbitrary constant. Table 7.1 (on the following
page) shows the basic forms of the integrals we have evaluated so far. There is
a more extensive table at the back of the book; we will discuss it in Section 7.5.

Algebraic Procedures

We often have to rewrite an integral to match it to a standard formula.

EXAMPLE 1 A simplifying substitution

2x —9

Evaluate | ————dx.
Vx2—9x+1
Solution
2x -9 dx = __d_u_ u=x>—9x+1
/x2 —9x + 1 ﬁ du = (2x —9)dx
= /u"l/z du
u-1/2+1 Table 7.1.
=+ C Formula 4, with
(-1/2)+1 n=—1/2
=2+ C

=2/x2=-9%x +14+C 4

555
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Table 7.1 Basic integration formulas

1. /du:u-i-C

2. /k du=ku+C (any number k)

f(du-i-dv):fdu—l—/dv

untl
4. "du = C -1
/u u P + (n#-1)

d ;
[—u:ln|u|+C
U

6. /sinudu:—cosu+C

ol

o

7. /cosudu:sinu+C
8. /seczuduztanu+C
9. /csczuduz—cotu+C

10. /secutanudu =secu +C

11. fcscucotudu——cscu+C
12. /tanudu— In |cosu| + C
=In|secu|+C
13. /cotudu—lnlsmul—l—C
=—In|cscul+C
14. /“du—e +C
15[ +C  @>0, a#
lna
— -l (¥
16. /«/az— sin (a)+C
u
17. n'(=)+C
,/az+u <a)+
18/ —sec"‘z‘+C
_az

EXAMPLE 2  Completing the square

dx
Evaluate / «/_Sﬁ
Solution We complete the square to write the radicand as
8x —x* = —(x* — 8x) = —(x* — 8x + 16 — 16)
=—(x?—8x+16)+16 =16 — (x —4)>.
Then

/ dx _ /’ dx
V8x —x2 16 — (x — 4)?

_/ u a=4. u=(x—4)
/az ) du = dx
.1 (U
= sin -1+ C Table 7.1, Formula 16
a

= sin~! (x4;4) +C.
Q
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EXAMPLE 3  Expanding a power and using a trigonometric identity

Evaluate f(secx +tanx)?dx.

Solution We expand the integrand and get
(secx + tanx)* = sec’ x + 2secx tan x + tan” x.

The first two terms on the right-hand side of this equation are old friends; we can

integrate them at once. How about tan? x? There is an identity that connects it with
2

sec” x:

tan’x + 1 = sec’ x, tan® x = sec’x — 1.
We replace tan® x by sec?x — 1 and get
1% y g

f(secx +tanx)?dx = f(seczx +2secxtanx + sec’x — 1) dx

=2/seczxdx+2/secxtanxdx—/ldx

= 2tanx +2secx —x + C. |

EXAMPLE 4  Eliminating a square root
/4
Evaluate f +/14cos 4xdx.
0

Solution We use the identity

1 4 cos 26
2 b

With 6 = 2x, this becomes

cos’ 9 = or 1 + cos20 = 2cos? 6.

1 + cos4x = 2cos? 2x.

Hence,

/4 /4
f V1+cosdxdx = / V2 V/cos? 2x dx
0 0

/4
=J§/ |cos2x|dx ~ ur=lul
0

/4
On [0, /4], cos2x >0
= ﬁ/o cos2x dx S0 | cos2x| = cos 2x.
in2x 7"/
_ ﬁ[sm ]
2 0
1 V2
=v2|z-0|=22
2 2 d

EXAMPLE 5  Reducing an improper fraction

3x% —Tx
Evaluat ——dx.
vauae'/‘3x+2 x
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x =3
3x+2i3x2 — Tx
3x% 4+ 2x
— Ox

—9x -6

+6

Solution The integrand is an improper fraction (degree of numerator greater than
or equal to degree of denominator). To integrate it, we divide first, getting a quotient
plus a remainder that is a proper fraction:

3x2—7x__ 34 6
xtr2 3x+2
Therefore,
3x2 —7x 6 x?
—dx = 34+ ——)dx=—-3 21n |3 2|+ C.
/3x+2x /(x +3+2)x 7 T3 A2 Bxr2+C

Reducing an improper fraction by long division (Example 5) does not always
lead to an expression we can integrate directly. We will see what to do about that
in Section 7.3.

EXAMPLE 6  Separating a fraction

x +2
Evaluate dx.
,/ — 2
Solution We first separate the integrand to get
3x+2 xdx dx
——dx =3 +2 .
V1 —x? V1 —x? V1 —x?

In the first of these new integrals we substitute

1
u=1-x% du = —2xdx, and xdx:—idu.

xdx (=1/2)du 3 / “12
————=— [ u/"du
J—=2 Ju 2
3 u1/2
=—.—+4+C =-3/1-x2+C,.
27102 + (4 xc 4+ Cy
The second of the new integrals is a standard form,
dx
=2sin"' x + C,.
V1 —x2 2
Combining these results and renaming C; + C, as C gives
3x 3x+2 2
= —3y/1 —x2+2sin"'x + C.
V1= x2 0

EXAMPLE 7  Multiplying by a form of 1

Evaluate f secxdx.

Solution

t.
/secxdx = /(secx)(l)dx = /secx . SeCik—inidx

secx + tanx

sec? x + sec x tan x
dx
secx + tanx
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_ d_u i = tan.x + secx
- u du = (sec® x + secx tanx) dx
=In |u|+C =In |secx +tanx| 4+ C a

Table 7.2 The secant and cosecant integrals

1. fsecudu =In |secu +tanu| + C

2. /cscudu =—In|cscu +cotu|+C

With cosecants and cotangents in place of secants and tangents, the method of
Example 7 leads to a companion formula for the integral of the cosecant (see
Exercise 95).

Procedures for Matching Integrals to Basic Formulas

Procedure

Example

Making a simplifying substitution
Completing the square

Using a trigonometric identity

Eliminating a square root

Reducing an improper fraction

Separating a fraction

Multiplying by a form of 1

2x —9 d du

A N L

VxZ—9x 1 N
V8x —x2 = /16 — (x — 4)?

(secx + tanx)? = sec? x + 2secx tan x + tan’ x
=sec?x +2secxtanx + (sec’x — 1)

=2sec’x +2secxtanx — 1

1+ cosdx = v/2cos? 2x = +/2 ]| cos 2x|

3x2—7x_x 34 6
3x+2 3x+2
3x+2 3x 2

= +
V1—x2 J1—-x2 J1-x2

secx + tanx
SseCXx = Ssecx « —
secx + tanx

sec? x + sec x tan x

secx +tanx
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Exercises 7.1

Basic Substitutions

Evaluate the integrals in Exercises 1-36 by using substitutions that
reduce them to standard forms.

16x dx 3cosxdx
V8x2 41 V14 3sinx
3. /3~/sinvcosvdv 4. /cot3ycsc2ydy
1 7/3 a2
. / 16x dx 6. / sec zdz
0 8)C2+2 /4 tanz
7. / & 8. f dx
Vx(J/x +1) x = /x
9. /cot(3—7x) dx 10. /csc (mx —1)dx
t(3+1
1. /e"csc(e9+1)do 12. /de
x
t
13. /secgdt 14. /x sec (x> — 5)dx
15. /csc(s—n)ds 16. /—csc —db
In2
17./ 2xe* dx 18./ sin(y)e®?Y dy
0 /2
NG
19. / wny e y dy 20. /e dt
Jt
2lnx
21. f3x+1dx 22.[ dx
X
Vi
23, f 27dw 24. f 10%d6
2J/w
9du 4dx
25. | —— 26, [ ————
/1—|—9u2 /1+(2x+1)2
1/6 1
27. / _dx 28. _dar
0 +/1—9x2 0o V4—12
29. 2sds 30. 2dx
V1 —s xv1—4In*x
31 / L B 32 / _ar
x/25x2 — 1 rvr2 —9
dx dy
33. M., | ——
fe" +e* /\/eZy -1
elr/3

d 1
35,/ _ax 36,f“_dxz
1 xcos(ln x) x +4xIn“ x

Completing the Square

Evaluate the integrals in Exercises 37-42 by completing the square
and using substitutions to reduce them to standard forms.

2 8dx 2dx
37. —— 38.
/1x2—2x+2 /xz 6x+10

dt
3, | — 40. / _49
/ N m
41 / dx 2 f i
") e+ DVaTrx ") a-)VaT—dx+3

Trigonometric Identities

Evaluate the integrals in Exercises 43-46 by using trigonometric iden-
tities and substitutions to reduce them to standard forms.

43. f(secx + cotx)%dx 44. /(cscx — tan x)2dx

45, / cscx sin3x dx

46. / (sin3x cos 2x — cos 3x sin2x) dx

Improper Fractions

Evaluate each integral in Exercises 47-52 by reducing the improper
fraction and using a substitution (if necessary) to reduce it to standard
form.

2
47. f X ax 48. / X _ix
x+1 x2 41
3 3 342_
49.[ 2 s so.[ il
vixt—=1 -1 2x+3

413 — 2 4 16¢ 203 —70% 4170
s, [0, s2. [0
/ ryra Y / 26 -5

Separating Fractions

Evaluate each integral in Exercises 53-56 by separating the fraction
and using a substitution (if necessary) to reduce it to standard form.

1— V=1
53. / — X ix 54. / -1,
V1 —x? 2x+/x — 1

71'/41 B 172 2 8
55. / LN 56. f *d
0 cos? x 1 +4x2

Multiplying by a Form of 1

Evaluate each integral in Exercises 57-62 by multiplying by a form
of 1 and using a substitution (if necessary) to reduce it to standard
form.



1
57. /——,——dx
1+sinx
59. /——l—d()
secd + tan 6

1
61. f———~———dx
1 —secx

Eliminating Square Roots

Evaluate each integral in Exercises 63—70 by eliminating the square
root.

2n _
63. / ,/L—C‘ﬂ dx 64.
A 2

/1 +cosx
/csc@ +cot0

/ —cscx

/ V1 —cos2xdx
0

b4 0
65. f V1 +cos2rdt 66. / 1+ costdt
/2 -
0 .4
67. f V1 =cos?6db 68. / V1 —sin’0do
-7 /2

/4
69. V1 +tan®ydy 70.

—n /4

0
/ Jsecty — 1dy
- /4

Assorted Integrations

Evaluate the integrals in Exercises 71-82 using any technique you
think is appropriate.

3 /4
71. f (cscx —cotx)*dx 72.

/4
/ (secx + 4cosx)?dx
/4 0

/(1 + %)cot(x-i—ln x)dx

73. /cose csc (sin6) do 74.
75. /(cscx —secx)(sinx 4+ cosx)dx

76. /(cscx + secx)(tanx + cotx) dx

_6dy 78 / _dx
Sy +y) RN/ T o
79, f 7dx 80. / dx
(x — DV/x% — 2x — 48 Qx + DVaxZ + 4x

82 / tan6 do
2sec O +1

77.

81. f sec? ¢ tan (tan 7) dt

Trigonometric Powers
83. a) Evaluate [ cos’0df. (Hint: cos’d = 1 —sin®6.)
b) Evaluate | cos’ 6 do.
c¢) Without actually evaluating the integral, explain how you
would evaluate [ cos® 6 d6.

84. a) Evaluate [sin’6d6. (Hint: sin”0 = 1 — cos?6.)
b) Evaluate [ sin’ 6 d6.
¢) Evaluate [sin’ 6 d6.
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d) Without actually evaluating the integral, explain how you
would evaluate [ sin"* 6 df.

85. a) Express [tan’0d0 in terms of [tan®dd. Then evaluate
[ tan® 0 d6. (Hint: tan? 0 = sec?6 — 1.)

b) Express [ tan’6d6 in terms of [ tan®6d6.

¢) Express [tan’ 6 d6 in terms of [tan’6d6.

d) Express [ tan®**! 0 dO, where k is a positive integer, in terms

of [tan®*~160dg.

Express [ cot® 6 d6 in terms of [ cotfdf. Then evaluate
[ cot® 6 db. (Hint: cot? 0 = csc?6 — 1.)

b) Express [ cot’ 0 d6 in terms of [ cot® 6 d6.

©) Express [cot’ 6d6 in terms of [ cot’ 6 d6.

d) Express [ cot?*!6 d6, where k is a positive integer, in terms

of [ cot*~16d6.

86. a)

Theory and Examples

87. Find the area of the region bounded above by y = 2cosx and
below by y =secx, —m/4 <x <m/4.

88. Find the area of the “triangular” region that is bounded from
above and below by the curves y = cscx and y =sinx, 7/6 <
x < m /2, and on the left by the line x = 7 /6.

89. Find the volume of the solid generated by revolving the region
in Exercise 87 about the x-axis.

90. Find the volume of the solid generated by revolving the region

in Exercise 88 about the x-axis.

B

91
92. Find the length of the curve y = In(secx), 0 < x < m /4.

Find the length of the curve y =In(cosx), 0 < x < m/3.

.

93. Find the centroid of the region bounded by the x-axis, the curve
y = secx, and the lines x = —m /4, x = /4.

94. Find the centroid of the region that is bounded by the x-axis, the
curve y = cscx, and the lines x = 7 /6, x = 57/6.

95. The integral of cscx. Repeat the derivation in Example 7, using
cofunctions, to show that

fcscxdx = —In |cscx +cotx|+ C.

96. Show that the integral

[ (@ =pe+ vy

can be evaluated with any of the following substitutions.

a) u=1/(x+1)

b) u=((x-1/x+D)F
for k =1, 1/2, 1/3, —1/3, —2/3, and —1

¢) u=tanlx

d) u=tan"' /x e)

f) u=cos'x g)

u=tan"! ((x — 1)/2)
u =cosh™'x

What is the value of the integral? (From ‘“Problems and Solu-
tions,” College Mathematics Journal, Vol. 21, No. 5, Nov. 1990,
pp- 425-426.)
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Integration by Parts

Integration by parts is a technique for simplifying integrals of the form

ff(X)g(X)dx (M

in which f can be differentiated repeatedly and g can be integrated repeatedly
without difficulty. The integral
/ xe*dx

is such an integral because f(x) = x can be differentiated twice to become zero
and g(x) = ¢* can be integrated repeatedly without difficulty. Integration by parts

also applies to integrals like
/ e* sinxdx,

in which each part of the integrand appears again after repeated differentiation or
integration.
In this section, we describe integration by parts and show how to apply it.

The Formula

The formula for integration by parts comes from the Product Rule,

d( %) dv +vdu
—uv) =u— —_—
dx dx dx

In its differential form, the rule becomes

d(uv) =udv+vdu,
which is then written as

udv=duv) —vdu

and integrated to give the following formula.

The Integration-by-Parts Formula

/udv:uv—/vdu. (2)

The integration-by-parts formula expresses one integral, [ u dv, in terms of a
second integral, [ vdu. With a proper choice of u and v, the second integral may
be easier to evaluate than the first. This is the reason for the importance of the
formula. When faced with an integral we cannot handle, we can replace it by one
with which we might have more success.



V2
7.1 The area of the blue region, j:” udv,
equals the area of the large rectangle,
u2v2, minus the areas of the small
rectangle, uivq, and the gray region,

fuzvdu.

U

In symbols,
U,

vy 2
j:h udv = (Upva — uvq) — L‘ vdu.

When and How to Use
Integration by Parts

When: If substitution doesn’t work, try
integration by parts.

How: Start with an integral of the form
/ f(x)g(x)dx.

Match this with an integral of the form

/udv

by choosing dv to be part of the integrand
including dx and possibly f(x) or g(x).

Guideline for choosing u and dv: The

formula
/udu:uv—fvdu

gives a new integral on the right side of
the equation. If the new integral is more
complex than the original one, try a
different choice for u and dv.
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The equivalent formula for definite integrals is

/udv:(uzvz—ulvl)—f vdu. (3)

vy

Figure 7.1 shows how the different parts of the formula may be interpreted as areas.

EXAMPLE 1 Find /xcosx dx.

Solution We use the formula / udv =uv — / v du with

u=x, dv = cosxdx,

du = dx, v = sinx. Simplest antiderivative of cos x

Then

/xcosxdx = xsinx —fsinxdx = xsinx +cosx + C.

Let us examine the choices available for u and dv in Example 1.

EXAMPLE 2 Example 1 revisited

To apply integration by parts to

/xcosxdx:fudv

we have four possible choices:

1. Letu =1 and dv = x cos x dx. 2. Let u = x and dv = cosx dx.
3. Let u = xcosx and dv = dx. 4. Let u =cosx and dv = xdx.

Let’s examine these one at a time.
Choice 1 won’t do because we don’t know how to integrate dv = x cosx dx
to get v.
Choice 2 works well, as we saw in Example 1.
Choice 3 leads to
U = XCOSX, dv =dx,

du = (cosx — xsinx) dx, vV=ux,
and the new integral

/vdu = /(xcosx — x%sinx)dx.

This is worse than the integral we started with.
Choice 4 leads to

U = COosx, dv =xdx,

du = —sinxdx, v =x%/2,
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7.2 The solid in Example 3.

so the new integral is

2
/vdu:—f%sinxdx.

Summary. Keep in mind that the object is to go from f udv to a new integral that
is simpler. Integration by parts does not always work, so we cannot always achieve
the goal. a

This, too, is worse.

EXAMPLE 3 Find the volume of the solid generated by revolving about the
y-axis the region in the first quadrant enclosed by the coordinate axes, the curve
y = €* and the line x = In 2 (Fig. 7.2).

Solution Using the method of cylindrical shells, we find

b
V= f 2rex f(x)dx The shell volume formula
a

In 2
=271’f xedx.
0

To evaluate the integral, we use the formula f udv=uv — f vdu with

u=x, dv =¢"dx
du = dx, v=oe¢€". Simplest antiderivative of e*
Then
/xexdx =xe —/exdx,
SO

In2 2 In2
n
/ xe"a'x:xe"]0 —/ e dx
0

0
= [ln2e1"2 —0] — [eJ‘]:)n2
=2In2-[2-1]
=2In2-1.

The solid’s volume is therefore

In2
V=27t/ xetdx
0

=2r(2In2-1). 4

Integration by parts can be useful even when the integrand has only a single
factor. For example, we can use this method to find f In x dx (next example) or
Jcos™! xdx (Exercise 47).

EXAMPLE 4 Find [In xdx.
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Solution Since [In xdx can be written as [In x - 1 dx, we use the formula
fudv=uv— [vdu with

u=1Inx Simplifies when differentiated dv =dx Easy to integrate

1
du = —dx vV =X. Simplest antiderivative
X

Then

1
/1nxdx=xlnx——fx-—dx:xlnx—fdx:xlnx—x+C.
x

Q

Repeated Use

Sometimes we have to use integration by parts more than once to obtain an answer.
EXAMPLE 5 Find [xze‘ dx.

Solution We use the formula f udv = uv — f vdu with

u = x?, dv =e"dx, v=c¢e", du =2xdx.

/xze" dx = x%e* — Z/xex dx.

It takes a second integration by parts to find the integral on the right. As in Example
3, its value is xe* — e* + C’. Hence

This gives

/xzex dx = x*¢* —2xe* + 2+ C.

Solving for the Unknown Integral

Integrals like the one in the next example occur in electrical engineering. Their
evaluation requires two integrations by parts, followed by solving for the unknown
integral.

EXAMPLE 6 Find / e’ cosxdx.

Solution We first use the formula / udv =uv— f vdu with

u=-e", dv = cosxdx, v = sinx, du = e*dx.

Then

/e" cosxdx =e* sinx —/e‘ sinx dx. 4)

The second integral is like the first, except it has sin x in place of cos x. To evaluate
it, we use integration by parts with

u=e", dv =sinxdx, V= —COSX, du = e* dx.
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Then

/e" cosxdx = e sinx — (-—e" cos x — /(— cosx)(e* dx))
= ¢€" sinx + ¢&* cosx — /e" cosxdx.

The unknown integral now appears on both sides of the equation. Combining the
two expressions gives

2/6" cosxdx =e* sinx +¢e* cosx + C.

Dividing by 2 and renaming the constant of integration gives

e* sinx + e* cosx
/e" cosxdx = +C'.

2

The choice of u = ¢* and dv = sinx dx in the second integration may have
seemed arbitrary but it wasn’t. In theory, we could have chosen u = sinx and
dv = e* dx. Doing so, however, would have turned Eq. (4) into

/e" cosxdx = e sinx — (e" sinx — /e" cosxdx)
=fexcosxdx.

The resulting identity is correct, but useless. Moral: Once you have decided on what
to differentiate and integrate in circumstances like these, stick with them. Formulas
for the integrals of e** cos bx and the closely related e** sinbx can be found in the
integral table at the end of this book. u

Tabular Integration

We have seen that integrals of the form f f(x)g(x)dx, in which f can be dif-
ferentiated repeatedly to become zero and g can be integrated repeatedly without
difficulty, are natural candidates for integration by parts. However, if many repeti-
tions are required, the calculations can be cumbersome. In situations like this, there
is a way to organize the calculations that saves a great deal of work. It is called
tabular integration and is illustrated in the following examples.

EXAMPLE 7 Find / x2e* dx by tabular integration.

Solution With f(x) = x* and g(x) = e*, we list

f(x) and its g(x) and its
derivatives integrals
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We add the products of the functions connected by the arrows, with the middle sign
changed, to obtain

/xze" dx = x%e* — 2xe* +2¢5 + C. 0

EXAMPLE 8 Find / x* sinx dx by tabular integration.

Solution With f(x) = x3 and g(x) = sinx, we list

f(x) and its g(x) and its
derivatives integrals

sin x
For more about tabular integration, see the \
Additional Exercises at the end of this &‘ oo

chapter.

Again we add the products of the functions connected by the arrows, with every
other sign changed, to obtain

fx3sinxdx=—x3cosx+3xzsinx+6x cosx — 6 sinx 4+ C. 0
-
Exercises 7.2
Integration by Parts /2
17. / 6*sin26 do 18. f x* cos 2x dx
Evaluate the integrals in Exercises 1-24. 0 0
Cx 2 /42
1. fx sin — dx 2. fe cos 6 df 19. t sec™' t dt 20. / 2x sin”!(x?) dx
2 2/4/3 0
2 2 .
3 ft cost dt 4. fx sinx dx 21 /egsinede /e Y cos ydy
2 e
5. /1 xInxdx 6. fl x* In x dx 23. fez" cos3x dx 24. /e‘z" sin2x dx
-1 -1
7 [ tan™ ydy 8 / sin”" ydy Substitution and Integration by Parts
Evaluate the integrals in Exercises 25-30 by using a substitution prior
9. / x sec? xdx 10. / 4x sec? 2x dx to integration by parts.
1
1. /xsexdx 12. [p4e P dp 25. /e””gds 26. /0 xv/1—xdx
/3
13. /(xz—Sx)e"dx 14. /(r +r+1)e dr 27. / x tan” x dx 28. /ln(x +x%)dx
0
15. / xet dx 16. / 1? e dt 29. / sin (In x) dx 30. / z(In z)*dz
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Theory and Examples

31. Find the area of the region enclosed by the curve y = x sin x and

32.

33.

34.

3s.

36.

the x-axis for (@) 0 <x <m,(b) 7 < x <2m,(c)2mr < x < 3m.
(d) What pattern do you see here? What is the area between
the curve and the x-axis for nwm < x < (n + 1), n an arbitrary
nonnegative integer? Give reasons for your answer.

y
10— y=xsinx
5_.
x
0 77\/277 37
_5—

Find the area of the region enclosed by the curve y = x cosx

and the x-axis (see the figure below) for

a) 7m/2<x<3mn/2,

b) 3m/2<x <5m/2,

¢) Sm/2<x<Tn/2

d) What pattern do you see? What is the area between the
curve and the x-axis for

2n —1 g <y < 2n+1
2 sr=\T)"

n an arbitrary positive integer? Give reasons for your answer.

y

10—
y=xcosx

AN

0 7_7\/377 5 T

2 2 2 2

-10—

Find the volume of the solid generated by revolving the region
in the first quadrant bounded by the coordinate axes, the curve
y = e*, and the line x = In 2 about the line x = In 2.

Find the volume of the solid generated by revolving the region
in the first quadrant bounded by the coordinate axes, the curve
y =e™*, and the line x = 1 (a) about the y-axis, (b) about the
line x = 1.

Find the volume of the solid generated by revolving the region
in the first quadrant bounded by the coordinate axes and the
curve y =cosx, 0 < x < m /2, about (a) the y-axis, (b) the line
x=m/2.

Find the volume of the solid generated by revolving the region
bounded by the x-axis and the curve y = x sinx, 0 < x <,
about (a) the y-axis, (b) the line x = 7. (See Exercise 31 for a
graph.)

37.

B

38.

g

39.

40.

41.

| /]
an

42.

a) Find the centroid of a thin plate of constant density covering
the region in the first quadrant enclosed by the curve y =
x%e*, the x-axis, and the line x = 1.

b) CALCULATOR Find the coordinates of the centroid to 2
decimal places. Show the center of mass in a rough sketch
of the plate.

a) Find the centroid of a thin plate of constant density covering
the region enclosed by the curve y = In x, the x-axis, and
the line x = e.

b) CALCULATOR Find the coordinates of the centroid to 2
decimal places. Show the centroid in a rough sketch of the
plate.

Find the moment about the y-axis of a thin plate of density
8 =1+ x covering the region bounded by the x-axis and the
curve y =sinx, 0 <x < m.

Although we usually drop the constant of integration in deter-
mining v as [ dv in integration by parts, choosing the constant
to be different from zero can occasionally be helpful. As a case

in point, evaluate
/ x tan”! xdx,

with u = tan™! x and v = (x?/2) + C, and find a value of C that
simplifies the resulting formula.

A retarding force, symbolized by the dashpot in the accompany-
ing figure, slows the motion of the weighted spring so that the
mass’s position at time ¢ is

y =2e""cost, t=>0.

a) Find the average value of y over the interval 0 < ¢ < 27x.

b) GRAPHER Graph y over the interval 0 < ¢ < 27. Copy the
graph and mark the average value of y as a point on the
y-axis.

Dashpot

In a mass-spring-dashpot system like the one in Exercise 41, the
mass’s position at time ¢ is

y =4e '(sint — cost), t>0.



a) Find the average value of y over the interval 0 <t < 2.
% b) GRAPHER Graph y over the interval 0 < ¢ < 2m. Copy the
graph and mark the average value of y as a point on the

y-axis.

Integrating Inverses of Functions

Integration by parts leads to a rule for integrating inverses that usually
gives good results:

[ rimas=[sroa RPN PRl

dx = f'(y)dy

Integration by parts with

=yf - / F»dy =y, dv=f(y)dy

=@ - [ oy
The idea is to take the most complicated part of the integral, in this

case f~'(x), and simplify it first. For the integral of In x, we get

\

y=Inx, x=e
/lnxdx =fyeydy dx = ¢ dy
=y’ —e+C
=xlnx—-x+C.

For the integral of cos™! x we get

/cos‘l xdx =x cos™' x —/cosydy y =cos™ x

= xcos™!

x —siny+C
= xcos™' x —sin(cos™!x) + C.

Use the formula

f £ dx = xf~(x) - / fody  y=f0 )

to evaluate the integrals in Exercises 43—46. Express your answers in
terms of x.
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43. fsin_lxdx 44, ftan_lxdx

45, fsec‘lxdx 46. flogzxdx

Another way to integrate f~!(x) (when f~! is integrable, of
course) is to use integration by parts with u = f~!(x) and dv = dx
to rewrite the integral of f~! as

/f_l(x)dx =xf_l(x)—/x<%f_'(x))dx. (6)

Exercises 47 and 48 compare the results of using Egs. (5) and (6).

47. Equations (5) and (6) give different formulas for the integral of
cos™!x:

a) /.cos_1 xdx =x cos™'x —sin(cos™'x) + C Eq. (5)
b) /cos‘lxdxzx cos'x —V1=x24C Eq. (6)

Can both integrations be correct? Explain.
48. Equations (5) and (6) lead to different formulas for the integral

of tan™! x:

a) -/tan‘l xdx=xtan'x —Insec(tan'x)+C  Eq. (5

b) /tan“xdx:x tan"'x —Inv1+x2+C

Can both integrations be correct? Explain.

Eq. (6)

Evaluate the integrals in Exercises 49 and 50 with (a) Eq. (5) and (b)
Eq. (6). In each case, check your work by differentiating your answer
with respect to x.

49, / sinh™!x dx 50. f tanh™'x dx

Partial Fractions

A theorem from advanced algebra (mentioned later in more detail) says that every
rational function, no matter how complicated, can be rewritten as a sum of simpler
fractions that we can integrate with techniques we already know. For instance,

5x -3 2 3

= s 1
x2—-2x-3 x+1+x—3 ()

so we can integrate the rational function on the left by integrating the fractions on
the right instead.

The method for rewriting rational functions this way is called the method of
partial fractions. In this particular case, it consists of finding constants A and B
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such that

5x -3 _ A + B @)
x2—2x—-3 x+1 x-3

(Pretend for a moment that we do not know that A =2 and B = 3 will work.)
We call the fractions A/(x + 1) and B/(x — 3) partial fractions because their
denominators are only part of the original denominator x?> — 2x — 3. We call A and
B undetermined coefficients until proper values for them have been found.

To find A and B, we first clear Eq. (2) of fractions, obtaining

5x —3=A(x—3)+B(x+1)=(A+ B)x —3A+B.

This will be an identity in x if and only if the coefficients of like powers of x on
the two sides are equal:

A+ B =35, —3A+B=-3.

Solving these equations simultaneously gives A =2 and B = 3.

EXAMPLE 1 Two distinct linear factors in the denominator

Find
Sx —
_x=3
x+D(x—-3)

Solution From the preceding discussion,

-3 2
Sx—dxzf dx+/ 3 dx
x+DHx-=3) x+1 x—3

=2In|x+1/+3In|x =3+ C. Q

EXAMPLE 2 A repeated linear factor in the denominator

Express
6x +7
(x+2)

as a sum of partial fractions.

Solution Since the denominator has a repeated linear factor, (x + 2)%, we must
express the fraction in the form

6x +7 A B

(x+2)2_x+2+(x+2)2‘ ®)

Clearing Eq. (3) of fractions gives
6x+7=A(x+2)+B=Ax+ (2A+ B).

Matching coefficients of like terms gives A = 6 and
7=2A+4+B=12+B, or B = -5.

Hence,
6x +7 6 5

(x+2?2 x+2 (x+27? Q




How to Evaluate Undetermined
Coefficients

1. Clear the given equation of fractions.

2. Equate the coefficients of like terms
(powers of x).

3. Solve the resulting equations for the
coefficients.

A quadratic polynomial is irreducible if it
cannot be written as the product of two linear
factors with real coefficients.
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EXAMPLE 3 An improper fraction
Express
203 —4x?—x -3
x2—=2x-3

as a sum of partial fractions.

Solution First we divide the denominator into the numerator to get a polynomial
plus a proper fraction. Then we write the proper fraction as a sum of partial fractions.
Long division gives
2x
x2—=2x—3)2x* —4x>*—x -3

2x3 — 4x% — 6x

5x =3
Hence,
2% —4x? —x -3 o + 5x -3 Result of the divisi
= X —_— esult of the division
x2—2x-3 x?—2x -3
2 3 o )
=2x + . Proper fraction expanded
x+1 x-=-3 as in Example |

EXAMPLE 4  An irreducible quadratic factor in the denominator

Express
—2x +4
X2+ D(x —1)?

as a sum of partial fractions.

Solution The denominator has an irreducible quadratic factor as well as a repeated
linear factor, so we write
—2x+4 Ax+ B C D
3 =5 + + 5 4
x*+Dx-1) x2+1 x—1 =1
Notice the numerator over x + 1: For quadratic factors, we use first degree nu-
merators, not constant numerators. Clearing the equation of fractions gives

2 4+4=Ax+B)(x—-1*+Cx-DE*+ 1) +Dx>+1)

=(A+O)x*+(=2A+ B — C + D)x*

+(A-2B+C)x+(B—-C+ D).

Equating coefficients of like terms gives

Coefficients of x3: 0=A+C
Coefficients of x?: 0=-2A+B—-C+D
Coefficients of x!: —2=A-2B+C

Coefficients of x%: 4=B-C+D
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We solve these equations simultaneously to find the values of A, B, C, and D:

—4 =-24A, A=2
C=-A=-2
B =1

D=4-B+C=1.

Subtract fourth equation from second.
From the first equation
A =2 and C = -2 in third equation.

From the fourth equation

Cases discussed so far

Proper fraction Decomposition
numerator _ A + B
x+px+qg @x+p) x+q)
numerator _ A B

Grp? Gtp | GtpP
numerator Ax+ B C
CrpGE+a?  Ptp  xtq
D
e 9)?

We substitute these values into Eq. (4), obtaining
—2x+4 _ 2x+1 2 1

(x2+1)(x—1)2_x2+1_x—1+(x—1)2' a
-2
EXAMPLE 5 Evaluate / x_—l—ét x
(x24+D(x —-1)?

Solution We expand the integrand by partial fractions, as in Example 4, and
integrate the terms of the expansion:

—2x+4 2x+1 2 1
dx — d Example 4
f(x2 D(x —1)? ./(x2+1 x—1+(x—1)2) *

/ 2x n 1 2 + 1 d
= — X
x24+1 x241 x—-1 x-12

1
=In@x>+1)+tan'x—2In |x—1[——1+c.
x._
a

General Description of the Method

Success in writing a rational function f(x)/g(x) as a sum of partial fractions
depends on two things:

1. The degree of f(x) must be less than the degree of g(x). (If it isn’t, divide and
work with the remainder term.)

2. We must know the factors of g(x). (In theory, any polynomial with real co-
efficients can be written as a product of real linear factors and real quadratic
factors. In practice, the factors may be hard to find.)

A theorem from advanced algebra says that when these two conditions are met, we
may write f(x)/g(x) as the sum of partial fractions by taking these steps.

The Method of Partial Fractions (f(x)/g (x) Proper)

Step 1 Letx — r be alinear factor of g(x). Suppose (x — r)™ is the highest
power of x — r that divides g(x). Then assign the sum of m partial fractions
to this factor, as follows:

Ay A, Ap

(x—rym’

x—r (x—r)

Do this for each distinct linear factor of g(x).
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Step 2 Letx? + px + g be an irreducible quadratic factor of g(x). Suppose
(x* + px + q)" is the highest power of this factor that divides g(x). Then
to this factor assign the sum of the n partial fractions:
Bix + Cy Bx + C, B,x + C,
2tpx+q  (P+px+q)? (@ +pr+qr
Do this for each distinct quadratic factor of g(x) that cannot be factored
into linear factors with real coefficients.

Step 3 Set the original fraction f(x)/g(x) equal to the sum of all these
partial fractions. Clear the resulting equation of fractions and arrange the
terms in decreasing powers of x.

Step 4 Equate the coefficients of corresponding powers of x and solve the
resulting equations for the undetermined coefficients.

3¢ The Heaviside “Cover-up” Method for Linear Factors
When the degree of the polynomial f(x) is less than the degree of g(x), and
g) = —r)(x—r)---(x —ry)

is a product of n distinct linear factors, each raised to the first power, there is a
quick way to expand f(x)/g(x) by partial fractions.

EXAMPLE 6 Find A, B, and C in the partial-fraction expansion

x2+1 A B C
+

G- Dx-20-3) x-1 x—2"x=3 ©)

Solution If we multiply both sides of Eq. (5) by (x — 1) to get

x2+1 _ B(x—1)+C(x—1)
(x-2)(x=3) x—2 x—3
and set x = 1, the resulting equation gives the value of A:
(1> +1
——— =A+0+0,
a-oa-3 70T
A=1.

Thus, the value of A is the number we would have obtained if we had covered the
factor (x — 1) in the denominator of the original fraction

xr+1

x=—Dx-=-2)(x—-13) (6)

and evaluated the rest at x = 1:
(1> +1 2

= =1
1-2(1-3) (=D(=2)
{

Cover
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Similarly, we find the value of B in Eq. (5) by covering the factor (x — 2) in (6)
and evaluating the rest at x = 2:

2?2 +1 5

B = = _ —
2-1 2-3 (DD
{t

Cover

Finally, C is found by covering the (x — 3) in (6) and evaluating the rest at x = 3:

co 3’ +1 _ 10
T B3-D(3-2 @M
&
Cover Q

The steps in the cover-up method are these:

Step 1: Write the quotient with g(x) factored:

f@ _ f@
g0) G —r) e —r)’

@)

Step 2: Cover the factors (x — r;) of g(x) in (7) one at a time, each time replacing
all the uncovered x’s by the number r;. This gives a number A; for each root r;:

A = f@r) ’
(ry—ry)---(ry —rn)
A = f(r2)
2 = ,
(ro—r)(ra—r3) - (ra—rp)
A, = fra)

(rn —r))(rn—r2) -+ (ry _rn—l)'
Step 3: Write the partial-fraction expansion of f(x)/g(x) as

f6) A A4,
g(x)  (x—r) (x~rz)+ +(x—rn)'

EXAMPLE 7  Evaluate
x+4
————dx.

[x3+3x2— 10x o
Solution The degree of f(x) =x +4 is less than the degree of g(x) = x>+
3x% — 10x, and, with g(x) factored,

x+4 _ x+4
x343x2—10x  x(x —2)(x+5)

The roots of g(x) are r; =0, r, =2, and r3 = —5. We find
_ 044 _ 4 _ _E
0-=2)0+35 (=2 5

{t

Cover

A

]
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244 6 3
A = = = -,
T2l ]e+s @M T
i
Cover
pe —5+4 e N
N5 [ty ]| DED T3S
i
Cover
Therefore,
_x+4 _ 2. 3 1
x(x—-2)(x+5 5x T(x-2) 35(x+5)’
and

4 2 3 1
/dez—gln el + 510 x = 2| = o< In |x + 5] + C.

x(x —2)(x +5) Q

Other Ways to Determine the Constants

Another way to determine the constants that appear in partial fractions is to differ-
entiate, as in the next example. Still another is to assign selected numerical values
to x.

EXAMPLE 8 Differentiation
Find A, B, and C in the equation
x—1 A B C

(x +1)3 “x+1+(x+1)2+(x+1)3'

Solution We first clear of fractions:
x—1=Ax+D*+B(x+1)+C.

Substituting x = —1 shows C = —2. We then differentiate both sides with respect
to x, obtaining

1 =24(x+1)+ B.

Substituting x = —1 shows B = 1. We differentiate again to get 0 = 2A, which
shows A = 0. Hence

x—1 1 2

x+13 (x+D2 (x+1)3 a

In some problems, assigning small values to x such as x =0, £1, £2, to get
equations in A, B, and C provides a fast alternative to other methods.

EXAMPLE 9  Assigning numerical values to x

Find A, B, and C in
x2+1 A B C
x-Dx-2)x-3) x—-1 x-2 x-3
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Solution Clear of fractions to get
PH+1=Ax -2x-3)+Bx—-DEx—=3)+Ckx - D(x —2).
Then let x = 1, 2, 3 successively to find A, B, and C:

x=1  (1)*4+1=A(=1)(=2) + B(0) + C(0)
2 =24
A=1

x=2: (2?41 =A0) +B1)(~1)+C(0)
5=-B
B=-5

x=3  (3)?*4+1=A0)+ B0)+C@2)1)
10 = 2C
C =5.

Conclusion:
X241 15 5

G-Dx-2x-3)

Exercises 7.3

Expanding Quotients into Partial Fractions
Expand the quotients in Exercises 1-8 by partial fractions.

S5x —13 5x =7
T (x=3)(x—2) T x2-3x+42
x+4 2x +2
. 4, —— "7
(x+1)? x2=2x+1
z+1 6 z
T2z - 1) T B3 —z2—62
t*+8 s t*+9
"R —5t4+6 Tt 4912

Nonrepeated Linear Factors

In Exercises 9-16, express the integrands as a sum of partial fractions
and evaluate the integrals.
0 v/
x%+2x

9,
/l—x2
12'/ 2x +1

—Tx+12™

14/ 2tey
12 ¥ +Y

x+3
16.
,/2x3—8x

dt
15, | —ni—r
/ 342 -2

Repeated Linear Factors

In Exercises 17-20, express the integrands as a sum of partial fractions
and evaluate the integrals.

1 /l x3dx 18 /0 x3dx
“Jo x24+2x+1 T x2=2x+1
2dx
19. _— 20.
/ (x2—1)2 (x—D&E2+2x+1)

Irreducible Quadratic Factors
In Exercises 21-28, express the integrands as a sum of partial fractions

and evaluate the integrals.
1 V3 2.2

21. / dix 22, / wdt
o G+DEE+D 1

B3+t
y2 42y +1 8x% 4+ 8x 42
— 24. ——dx
(y*+1)? (4x2 +1)?
2s +2 st +81
d 2. | ————d
/(s2 T -1p " /s(s2+9)2 s
- f263+592+80+4d9
(0% + 20 +2)?
28 /04—493+292—39+1d9
) 6% +1)3
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In Exercises 29-34, perform long division on the integrand, write the
proper fraction as a sum of partial fractions, and then evaluate the
integral.

_ 4
29, fzx 2041, 30./x—dx
x2 -1
9x2 —3x +1 16x3
1. [ Z=——""4 2 [ ——— 4
3 f x3—x? * _[4x2—4x+1 *
4 2_1 24
33. /%dy 34. f3—2y—-—dy
y+y y»=y+y-1 B4

Evaluating Integrals
Evaluate the integrals in Exercises 35-40.

e'dt oM + 2e2 — ot
35. 36. | ———dt
fe2'+3e’+2 _/ et +1
7. / _ cos y.dy 38, f sin 6d6
siny +siny — 6 cos?6 +cosf —2

19 f (x —2)%tan1(2x) — 12x3 — 3x
) (4x2 + 1)(x — 2)?
(x + D?*tan~'(3x) + 923 + x

40. 9x2 + 1)(x + 1)?

B 4.

Initial Value Problems

Solve the initial value problems in Exercises 41-44 for x as a func-
tion of ¢.

d
41. (t2—3t+2)-jt£:1 t>2), x(3)=
d
4. (3t4+4t2+1)d—’t‘=2ﬁ, x(1) = —n+/3/4
2 dx
43, (¢ +2t)E=2x+2 t,x>0), x()=1
dx 5
U (DT =2+ (> -1, x(0) =7/4

Applications and Examples

In Exercises 45 and 46, find the volume of the solid generated by
revolving the shaded region about the indicated axis.

45. The x-axis & so.
yo 3
X V3x — x2
(0.5, 2.68) (2.5, 2.68)

Exercises 7.3 577

The y-axis

Y - 2

x+1D2-x
1

E 3.

. CALCULATOR Find, to 2 decimal places, the x-coordinate of

the centroid of the region in the first quadrant bounded by the
x-axis, the curve y = tan~! x, and the line x = V3.

CALCULATOR Find the x-coordinate of the centroid of this re-
gion to 2 decimal places.

G.18) 4x?413x-9
x3+2x% - 3x

(5,0.98)

Social diffusion. Sociologists sometimes use the phrase “social
diffusion” to describe the way information spreads through a pop-
ulation. The information might be a rumor, a cultural fad, or news
about a technical innovation. In a sufficiently large population,
the number of people x who have the information is treated as a
differentiable function of time ¢, and the rate of diffusion, dx/dt,
is assumed to be proportional to the number of people who have
the information times the number of people who do not. This
leads to the equation

dx

T kx(N — x),
where N is the number of people in the population.

Suppose ¢ is in days, kK = 1/250, and two people start a

rumor at time ¢ = 0 in a population of N = 1000 people.

a) Find x as a function of ¢.
b) When will half the population have heard the rumor? (This
is when the rumor will be spreading the fastest.)

Second order chemical reactions. Many chemical reactions are
the result of the interaction of two molecules that undergo a
change to produce a new product. The rate of the reaction typi-
cally depends on the concentrations of the two kinds of molecules.
If a is the amount of substance A and b is the amount of sub-
stance B at time ¢t = 0, and if x is the amount of product at time
t, then the rate of formation of x may be given by the differential
equation
dx

yrie k(a —x)(b—x),



578 Chapter 7: Techniques of Integration

or
1 dx

@a-xb-x)d
where k is a constant for the reaction. Integrate both sides of this
equation to obtain a relation between x and ¢ (a) if a = b, and
(b) if @ # b. Assume in each case that x =0 when 7 = 0.

)

51. An integral connecting n to the approximation 22[7
1,4 4
-1
a) Evaluate / w
0 x2 + 1

E b) CALCULATOR How good is the approximation & =~ 22/7?
Find out by expressing (w — 22/7) as a percentage of 7.

dx.

4 x — 1 4
GRAPHER Graph the function y = %
x
1. Experiment with the range on the y-axis set between 0
and 1, then between 0 and 0.5, and then decreasing the
range until the graph can be seen. What do you conclude
about the area under the curve?

=¥ c) forO0 <x <

52. Find the second degree polynomial P(x) such that P(0) =1,
P’(0) =0, and

is a rational function.

P(x)
x3(x —1)2

Trigonometric Substitutions

Trigonometric substitutions enable us to replace the binomials a” + x2, a
and x? — a® by single squared terms and thereby transform a number of integrals
containing square roots into integrals we can evaluate directly.

2 2

—Xx°,

Three Basic Substitutions

The most common

substitutions are x =a tan 0, x = a sin 0, and x = a sec 0.

They come from the reference right triangles in Fig. 7.3.

With x = a tan

a2+x2

With x = a sin
2

With x = a sec
2

a —x2

X —a2

0,

=a*+a’*tan’® 9 = a2(1 + tan? 0) = a? sec? 0. @)
0,

= a® —a® sin® 0 = a*(1 — sin® 0) = a? cos® 6. )
0,

=a’sec’ 9 —a’ = az(sec29 -1 = a’tan? 6. 3)

1. x=atan 0

Trigonometric Substitutions

replaces a® + x> by a® sec? 4.

2. x=asinf replaces a> — x* by a? cos? 6.
3. x=asecH  replaces x> —a®* by a® tan’ 4.
a +x2 a X
X X x2 — a2
0 0 0
a 2 — 52 a
7.3 Reference triangles for trigonometric .
x =atan Xx =asin @ x=asecf

substitutions that change binomials into
single squared terms.

Va? + x* = afsec 6]

Va? — x? = a|cos 6| Vx? — @ = altan 6|



Q=

Q=

Q% NIy

7.4 The arc tangent, arc sine, and arc

secant of x/a, graphed as functions of x/a.

4+ x%

)

2

7.5 Reference triangle for x =2 tan 6
(Example 1):

X
tan 6 = -
an 3
and
4 + x?
sec 6 =
2
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We want any substitution we use in an integration to be reversible so that we can
change back to the original variable afterward. For example, if x = a tan 6, we want
to be able to set & = tan~'(x/a) after the integration takes place. If x = a sin 0,
we want to be able to set # = sin~'(x/a) when we’re done, and similarly for
X =a sec 6.

As we know from Section 6.8, the functions in these substitutions have inverses
only for selected values of 6 (Fig. 7.4). For reversibility,

b4
x =atan6 requires 6 =tan"! (—) with — ) <0 < %,
x =asin@ requires 6 =sin"! (ZC—> with — = <0< 7—t—,

a 2 2

X 0<6< —725 if = > 1,
x =asec requires 6 =sec”’ (—) with ;

a —<f<nm if —<-1.

a

To simplify calculations with the substitution x = a sec 8, we will restrict
its use to integrals in which x/a > 1. This will place 6 in [0, 7 /2) and make

tan & > 0. We will then have v/x2 — a? = /a2 tan® 6 = |a tan 0| = a tan 6, free
of absolute values, provided a > 0.

dx
EXAMPLE 1 Evaluate / —_—
V4 4+ x?
Solution We set
) b4 b4
x = 2 tan 0, dx =2 sec” 0d6, —5<6<—2—,

4+ x* =444 tan’ 0 = 4(1 + tan® 0) = 4 sec? 6.

Then
/‘ dx _/2sec20d9 _ sec? 0 d6 ]
Vitxr ) Vadsecro | sec 0| sect 0 = lsecd]
sec 6 > 0 for
:fsec@d& b4 b4
-—=— <0< =
2 2
=In|sec 6 +tan 6| + C
/ p)
—In 4+x_+f +C From Fig. 7.5
2 2
=ln‘ 4+x2+x‘+C’. Taking C'=C —In 2

Notice how we expressed In |sec 6 + tan 6| in terms of x: We drew a reference
triangle for the original substitution x = 2 tan 6 (Fig. 7.5) and read the ratios from
the triangle. Q

x*dx

EXAMPLE 2 Evaluate / _—
/9 —x?
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Solution To replace 9 — x? by a single squared term, we set

. /4 b4
x = 3 sin 0, dx =3 cos 6d6, —5<9<5,

9 — x2=9(1 —sin® 8) =9 cos? 6.

Then
/ x*dx [ 9sin’ 6 -3 cos 6d6
NOEE 13 cos 6]
=9fsin29d9 c059>0f0r—%<9<%
1 — cos 26
=9 ) —db
/=5
3 X
9 sin 20
E C
) 2( 2 )+
Vo-2 .
7.6 Reference triangle for x = 3 sin 0 - 5(9——sm9 cos ) +C n 20 =2 g o
(Example 2):
. X 9 /9 _ 2
sm9=§ =§(Sin_1§—§' 3 x >+C Fig. 7.6
and
2 9 X X
cos 6 = 3X. =§sin"1§—§v9—x2+c D

dx
EXAMPLE 3 Evaluate / — x> -,
V25x2 — 4 5

Solution We first rewrite the radical as

V25x2 -4 = |25 <x2 - i)

N2
5
to put the radicand in the form x? — a®. We then substitute

2
ngsec0, a’ngseCQtanGdQ, 0<9<z

4( 2o—1) 4t29
= —(SeC - = — (an
25 25 ’

2\* 2 2 ‘
2 Z = = —— tan 6 > O for
* <5> 5 | tan 61 5 tan 6. 0<6<m/)2



7.7 If x =(2/5) sec 6, 0 < 6 < /2, then 6 = sec™'(5x/2)
and we can read the values of the other trigonometric
functions of 6 from this right triangle.

y
_ 4
1 Y
A
0 2 W/
(@
y
_ 4
3 Y x*+4
\
\
\
\
\
1
|
! L
o1 | 2
I
]
]
1
/
1
,/

()

7.8 The region (a) and solid (b) in

Example 4.

2 +4

)

2

7.9 Reference triangle for x = 2tan 6

(Example 4).
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1 257 4
2
With these substitutions, we have
/ dx _ /‘ dx _ [ (2/5) sec 6 tan 6 d6
V25x2 =4 ) 5/x2—(4)25) 5-(2/5) tan 0

1 1

= gfsec 60do = glnlsec9+tan9| +C

/752 —

L O i ihked I R A E

5 2 2 0

A trigonometric substitution can sometimes help us to evaluate an integral
containing an integer power of a quadratic binomial, as in the next example.

EXAMPLE 4 Find the volume of the solid generated by revolving about the

x-axis the region bounded by the curve y = 4/(x* + 4), the x-axis, and the lines
x=0and x =2.

Solution We sketch the region (Fig. 7.8) and use the disk method (Section 5.3):
2 2 d X
V:/nﬂR@de=MRf-————
0 0

wrar T e
To evaluate the integral, we set
x =2 tan 0, dx =2 sec’ 0d0, 6 = tan™" %,
x% + 4 = 4 tan? 9+4=4(tan2 6+1) =4 sec? 6
(Fig. 7.9). With these substitutions,
2
dx
V = l6r —_—
/o 2+ 4)2 o
when x = 0;
_ 16n/‘”/42sec26d0 0 =n/4
0 (4 SeC2 9)2 when x =2
/4 2 2 0do /4
:1671/ L:n/ 2 cos® 6db
0 16 sec* 6 0
/4 sin 207" 2cos =
=n/ (1+cos26)d9:rr|:9+ 2 ] [_6:20529
0 0
T 1
= — 4+ = | = 4.04.
”[4+2] Q
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Exercises 7.4

Basic Trigonometric Substitutions

Evaluate the integrals in Exercises 1-28.

1 f dy 3dy
ANCERE V1+9y?
3 /2 dx 4 /2 dx
’ ) 4+X2 : 0 8+2X2
s 32y . 1/2v2 2dx
0 9 —x2 "o 1 —4x?
7. /\/25—t2dt 8. f\/1—9t2dt
9 f dx 7 10 5dx 3
e | Y—, x> = e | ———, x> -
Vax2 — 49 2 V25x2 =9 5
Vy*—49 Vy? =25
11./y—dy, y>7 12./y—3dy, y>5
y y
x 2dx
13./ﬁ,x>1 14. x?’\/T———l, x>1
15 f 16 /dix
") Vi 4 AN
17 8dw 18 V9 — w2d
RN v ‘ I
1 /ﬁﬂ 4x% dx " /‘ dx
o (1 — x2)3/2 : o (4—x2)32
dx x%dx
21. /m, x>1 22. / (x2 — 1)5/2, x> 1
1 — x2)3/? 1 — x2)12
23. /L—%—L—dx 24, fL—’i—)-dx
x x
8dx 6dt
25, | ——— 26. | —e
/ (4x% +1)? (92 + 1)?
v’ dv (1—r?)’?
27. —(1 R 28. f——r8 dr

In Exercises 29-36, use an appropriate substitution and then a trigono-
metric substitution to evaluate the integrals.

In4 In (4/3) t
e dt e dt
2. / 30. e
Ve +9 maa (14 e*)y

1/4 e
3L L 32,[ 4
112 V't + 4t L yJ/1+ (In y)?

34. /d_x
1+ x2

dx
36./—
V1 —x2

dx
33. /————
xv/x2—1

xdx

35. —_—
Vx?2—1

Initial Value Problems

Solve the initial value problems in Exercises 37-40 for y as a function
of x.

3. xR oo h k22 Yy =0
dx
dy
38. vx2—9d— =1, x>3, yO)=In3
X
. (x2+4)d—y =3 Y =
40. (x? +1)2 =vVx2+1, y0)=1
Applications

41. Find the area of the region in the first quadrant that is enclosed
by the coordinate axes and the curve y = +/9 — x2/3.

42. Find the volume of the solid generated by revolving about the
x-axis the region in the first quadrant enclosed by the coordinate
axes, the curve y = 2/(1 + x2), and the line x = 1.

The Substitution z = tan (x/2)

The substitution

X

z=tan 5 (4)

reduces the problem of integrating a rational expression in sin x and

cos x to a problem of integrating a rational function of z. This in

turn can be integrated by partial fractions. Thus the substitution (4)

is a powerful tool. It is cumbersome, however, and is used only when

simpler methods fail.

Figure 7.10 shows how tan (x/2) expresses a rational function of

sin x and cos x. To see the effect of the substitution, we calcuylate

— 2(X\ 4 _ 2 _
cos x = 2 cos (2) 1= 7%02(}(/2)
_ 2 2
T 14 tan2(x/2) T4z
1-22
cos x = 5z (5)
and
2
sinx =2 sm%cos% 2% cosz(%)
— 2 tan 1 _ 2tan(x/2)
- 2 sec?(x/2) 1+ tan®(x/2)
2
sin x = ] +Zz2' (6)



P(cos x, sin x)

sin x

7.5 Integral Tables and CAS 583

1 1+ z? 2dz
") /md" - /2+22+222 1+ 2%
d dz
- fz2+z+1 =) @G+ap2)yr+34
_/ du
M2+(12

= % tan™! (g) +C

_ 2 1 2z2+1 c
7.10 From this figure, we can read the relation T /3 tan /3 +
x sin x 2 1+2 tan (x/2)

tan = = —~ _ -1
a3 T Tfcosx *7—5“‘“ 73 +C 0
) 1 Use the substitutions in Egs. (4)—(7) to evaluate the integrals in
Finally, x =2 tan™" z, so Exercises 43-50. Integrals like these arise in calculating the average
2dz angular velocity of the output shaft of a universal joint when the input

dy = s, (7) .
14722 and output shafts are not aligned.

EXAMPLE

2) / 1 d f1+12 2dz
- dx = | T 2f
1+ cos x 2 1+z72

= fdz=z+C

= tan(2)+C

43./d—)f
1 —sin x

/2
45. f _ax
o 14+sinx

d
Mf—x
1+ sin x 4+ cos x

n/2
46. f _dx
1—cosx

/2 2n/3
47, / do 48. /‘ cos 6df
o 24cosb sin 6 cos 6 + sin 6
d
49 f . t 50. / cos tdt
sin t — cos ¢ 1 —cost

Use the substitution z = tan (6 /2) to evaluate the integrals in Exercises
51 and 52.

51. /sec 6 do 52. [csc 6do

Integral Tables and CAS

As you know, the basic techniques of integration are substitution and integration
by parts. We apply these techniques to transform unfamiliar integrals into integrals
whose forms we recognize or can find in a table. But where do the integrals in
the tables come from? They come from applying substitutions and integration by
parts. We could derive them all from scratch if we had to, but having the table
saves us the trouble of repeating laborious calculations. When an integral matches
an integral in the table or can be changed into one of the tabulated integrals with
some appropriate combination of algebra, trigonometry, substitution, and calculus,
we have a ready-made solution for the problem at hand. The examples and exercises
of this section show how the formulas in integral tables are derived and used. The
emphasis is on use. The integration formulas at the back of this book are stated in
terms of constants a, b, ¢, m, n, and so on. These constants can usually assume
any real value and need not be integers. Occasional limitations on their values are
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stated with the formulas. Formula 5 requires n # —1, for example, and Formula
11 requires n # —2.

The formulas also assume that the constants do not take on values that require
dividing by zero or taking even roots of negative numbers. For example, Formula
8 assumes a # 0, and Formula 13(a) cannot be used unless b is negative.

Many indefinite integrals can also be evaluated with a Computer Algebra System
(CAS). These systems are generally faster than tables and usually do not require
you to rewrite integrals in special recognizable forms first. We discuss computer
algebra systems in the last third of the section.

Integration with Tables

EXAMPLE 1 Find /x(Zx +5)"1dx.

Solution We use Formula 8 (not 7, which requires n # —1):
_1 X b
x(ax +b)" dx = — — = In|ax + b| + C.
a a

With a =2 and b = 5, we have

=

5
/x(2x+5)_1dx=—2——Zln|2x+5|+C. 0

x
EXAMPLE 2 Find / —_—
' x/2x +4

Solution We use Formula 13(b):

vax +b - b

+ C, if b > 0.
Jax +b +«/l;

In
,/‘x«/ax—i— \/_
With a =2 and b = 4, we have

2x +4 +
V2x +4 +«/Z

\/2x+
V2x+442

Formula 13(a), which requires b < 0, would not have been appropriate here. It is
appropriate, however, in the next example. a

fxm fl

dx
EXAMPLE 3 Find f e
x/2x —4
Solution We use Formula 13(a):

ax —b

2
— = —tan!,/Z=—+4C
./.x\/ax—b Vb b
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With a = 2 and b = 4, we have

/ dx 2 ran-! 2x—4+c tan-! x—2+c
— = —tan" [ —— = A — .
x/2x —4 4 4 2

Q
EXAMPLE4  Find dx
in _—
x2/2x —4
Solution We begin with Formula 15:
dx _ Aax+b a / dx i C
x2Jax+b = bx 20 ) xJax+b
With a = 2 and b = —4, we have
dx _ «/2x—4+ 2 /‘ dx +C
x2/2x — 4 B —4x 2.4 ) x/2x —4 )

We then use Formula 13(a) to evaluate the integral on the right (Example 3) to
obtain

—_ -1

= —t C.
x2/2x — 4 4x 4an 2 +

f dx J2x -4 1 x—2
|

EXAMPLE 5  Find f xsin~! x dx.

Solution We use Formula 99:

o xn+1 o a xn+1 dx
x"sinlaxdx = sin"!ax — , n#—1.
n+1 n+1J /1—-a2x2

With n =1 and a = 1, we have

/ oy d x? - 1 x?dx
xsinT'xdx = —sin'x — = [ ——.
2) J1—=x?

The integral on the right is found in the table as Formula 33:

a? x 1

2
X =Y (XY i 2
fmdx_zsm (a) 2x a x24+C.
Witha =1,

x%dx 1. 1
= —sin"'x—-xy/1-x24+C.
f«/l—x2 2 2

The combined result is

2

2 1/1 1
/xsin‘lxdx = )—;—sin“lx— > (5 sin"!x — —x+/1 ——xz) +C
xz 1 1
= (—2— - 4_1) sin_1x+2x\/1 —-x24+C.
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Reduction Formulas

The time required for repeated integrations by parts can sometimes be shortened

by applying formulas like

1
ftan”xdx = . tan""! x — /tan”“zxdx
n—

/(ln x)"dx = x(In x)" — n/(ln x)" ldx

- ” sin" ! x cos™*! x
sin"xcos" xdx = - —————
m+n

n—1

f sin" % x cos™ x dx (n # —m).

m+n

(1

o)

3)

Formulas like these are called reduction formulas because they replace an integral
containing some power of a function with an integral of the same form with the
power reduced. By applying such a formula repeatedly, we can eventually express

the original integral in terms of a power low enough to be evaluated directly.

EXAMPLE 6 Find / tan’ x dx.

Solution We apply Eq. (1) with n = 5 to get

1
/tansxdx = Ztan“x —ftan3xdx.

We then apply Eq. (1) again, with n = 3, to evaluate the remaining integral:

1 1
/tan3xdx = Etanzx—/tanxdx = Etan2x+ln |cosx|+ C.

The combined result is

1 1
/tmsxdx = Ztan“x - Etan2x —1In |cosx|+ C'.

As their form suggests, reduction formulas are derived by integration by parts.

EXAMPLE 7  Deriving a reduction formula

Show that for any positive integer n,

f(ln x)'dx =x(Inx)" —n f(ln x)" dx.

Solution We use the integration by parts formula

fudv:uv-—/vdu

d
u=(>nx)", du=n(nx)"" —x, dv =dx, v=ux,
x

with
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to obtain

/(ln x)'dx = x(In x)" —n /(ln x)"ldx.

Sometimes two reduction formulas come into play.

EXAMPLE 8  Find f sin® x cos® x dx.

Solution 1 We apply Eq. (3) with n =2 and m = 3 to get

. sinx cos* x 1
/s1n2xcos3xdx ~—13 +2+3/sin0xcos3xdx

sinxcos*x 1
=-— + g/cos3xdx.

Il

We can evaluate the remaining integral with Formula 61 (another reduction formula):

_l .
cos" 'axsinax n—1 _
cos"axdx = + cos" 2axdx.
na n

With n = 3 and a = 1, we have

cos’xsinx 2
fcos3xdx - o romt + gfcosxdx

3
cos? x sin x N 2 . +c
= ——— " 4 Zsinx .
3 3
The combined result is
sin x cos* 1 /cos? x sin 2
/sinzxcos3xdx=——M+— #+—sinx+c
5 5 3 3
sin x cos* x N cos? x sinx + 2 . L
=— — sinx .
5 15 15

Solution 2 Equation (3) corresponds to Formula 68 in the table, but there is
another formula we might use, namely Formula 69. With a = 1, Formula 69 gives

sif"t'xcos™'x m—1

fsin”xcosmxdx = /sin”xcos”’_zxdx.

m-+n m+n
In our case, n =2 and m = 3, so that
sin® xcos?x 2

5 +§fsin2xcosxdx

_sin3xcoszx+2 sin® x +c
- 5 5\ 3

/ sin? x cos® x dx

.3 2
co 2
_ sin x5 S°x +1—5—sin3x+C.
As you can see, it is faster to use Formula 69, but we often cannot tell beforehand
how things will work out. Do not spend a lot of time looking for the “best” formula.
Just find one that will work and forge ahead.
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Notice also that Formulas 68 (Solution 1) and 69 (Solution 2) lead to different-
looking answers. That is often the case with trigonometric integrals and is no cause
for concern. The results are equivalent, and we may use whichever one we please.

Q

Nonelementary Integrals

The development of computers and calculators that find antiderivatives by symbolic
manipulation has led to a renewed interest in determining which antiderivatives
can be expressed as finite combinations of elementary functions (the functions
we have been studying) and which cannot. Integrals of functions that do not have
elementary antiderivatives are called nonelementary integrals. They require infinite
series (Chapter 8) or numerical methods for their evaluation. Examples of the latter

include the error function
2 o
erf (x) = —f e "dt
NES

and integrals such as

/ sinx?dx and / V14 xtdx

that arise in engineering and physics. These and a number of others, such as

X . 1 .
/e—dx, fe(e)dx, /—dx, fln (In x) dx, SOX s
X In x X
fvl——kzsinzxdx, 0<k<l,

look so easy they tempt us to try them just to see how they turn out. It can be
proved, however, that there is no way to express these integrals as finite combinations
of elementary functions. The same applies to integrals that can be changed into
these by substitution. The integrands all have antiderivatives—they are, after all,
continuous—but none of the antiderivatives is elementary.

None of the integrals you are asked to evaluate in the present chapter falls into
this category, but you may encounter nonelementary integrals from time to time in
your other work.

A General Procedure for Indefinite Integration

While there is no surefire way to evaluate all indefinite integrals, the procedure in
Flowchart 7.1 may help.

Integration with a Computer Algebra System (CAS)

A powerful capability of Computer Algebra Systems is their facility to integrate
symbolically. This is performed with the integrate command specified by the
particular system (e.g., int in Maple, Integrate in Mathematica).

EXAMPLE 9 Suppose you want to evaluate the indefinite integral of the function

f(x) = x2Va? + x2.
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Flowchart 7.1 Procedure for indefinite

integration Using Maple you first define the function:

>f:=x"2%sqrt (a"2 4+ x"2);
Then you use the integrate command on f, identifying the variable of integration:
> int(f, Xx);

Maple returns the answer
1 1 1
Zx(a2 +x2)3% — 3 a’xya? 4+ x? — 3 a*ln (x +Va? +x2) .
If you want to see if the answer can be simplified, enter
> simplify(");
Maple returns

1 1 1
gazx a’+x? + Zx3\/a2+x2—§a4ln <x+ a2+x2>.

If you want the definite integral for 0 < x < 7 /2, you can use the format
> int(f, x = 0..Pi/2);

Maple (Version 3.0) will return the expression

L) 2y3/2 1 4 1 1 1,
—(4 —Z Z ZJ/4q2 2) _ = 42/4a2 2
(4a” +n°)y'""n 8aln m+ a’+m 3@ 4a’ +mim

+—;-a4ln («/;)
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You can also find the definite integral for a particular value of the constant a:

> int(f, x = 0..1);

Maple returns the numerical answer

3 1

You can integrate a function directly without first naming the function as in
Example 9.

EXAMPLE 10 Use a CAS to find / sin® x cos® x dx.

Solution With Maple we have the entry
> int ((sin " 2)(x) * (cos " 3)(x),x);

with the immediate return

1s' (x) cos (x)* + 1cos( )2 sin (x) + 2 sin (x)
3 in (x x 35 x)“sin (x 151 X

as in Example 8. a

When a CAS cannot find a closed form solution for an indefinite or definite
integral it just returns the integral expression you asked for.

EXAMPLE 11 Use a CAS to find /(cos‘1 ax)*dx.

Solution Using Maple we enter
> int ((arccos(a*x))" 2, X);
and Maple returns the expression

f arccos (ax)* dx

indicating it does not have a closed form solution. In the next chapter you will see
how series expansion may help to evaluate such an integral. d

Computer Algebra Systems vary in how they process integrations. We used
Maple in Examples 9-11. Mathematica would have returned somewhat different
results:

1. In Example 9, given
In[1]: = Integrate [x "2 * Sqrt [a"2 + x"2], x]

Mathematica returns

2 3 4L SIT 2 2
Out[1] = Sqrt [a2+x2](%+%)_a og [x+8q [@® + x2])

without having to simplify an intermediate result. The answer is close to For-
mula 22 in the integral tables.
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2. The Mathematica answer to the integral
In[2]: = Integrate [Sin [x] "2 * Cos [x] "3, x]

in Example 10 is
30Sin[x] — 5Sin[3x] — 3 Sin [5x]

Out[2] = o

differing from both the Maple answer and the answers in Example 8.
3. Mathematica does give a result for the integration

In[3]: = Integrate [ArcCos [a * x] "2, x]
in Example 11:

2Sqrt[1 — a*x?] ArcCos [ax]
a

Out[3] = —2x — + xArcCos [ax]?
Although a CAS is very powerful and can aid us in solving difficult problems, each
CAS has its own limitations. There are even situations where a CAS may further
complicate a problem (in the sense of producing an answer that is extremely difficult
to use or interpret). On the other hand, a little mathematical thinking on your part
may reduce the problem to one that is quite easy to handle. We provide an example
in Exercise 111.

Exercises 7.5

Using Integral Tables - f 18
Use the table of integrals at the back of the book to evaluate the - r2
integrals in Exercises 1-38.
dx dx 19- /5+4 20 20. f4+5 20
— e | — sin s
x/x—3 PN ‘ "
3 xdx / xdx 21. / 2 cos 3t dt 22. f e sin 4t dt
“Vx=2 (2x + 3)32
23, /xcos 'xdx 24, /xsm Yxdx
5. /x«/2x —3dx 6. /x(7x +5)32dx
25. 26, | ———
V9 —4x dx 8. / x / (9 — s2)2 f (2 — 62)2
x? x2/4x =9
JaxF9 + Jox —4
[x — 32
9. fxv4x —x%dx 10. 2T ax 27. / 28. 7 dx
x
dx x V3t +9
1. | ——— 12. /———
/xv7+x2 X7 —x? 29. / 30. _/ t dt
Va4 —x? Vxt—4 tan!
13. / = dx 4 [ Y ""dx 3L /x tan~! x dx 3. / A
x x x
15. /\/25 — p*dp 16. /q2,/25 —q%dq 33. /sm 3x cos 2x dx 34. /sin 2x cos 3xdx
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3s. / 8 sin 4¢ sin - dt 36. / sin = sin L dt
2 3905

6 0 6
37. /cos 3 cos Zd@ 38. /cos 3 cos 760 d6

Substitution and Integral Tables

In Exercises 39-52, use a substitution to change the integral into one
you can find in the table. Then evaluate the integral.

XHx+1 x% +6x
39, | —— ——dx
o2+ 1)? (2 +3)?
cos~! f
41. / sin™! /x dx 42,
Jx
2 —
5. [ i 44./V ~ dx
V1—-x Jx
45, /cot tvV1—sin’tdt, 0 <t <m/2
dt dy
4. [ ———— 47. /—
tan t v/4 — sin’¢ yv/3 + (In y)?
4. cos 6dO 49. /’ 3dr
V5 +sin?0 AVor?2 —1
3dy /
50, | —— 51. [ cos™!./xdx
V1+9y? vE

52. /tan“ﬁdy

Using Reduction Formulas

Use reduction formulas to evaluate the integrals in Exercises 53-72.

0
53. / sin® 2x dx 54, / sin’ Ede
5S. /8cos 2t dt 56. /3005 3ydy
57. / sin? 26 cos® 26 d 58. / 95in® 6 cos*2 6 do
59. /2sm t sec* ¢ dt 60. /csczycoss ydy
3 x
61. /4tan 2x dx 62. /tan (2) dx
63. /8 cot* ¢ dt 64. /4c0t3 2t dt
1 3 X
65. [2sec®* mxdx 66. [ —csc’ —dx
2 2
.0
67. [3sec*3xdx 68. | csc gde
69. /cscsxdx 70. /sec5xdx

71. /l6x3 (In x)*dx 72. /(ln x)3dx

Powers of x Times Exponentials

Evaluate the integrals in Exercises 73-80 using table Formulas 103—
106. These integrals can also be evaluated using tabular integration
(Section 7.2).

73. /x e dx
75. /x3 e dx
77. /xz 2% dx
79. /x w*dx

Substitutions with Reduction Formulas

Evaluate the integrals in Exercises 81-86 by making a substitution
(possibly trigonometric) and then applying a reduction formula.

3
82. f esc’ VB
J6

NEYP) dy
84. / 4
0 (1 —y2)32

86 f o
* o (t2+1)7/2

74. /x e ¥dx

76. /xz e dx

78. [x2 27%dx

80. / x 2V2% dx

81. / ' sec’ (¢ — 1)dt

1
83./ 2v/x%2 4+ 1dx

0

2 2 1\32
85./ (Gl
1 r

Hyperbolic Functions

Use the integral tables to evaluate the integrals in Exercises 87-92.

1 ht
87. / 5 sinh’ 3xdx gg. [Soh VX

Jx

89. /xz cosh 3x dx 90. /x sinh 5x dx

91. / sech’ x tanh x dx 92, f csch® 2x coth 2x dx

Theory and Examples

Exercises 93-100 refer to formulas in the table of integrals at the
back of the book.

93. Derive Formula 9 by using the substitution u =ax +b to

evaluate
x
—d
f @x+op "

94. Derive Formula 17 by using a trigonometric substitution to

evaluate
/ dx
(a® + x?)?’



9s.

96.

97.

98.

100.

101.

102.
103.

104.

B 10s.

106.

Derive Formula 29 by using a trigonometric substitution to
evaluate

/ va?—x%dx.

Derive Formula 46 by using a trigonometric substitution to
evaluate

X
./ 2/xT = a2

Derive Formula 80 by evaluating

/ x" sinax dx

by integration by parts.

Derive Formula 110 by evaluating
/x"(ln ax)"dx

by integration by parts.

Derive Formula 99 by evaluating

/x" sin”!axdx

by integration by parts.

Derive Formula 101 by evaluating

/ x"tan"! ax dx

by integration by parts.

Find the area of the surface generated by revolving the curve

y =~/x2+2,0 < x < /2, about the x-axis.
Find the length of the curve y = x2, 0 < x < +/3/2.

Find the centroid of the region cut from the first quadrant by
the curve y = 1/4/x + 1 and the line x = 3.

A thin plate of constant density § = 1 occupies the region en-
closed by the curve y = 36/(2x + 3) and the line x = 3 in the
first quadrant. Find the moment of the plate about the y-axis.

CALCULATOR Use the integral table and a calculator to find to
2 decimal places the area of the surface generated by revolving
the curve y = x2, —1 < x < 1, about the x-axis.

The head of your firm’s accounting department has asked you to
find a formula she can use in a computer program to calculate
the year-end inventory of gasoline in the company’s tanks. A
typical tank is shaped like a right circular cylinder of radius
and length L, mounted horizontally, as shown here. The data
come to the accounting office as depth measurements taken with
a vertical measuring stick marked in centimeters.

a) Show, in the notation of the figure here, that the volume

of gasoline that fills the tank to a depth d is
—r+d

V =2L Vr? —y2dy.

-r
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b) Evaluate the integral.

Measuring stick

d = Depth of
gasoline

Measurements in centimeters

107. What is the largest value
b
/ Vx —x%*dx

can have for any a and b? Give reasons for your answer.

108. What is the largest value
b
/ xv2x — x%dx

can have for any a and b? Give reasons for your answer.

& CAS Explorations and Projects
In Exercises 109 and 110, use a CAS to perform the integrations.
109. Evaluate the integrals

a) /xlnxdx b) /x2lnxdx

c) /x3 In xdx.

d) Whatpattern do you see? Predict the formulafor [ x* Inx dx
and then see if you are correct by evaluating it with a CAS.

€) What is the formula for [ x"In x dx, n > 1? Check your
answer using a CAS.

110. Evaluate the integrals

/lnx /lnx
1
/de

What pattern do you see? Predict the formula for

1
/_n_xdx

and then see if you are correct by evaluating it with a CAS.
e) What is the formula for

/——~dx n>2?



594 Chapter 7: Techniques of Integration

Check your answer using a CAS. ¢) Now substitute x = (7/2) — u and add the new and old
111. a) Use a CAS to evaluate integrals. What is the value of

/2 ian
" iy sy
—_—dx o sin"x 4 cos"x
o SI"x +cos"x

This exercise illustrates how a little mathematical ingenuity
solves a problem not immediately amenable to solution by a
CAS.

where n is an arbitrary positive integer. Does your CAS
find the result?

b) In succession, find the integral when n =1, 2, 3, 5, 7.
Comment on the complexity of the results.

Improper Integrals

Up to now, we have required our definite integrals to have two properties. First,
that the domain of integration, from a to b, be finite. Second, that the range of the
integrand be finite on this domain. In practice, however, we frequently encounter
problems that fail to meet one or both of these conditions. As an example of an
infinite domain, we might want to consider the area under the curve y = (In x)/x?
from x =1 to x = oo (Fig. 7.11a). As an example of an infinite range, we might
want to consider the area under the curve y = 1/,/x between x =0 and x = 1
(Fig. 7.11b). We treat both examples in the same reasonable way. We ask, “What
is the integral when the domain is slightly less?” and examine the answer as the
domain increases to the limit. We do the finite case and then see what happens as
we approach infinity.

02

EXAMPLE 1 Is the area under the curve y = (In x)/x? from x = 1 to x = 00
finite? If so, what is it?

Solution We find the area under the curve from x = 1 to x = b and examine the
limit as b — oo. If the limit is finite, we take it to be the area under the infinite
®) curve (Fig. 7.12). The area from 1 to b is

b b Integration by parts with
7.11 Are the areas under these infinite / ln_xdx [(ln x) (—l):| - / (—1) (l) dx u=Inx, dv=dx/x?,
1 x 1

curves finite? See Examples 1 and 2. 1 x x du=dx/x, v=—1/x

b [1}1’
b x ],
Inb 1
y == ——+41
b b
02 .. .
The limit of the area as b — 00 is
Inpb 1 Inb
0.1+ : - - — —| N | -
bll)rgo[ b b+1j| [bll)rgo bil 0+1
1/b I’Hopital’s
0 ' =—[lim /}+1—0+1_1 rule
b—oo 1

7.12 The area under this curve is ) ) o )
In integral notation, the area under the infinite curve from 1 to oo is

b
lim [ (@n x02) dx © In x
e f —dx—hm/ —dx:l
(Example 1). NS e -



7.13 The area under this curve is

im [ (V) d.
Jim. Jo (/v/x)dx

(Example 2).
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EXAMPLE 2 Is the area under the curve y = 1/4/x from x = 0 to x = 1 finite?
If so, what is it?

Solution We find the area under the curve from a to 1 and examine the limit as
a — 0%, If the limit is finite, we take it to be the area under the infinite curve (Fig.
7.13). The area from a to 1 is

/al%dxz%/;];:Z—Z\/E.

The limit as a — 07 is

1iIBl+ 2-2Ja)=2-0=2.

In integral notation, the area under the infinite curve from 0 to 1 is
1
1
dx = lim / —dx =2.
/ f a—0* J, \/)7 D

Improper Integrals

The integrals for the areas in Examples 1 and 2 are improper integrals.

: Deflmtlon o
. Integrals w1th infinite hmlts of integration and integrals of functions that
~ become infinite at a point within the interval of integration are improper
: vmtegrals. When the limits mvolved exist, we evaluate such mtegrals with
the following deﬁmtlons ~

1 If ffls contmuous on [a -00), then

f f(x)dx—hm/f(x)dx, | 1)
e fis continuous on (—o00, b}, then ;
' | / f(x)dx—- lim / f(x)dx.,k ' @
:3 s contmuou;o(o)nk (é”b] then |
f Fdx = Jim f f(x)dx, 6

’ 4 If I 15 contmuous on [a, b) then -
/ f (x) dx — hm / f(x)dx. : 4

~ Ineach case, if the limit is finite we say that the i 1mproper mtegral converges
~ and that the limit is the value of the improper integral. If the limit fails to
exist the improper integral diverges.

Example 1 illustrates Part 1 of the deﬁnition'
*Inx Infinite limit of
- dx — hm i d . upper imit o
1

integration
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y ) Example 2 illustrates Part 3 of the definition:
7T T=x S | Integrand becomes infin-
/ —dx = lim / —dx =2 ite at lower limit of
x/— a—0* J, ﬁ integration

In each case, the integral converges. The integral in the next example diverges.

EXAMPLE 3 A divergent improper integral

1
1
/ dx.
0 1—x

Investigate the convergence of

0 b 1 Solution The integrand f(x) = 1/(1 — x) is continuous on [0, 1) but becomes
E infinite as x — 1~ (Fig. 7.14). We evaluate the integral as
b b
7.14 If the limit exists lim dx = lim [_ In|l — xl]
f1(1/(1 yax = i J-b“/“ D b>1- Jo 1 —x b—1- 0
—x))dx = limp_¢- — x)) dx
° ot o = lim [-In(1—b) + 0] =
(Example 3). b—1-
The limit is infinite, so the integral diverges. a

The list in the preceding definition extends in a natural way to integrals with
two infinite limits of integration. We will treat these later in the section. The list
also extends to integrals of functions that become infinite at an interior point d of
the interval of integration. In this case, we define the integral from a to b to be the
sum of the integrals from a to d and d to b.

~ Definition :
& ij f becomes infinite at an mtenor point d of [a,b], then

f f(x)dx— / Fodx + f fGx)dx. )

: fThe integral from a to b converges if the integrals from a to dandd tob
both converge. Otherwise, the integral from atob diverges.

EXAMPLE 4  Infinite at an interior point

/3 dx
0 (-1

Solution The integrand f(x) = 1/(x — 1)*/*> becomes infinite at x = 1 but is con-
tinuous on [0, 1) and (1, 3] (Fig. 7.15). The convergence of the integral over [0, 3]
depends on the integrals from 0 to 1 and 1 to 3. On [0, 1] we have

Investigate the convergence of

7.15 Example 4 investigates the 1 d b d
convergence of / e lim / ad
0

fs( x— 1?3 d (x =12 17 Jy (x =13
1x -1 X.
0 = lim 3¢ -1 ~-30-D"]=3.



X

7.16 The calculation in Example 5 shows
that this infinite horn has a finite volume.
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On [1, 3] we have
/3 dx lim f3 dx
—_— =1 —_—
p k=D s ) (x =13
= lim 36 - D3 — 3 — )P =332

Both limits are finite, so the integral of f from O to 3 converges and its value is

34332 Q
EXAMPLE 5 The cross sections of the solid horn in Fig. 7.16 perpendicular to

the x-axis are circular disks with diameters reaching from the x-axis to the curve
y =e*,— 00 < x <In 2. Find the volume of the horn.

Solution The area of a typical cross section is

1\ =
Ax) = dius)? = - = ¥,
(x) = m(radius) T <2y) 4e
We define the volume of the horn to be the limit as b — —oo of the volume of
the portion from b to In 2. As in Section 5.2 (the method of slicing), the volume
of this portion is

In2 In2 In?2
V= / A(x)dx =/ T dy = zez"]
b , 4 8 b
_ %(ehm — ) = %(4——(32!’).
As b — —00, €’ — 0 and V — (/8)(4 — 0) = /2. The volume of the horn
is 7/2. 0

& 3
EXAMPLE 6  Evaluate / 2
, (x—D@E2+1)
Solution
o0 b
_)dez limf _____x__ﬁ____dx
> (x=D&24+1) b—oo J, (x —D(x2+1)

2x 4+ 1

b 2
lim f — — ———— )dx Partial fractions
b>oo J, \x—1 x241

r b
= lim [2In(x—=1) = In(x® +1) — tan™" x]
L 2

b—o0
_ R b
= li 1 x-D tan~! Combine the
- bggo n x2+1 —fan X logarithms.
—- 2

b—1)? 1
= bliglo In ((b2+; ) —tan~! b] —In (g) +tan"'2

=0—-%+1n5+tan_l 2 ~ 1.1458
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7.17 The area under this “doubly”
infinite curve is finite (Example 7).

Notice that we combined the logarithms in the antiderivative before we calcu-
lated the limit as b — oo. Had we not done so, we would have encountered the
indeterminate form

blim QInb—-1)—In(k*+1)) = 0o — 0.
—00

The way to evaluate the indeterminate form, of course, is to combine the logarithms,
so we would have arrived at the same answer in the end. But our original route
was shorter. a

Integrals from —oo to o

In the mathematics underlying studies of light, electricity, and sound we encounter
integrals with two infinite limits of integration. The next definition addresses the
convergence of such integrals.

Definition
If f is continuous on (—o0, 00) and if [  f(x)dx and [° f(x)dx both
converge, we say that ff:o f(x)dx converges and define its value to be

ff(x)dx:f f(x)dx+/ f(x)dx. (6)

If either or both of the integrals on the right-hand side of this equation
diverge, the integral of f from —oo to co diverges.

It can be shown that the choice of a in Eq. (6) is unimportant. We can evaluate or
determine the convergence of f_°°°o f(x)dx with any convenient choice.

The integral of f from —oo to oo need not equal lim,_, ffb f(x)dx, which
may exist even if ffooo f(x)dx does not converge (Exercise 75).

EXAMPLE 7
0 0 oo
/ dx _ _ / ax / dx Eq. (6) with a =0

oo 1+ x2 oo L4+x2 Jy 1442
T -1 0 . —1 c
= bgr_noo [tan”" x], + cll)rg) [tan™" x],
= lim [tan"' 0 —tan™' b] + lim [tan™' ¢ —tan™' O]

b——o0 c—>00
7 T

We interpret the integral as the area of the infinite region between the curve
y = 1/(1 + x?) and the x-axis (Fig. 7.17). Q

The Integral/ dx/xP
1

The convergence of the integral |, 1°° dx/x? depends on p. The next example illus-
trates this with p =1 and p = 2.



7.18 One of these limits is finite; the
other is not (Example 8).

7.19 The graph of e lies below the
graph of e~ for x > 1 (Example 9).
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EXAMPLE 8 Investigate the convergence of
/ *dx / ®dx
— and —.
1 X 1 x2
Solution The functions involved are continuous on [1, co) and their graphs both

approach the x-axis as x — oo (Fig. 7.18), so it is reasonable to think that the
areas under these infinite curves might be finite. In the first case,

© g bd
/ —x:Iim/—x=lim (nb—In1)= oo,
1 X b—o0 1 X b—00

so the integral diverges. In the second case,
* dx . b dx . 1
fl 2N ) 2T (‘;“) =

so the integral converges and its value is 1. 4

Generally, f1°° dx/xP converges if p > 1 and diverges if p < 1 (Exercise 67).

Tests for Convergence and Divergence

When an improper integral cannot be evaluated directly (often the case in practice)
we turn to the two-step procedure of first establishing the fact of convergence and
then approximating the integral numerically. The principal tests for convergence
are the direct comparison and limit comparison tests.

EXAMPLE 9 Investigate the convergence of / e *dx.
1

o 2 b 2
e “dx = lim e *dx.
1 b—o0 1

We cannot evaluate the latter integral directly because it is nonelementary. But we
can show that its limit as » — oo is finite. We know that flb e~*'dx is an increasing
function of b. Therefore either it becomes infinite as b — oo or it has a finite limit as
b — oo. It does not become infinite: For every value of x > 1 we have e < e™*
(Fig. 7.19), so that

Solution By definition,

b b
/ e dx < / e dx = —eP+e ! <e ! ~0.36788.
1 1

Hence

g 2 b 2
/ e ¥ dx = lim e dx
1

b—oo Jy

converges to some definite finite value. We do not know exactly what the value is
except that it is something less than 0.37. a

The comparison of e~ and e™* in Example 9 is a special case of the following
test.
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Theorem 1
Direct Comparison Test

- Let f and g be continuous on [a oo) and suppose that 0 < f(x) < g(x)
for all x > a. Then

1. / f (x)sdx,,converges if / g(x)dx converges.

o o0 Z
L f g(x)dx diverges if / f(x)dx diverges.

EXAMPLE 10
sin® x 1 * 1
a) dx converges because 0 < < — on[1, 00) and —dx
x2 x2 1 x?
converges.
b) / ! dx diverges because ! > ! on [1, o0)
D ——— x — p— N
1 A/x2-0.1 g Vx2—-01" x
*1
and / — dx diverges.
1 X a
 Theorem2

Limit Comparison Test ;
- If the posmve functions f and g are contmuous on [a oo) and 1f

ylim————)—_::L (O<L<oo)
‘then fa°° f(x)dx and [ < g(x)dx both converge or both diverge.
In the language of Section 6.7, Theorem 2 says that if two positive functions
grow at the same rate as x — oo, then their integrals from a to oo behave alike:

They both converge or both diverge. This does not mean that their integrals have
the same value, however, as the next example shows.

EXAMPLE 11 Compare

/‘°° dx /°° dx
— and
1 X2 1 1 +x2

with the Limit Comparison Test.

Solution With f(x) = 1/x? and g(x) = 1/(1 + x?), we have
. f(x) . 1/x?
lim = lim —————

x—00 g(x) x=o0 1/(1 +x2)

142 1
= lim —X = fim (—2+1>=o+1=1,

X—>00 X X—00




|
0 1 2 @,3

7.20 The functions in Example 11.

X
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.. e © dx © dx
a positive finite limit (Fig. 7.20). Therefore, 1.2 converges because -
converges. ! +x rox
The integrals converge to different values, however.
® dx
— =1, Example 8
J 5
and
/ * dx . b dx
= lim
1 1 + X 2 b—o0 1 1 + X 2
=blir§o [tan™' b — tan! 1]=%—%=% 0
EXAMPLE 12
* 3 *1
dx converges because — dx converges
1 e+ 5 1 e
and

. 1/e* . e€r+5
lim —— =
x—=00 3/(e* +5) x—o00 3

= lim 1+5 —1+0—1
- 3 3ex) 3 T3

a positive finite limit. As far as the convergence of the improper integral is concerned,
3/(e* + 5) behaves like 1/¢*. a

Computer Algebra Systems

Computer Algebra Systems can evaluate many convergent improper integrals.

x+3

-(——m dx from Example 6.
x—D(x

o0
EXAMPLE 13 Evaluate the integral f
2

Solution Using Maple, enter
> f: = (x +3)/((x — D*(x"2+ D);
Then use the integration command
> int (f, x=2..infinity);

Maple returns the answer

1
—571 + In(5) + arctan (2).
To obtain a numerical result use the evaluation command evalf and specify the
number of digits, as follows:
> evalf(", 6);
The ditto symbol (") instructs the computer to evaluate the last expression on the

1
screen, in this case —En + In (5) + arc tan (2). Maple returns 1.14579.
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Using Mathematica, entering
In [1]: = Integrate [(x + 3)/((x — 1)(x"2 + 1)), {x, 2, Infinity}]
returns
Out [1] = _TPI + ArcTan [2] 4 Log [5].

To obtain a numerical result with six digits, use the command “N[%, 6]” which
also yields 1.14579. a

Types of Improper Integrals Discussed in This Section

INFINITE LIMITS OF INTEGRATION INTEGRAND BECOMES INFINITE
1. Upper limit 4. Upper endpoint
© Inx L dx b dx
— = 1li — d —— =1 —_—
/1 dx = lm | x /0 =123 s+ /0 x —1)23

y

_ 1
Y=o C )2’

3
2. Lower limit 5. Lower endpoint
/0 dx I /0 dx 3 dx I /3 dx
= lim ———— = lim —_—
oo 1+ X2 as-oof, 14+ x2 , (x =D et J; (x—1)23
y
1
ol 1
3. Both limits 6. Interior point

©  dx ) 0 dx i ¢ dx 3 dx U dx 3 dx
— = lim -—2+11m — /__23=/ —23+[ —
o 1 +x bo-co f, 14 x c»oo Jo 14x 0o (x—17% 0 (x—1D% L (x=1D¥
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Exercises 7.6

Evaluating Improper Integrals

Evaluate the integrals in Exercises 1-34 without using tables.

®©  dx ® dx
1. _ 2. _
/(; 241 /1 1001
3. / gl 0 [
0 VX 0 V4—x
U dx U dx
1
7. / ax 8. /
o VI-x2 70999
“2 2dx 2dx
9. .
/;(x, x2-1 10 ,/ 2 +4
© 2 o0 2d
1. / ~—dv 12. / d
2 Vf—UV
[oe]
13, /' 2x dx 14, / xdx
—0o (X2 +1)? oo (X2 4)¥2
' o+1 2 os+1
15. do 16. / —ds
N T 0 VA—52
o0 dx
17. f _— 18. —dx
0 (1 +x)ﬁ 1 x4/x2-=1
bl dv ®© 16 tan~' x
19. 20. —d
_/0 1+ 91 + tan-' v) /0 T
0 0
21. / 6 e do 22, / 2¢7% sin 6 d6
oo 0
23. / e Mdx 24. / 2xe™ dx
1 1
25. / x In xdx 26. / (—=Inx)dx
0 0
2 d 1 4
27. u 28. rdr
0 ~/4—s? 0o V/1—r4
2 ds ¢ dr
29. _— 30. / _—
1 s/s2—1 2 /12 —4
4 2
. [ 4 3. / _Z
—-14/|x] 0 +/Ix—1]
3. / 46 4. / _ax
_1 02 +590+6 o x+1D(x2+1)

Testing for Convergence

In Exercises 35-64, use integration, the Direct Comparison Test, or
the Limit Comparison Test to test the integrals for convergence. If
more than one method applies, use whatever method you prefer.

/2
35. / tan 6 d6
0

7. /” sin 6 d6
VT —6

39 / —2 —l/x

b4
41,/ _dr
o ~/t+sin

1
42, / dt.
o t—sint
2 dx
43. Y
/0 1 —x?
44. /
1—x

45.f In |x|dx
-1

/2
36. / cot 8dO
0

/2 cos 6dO
38. —
Zap (T —20)13

t

Hint: t > sin ¢
fort >0

1
46./ —xIn |x|dx

1
47. / dx
1 x3 + 1
®© dx
48.
ey
(o]
49, / d
2 v—1
*©  de
50. —_—
/(; 1+ ef
51. / dx
0 x0+1

5 /°° dx
L V=1

00 T
53./ 1
1

54./ xdx
2 x4 —1

55 /“’de

56. /mﬂdx
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® 2dt

7. /4 s

59. / e—dx
1 X

o 1
61. dx
/1 JE—x

58./ de
, Inx

60./ In(In x)dx

> 1
62. d
/; er — 2)( x

64. / &
oo €F e
Theory and Examples

65. Estimating the value of a convergent improper integral
whose domain is infinite

a) Show that

63 /“"’ dx
) —oovx4+1

© 1
/ e Fdx = 3e—9 < 0.000042,
3

and hence that [;° e~ dx < 0.000042. Explain why this

means that f0°° e~ dx can be replaced by f03 e~ dx with-
out introducing an error of magnitude greater than 0.000042.

NUMERICAL INTEGRATOR Evaluate f03 e~ dx numeri-
cally.

B 1)

66. The infinite paint can or Gabriel’s horn. As Example 8 shows,
the integral f1°° (dx/x) diverges. This means that the integral

® 1 1
/ =1+ — dx,
1 X X

which measures the surface area of the solid of revolution traced
out by revolving the curve y = 1/x, 1 < x, about the x-axis,
diverges also. By comparing the two integrals, we see that, for
every finite value b > 1,

b o 1 b
/271— 1+—4dx>27t/ —dx.
1 X X 1 X

) 1 2
/ b4 (—) dx
1 X
for the volume of the solid converges. (a) Calculate it. (b) This
solid of revolution is sometimes described as a can that does not

hold enough paint to cover its own interior. Think about that for a
moment. It is common sense that a finite amount of paint cannot
cover an infinite surface. But if we fill the horn with paint (a finite
amount), then we will have covered an infinite surface. Explain
the apparent contradiction.

67. a)
/°°dx_ 1
1 ox? p—1

if p > 1 but that the integral is infinite if p < 1. Example
8 shows what happens if p = 1.
b) Show that

Show that

1dx_ 1

o X  1-p
if p < 1 but that the integral diverges if p > 1.

68. Find the values of p for which each integral converges:
L © g
a) / = b) / =
1 x(In x)? 5> x(Inx)?

Exercises 69-72 are about the infinite region in the first quadrant
between the curve y = ¢ and the x-axis.

69. Find the area of the region.
70. Find the centroid of the region.

71. Find the volume of the solid generated by revolving the region
about the y-axis.

72. Find the volume of the solid generated by revolving the region
about the x-axis.

73. Find the area of the region that lies between the curves y = sec x
and y = tan x from x =0 to x = 7 /2.

74. The region in Exercise 73 is revolved about the x-axis to generate
a solid.

a) Find the volume of the solid.
b) Show that the inner and outer surfaces of the solid have
infinite area.

o b
75. / f(x) dx may not equal gim f(x) dx. Show that
— —® J_p
/ ® 2xdx
0 .X2 + 1
diverges and hence that
/ ® 2xdx
oo X2+ 1

diverges. Then show that

. b 2x dx
lim > =
b—>oo J_p x2 41




76. Here is an argument that In 3 equals oo — co. Where does the
argument go wrong? Give reasons for your answer.

1
In3:ln1+ln3:ln1—ln§

b—-2
lim In (—) —1In 1
b—oo b 3
. [ x -2]b
lim |In
b—oo X 3

lim [ln (x—2)—1In x]

Il

b

b—00

3

b
1 1
=limf< ——)dx
bsoo J3 \x—2 x

Il
&Ng
/N
=
| —
[\
|
= |-
N—"
QU
=

Il
h
3
=
| —
)
QU
=
|
u\
8
= |
QU
=

b b
lim [ln (x — 2)] — lim [ln x]
b—o0 b—oo

3 3
=00 — Q.

77. Show that if f(x) is integrable on every interval of real numbers
and a and b are real numbers with a < b, then

a) [° f(&x)dxand [ f(x)dx both converge if and only if
ffoo f(x)dx and fb°° f(x) dx both converge.

b) [l fdx+ [T fdx= [0 fx)dx+ [ f(x)dx
when the integrals involved converge.

78. a) Show that if f is even and the necessary integrals exist,

then
o0 o0
f f(x)dx:Z/ f(x)dx.
—00 0
b) Show that if f is odd and the necessary integrals exist, then

/00 f(x)dx =0.

Use direct evaluation, the comparison tests, and the results in Exercise
78, as appropriate, to determine the convergence or divergence of the
integrals in Exercises 79-86. If more than one method applies, use
whatever method you prefer.

®  dx
so./
—00 \/x6+1

® e *dx
82. —_
,/;oo x2+1

® dx
84. —
./_oo (x 4+ 1)?

® dx
79. / A
—00 vxz + 1
oo
81. / dx
—o € te™*

83. / e Wldx
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85. /‘°° | sinx| + | cos x| dx
—0 lx] + 1

(Hint: |sin 0| + | cos 0] > sin® 6 + cos? 6.)

* xdx
86. —_—
/_w x2+1D(x2+2)

& CAS Explorations and Projects

In Exercises 87-90, use a CAS to explore the integrals for various
values of p (include noninteger values). For what values of p does
the integral converge? What is the value of the integral when it does
converge? Plot the integrand for various values of p.

87. f xPIn xdx 88.[ xPIn xdx
0 e

o0 o0
89. f x?In xdx 90. f x?In |x|dx
0 -

o0

91. The integral
X 3 t
Si(x) = f ST g,
o 1t

called the sine-integral function, has important applications in
optics.

a) Plot the integrand (sin¢)/t for ¢ > 0. Is the Si function
everywhere increasing or decreasing? Do you think Si(x) =
0 for x > 0? Check your answers by graphing the function
Si(x) for 0 < x < 25.

b) Explore the convergence of

0o o
sint
—dt.

0 t

If it converges, what is its value?
92. The function

¥ 2g=1
erf(x) = / —dt,
o T

called the error function, has important applications in proba-
bility and statistics.

a) Plot the error function for 0 < x < 25.

b) Explore the convergence of

) e—t2
/ dt.
o VT
If it converges, what appears to be its value? You will see
how to confirm your estimate in Section 13.3, Exercise 37.
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CHAPTER

QUESTIONS TO GUIDE YOUR REVIEW

1. What basic integration formulas do you know?

2. What procedures do you know for matching integrals to basic
formulas?

3. What is the formula for integration by parts? Where does it come
from? Why might you want to use it?

4. When applying the formula for integration by parts, how do you
choose the u and dv? How can you apply integration by parts to
an integral of the form [ f(x)dx?

5. What is tabular integration? Give an example.
6. What is the goal of the method of partial fractions?

7. When the degree of a polynomial f(x) is less than the degree
of a polynomial g(x), how do you write f(x)/g(x) as a sum of
partial fractions if g(x)

a) is a product of distinct linear factors?
b) consists of a repeated linear factor?
¢) contains an irreducible quadratic factor?

CHAPTER 7

PRACTICE EXERCISES

10.

11.

12.

13

B

What do you do if the degree of f is not less than the degree of g?

. What substitutions are sometimes used to change quadratic bino-

mials into single squared terms? Why might you want to make
such a change?

. What restrictions can you place on the variables involved in the

three basic trigonometric substitutions to make sure the substitu-
tions are reversible (have inverses)?

What is a reduction formula? How are reduction formulas typi-
cally derived? How are reduction formulas used? Give an exam-
ple.

How are integral tables typically used? What do you do if a
particular integral you want to evaluate is not listed in the table?

What is an improper integral? How are the values of various
types of improper integrals defined? Give examples.

What tests are available for determining the convergence and di-
vergence of improper integrals that cannot be evaluated directly?
Give examples of their use.

Integration Using Substitutions

Evaluate the integrals in Exercises 1-82. To transform each integral
into a recognizable basic form, it may be necessary to use one or more
of the techniques of algebraic substitution, completing the square,
separating fractions, long division, or trigonometric substitution.

1. /x\/4x2—9dx

3. fx(Zx +1D'2dx
5 xdx
) V8x2 41
7 / ydy
25+ y?
9 dt
R N/ ve

11. /22/3(25/3+1)2/3dz

13

sin 260 d6
*J (1 —cos26)?

cosfdo

4, | —
(1+sin§)1/2

15 / _snt 16 / _cos2
" J 3+4cost *J 14sin2t
2. /6x\/5x2—+5dx 17. fsin2x e dx 18. /Secxtanx e°F dx
4. fx(l — )" dx 19. /ee sin(e?) cos?(e?) d6 20. fee sec?(e?) do
6. i 21. ‘/21_1 dx 22, /Sxﬁ dx
/9 —4x?
8 }’3 dy 23. / dv 4. / dv
R vinwv 22+ 1nv)
2t di dx sin™! x
25. 26. | ——dx
10. / t+1 / (x2+ 1)(2 + tan~" x) N
2dx dx
12. | 750 4742 d; 2y [ 24x 25, f
/ ( : V1 =4x2 NZC )



29

31.

33.

3s.

37.

39.

41.

43.

4s.

47.

49.

51.

53.

55.

57.

59.

61.

63.

65.

67.

69.

71.

t
’ / V16 — 972

dt
=
4dx
f 5x+/25x7 - 16
x
| m

[7=%
y2—4y +8

dx
2 sinx cos x

2

f Jvesc?y — ldy
/4

f V1 —cos?2xdx
0

/2

/ V1 —cos2tdt

/2

[Fe
x2+4 o

4x2 4+ 3
/x+dx

2x —1
2y —1
d
/y2+4 ’
t+2
4 —12

/‘ tanx dx
tan x 4 sec x
fsec (5 —3x)dx

/cot( ) dx

/x«/ﬁdx
/ NEERPS

dt

30.

32.

3.

36.

38

42.

4.

46.

48.

50.

s52.

54.

56.

58.

60.

62.

64.

66.

68.

70.

72.

fm
dt
/1+25t2
/xm
X
fm

/ dt
) 2+4r+5

40.

dv
./ (v+ DV +2v

/ cos? 3x dx

sin® 0 cos® 0 do

6sectrdt

2dx
cos? x — sin® x
3n

/4
Voot t +1dt

V1 +cos2td

9—+-x2

y+1y

2t2+«/1—t2dt

1—1¢2

cot x
/ L LIS
cot x +cscx

fx csc (x* +3)dx

/
/
| e
L
r
[5=
I
/5
/

/tan 2x —T)ydx
/3x«/2x + 1dx

f(16 +2%)732d;

73.

75.

77.

79.

81.

dy
f V25 + y?

dx

x23/1 —x2
x%dx
V1 —x2

[ 7=
f@dw

Integration by Parts

Evaluate the integrals in Exercises 83-90 using integration by parts.

83. fln (x+1)dx

85. '/‘tan_1 3xdx

87. /(x + 2" dx

89. /e" cos2xdx

Partial Fractions

Evaluate the integrals in Exercises 91-110. It may be necessary to
use a substitution first.

91.

93.

9s.

97.

99.

101.

103.

10s5.

106.

107.

/
/
/

x2

xdx

—3x4+2

dx

x(x +1)2

sin@ do

cos?@ +cos § —2

dt
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74 fi__
") /25 +09y2

76.

78.

80.

x3dx
V1 —x2

/ Ji—xdx

12dx
(x2 —1)32

JZ—16
82./Z——dz
Z

84.

86.

88.

90.

92.

9%4.

96.

98.

100.

102.

104.

108.

/x2 In x dx
/cos ' dx

/xzsin(l—x)dx

/ e % sin3x dx

xdx
/;;ldx
x*(x =1
cos6do
,/sin26+sin0—6
dxdx
[+
QBv—T)dv
,/(v—l)(v—Z)(v—3)
tdt
/t4—t2—2

3
1
/x + dx
x3—x
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109. / ds
e —1

Improper Integrals

110.

ds
Je +1

Evaluate the improper integrals in Exercises 111-120.

3 x
111. f R
0 /9 —x?
1 dy
113. /;1 —):E—E
®©  2du
115.
l u? —2u

117. / x2e ¥ dx
0

©  dx
119, —_
o /_w 4x2 49

1
112. / In xdx
0

0 4o
1m4. | ——
/_2 @+ 1)

116. f Sv=l o
1

4v3 — 2
0
118. / xe¥dx
®  4dx
120.
,/ x2+ 16 + 16

Convergence or Divergence

Which of the improper integrals in Exercises 121-126 converge and

which diverge?

121.] L
6 02 +1

(o]
123. / nz
1 Z

o0
125. f dx
_oo € T e7*

e “cosudu

122. /

124, f € it

126. / L
oo X2(1 + &%)

Trigonometric Substitutions

Evaluate the integrals in Exercises 127-130 (a) without using a trigono-
metric substitution, (b) using a trigonometric substitution.

ydy

V16— y?

xdx
129, | ——
/ 4 —x?

127.

Quadratic Terms

xdx
N7y
tdt
Jar 1

128.

130.

Evaluate the integrals in Exercises 131-134.

xdx
131.
3 ,/9—x2

dx
133, | ——
,/ 9 —x2

Assorted Integrations

132. f_ﬂ_
x(9 —x?)

dx
134. /—
V9 — x2

Evaluate the integrals in Exercises 135-202. The integrals are listed

in random order.

xdx
135.
f 1+./x

3 +2
136. / 4_—x2dx

137.

139.

141.

143.

145.

147.

149.

151.

153.

155.

157.

159.

161.

163.

165.

167.

169.

171.

173.

175.

177.

179.

dx
/ x(x24+1)2

[ =

u
/v1+u2
/2—cosx+sinx

— dx
sin® x

/ 9dv
81 —v*

/Ocos 20+ 1)do

/ x3dx

x?—2x+1
2sin \/x dx
Jx sec/x

dy
/ sin y cos y
tan x
/ cos? x dx
(r+2)dr

sin 26046
(1 + cos 26)?

/2
/ V14 cosdxdx
/4

xdx

V2 —x
[5-5

y2—2y+2
f 6% tan (8%) d6

/ S
2(z2 4+ 4)

tdt
V9 — 412

/ cot 6 d6

1 +sin®6
t

/ anﬁdy
205

f 62do
4-p2

/cos (sin”! x) .
V1 —x2

138.

140.

142.

144

146.

148.

150.

152.

154.

156.

158.

160.

162.

164.

166.

168.

170.

172.

174.

176.

178.

180.

cos 4/x
dx
Jx

/ (t—1)d:
12 =2t
/e’ cose' dt

. 2
sin” 6

. [ ——db
/COSZQ

cosxdx
®  dx
]; (x —1)?
/ do
V1++/6
x> dx
[+
do
/92—20+4
dr
.[(r+l)m
f ydy
44 y*

dx
/(xz— 1)?
f(15)2*+‘dx

VI=2

) dv

/ln Vx —ldx

xdx

V8 —2x2 — x*

/.x3e(xz) dx

/10

1+ cos 56 d6
0

tan~! x
/ 2 dx

e dt
€% + 3¢l +2

f 1 —cost
1 +cos2x

_cosxdx dx

sm Xx — sinx



2 2
181. / sin = cos = dx 182, [ X2,
2 2 (x2+2)?
e dt
183. / 184. / tan® ¢ dt
1+e¢
185. / ln_ydy 186. / 3 +sec’x +sinx dx
1 »3 tan x
cotvdv
187. / - 188. /
In sinv 2x — 1)\/)c2 —x

189. f &MV dx 190. / e®V/3 +4e0do

sin 5t dt v
191, [ ——— 192. | ——
/ 1 + (cos 5¢)? / Ve — 1
193. / 27N *de 194. f X7 sinx dx
dr 4x3 —20x
195. | —— 19. | ———— 4
f1+ﬁ fx4—10x2+9 *
8dy ¢+ 1)dt
197. | —— 198 | —————
] Yy +2) (12 4 2)%3
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199.

200

201.

202.

203.

204.

—

8dm
m/49m? — 4

/‘ dt
“J i+l D)V DR +In )

1 x
/ 3(x — 1)? (/ Vi+@ - 1)4dt> dx
0 0

/"" 43 +v -1
————dv
2 VP(v—D@E*4+1)
Suppose for a certain function f it is known that
, cos X
f@y=—— f@/)=a

Use integration by parts to evaluate

32
/ f(x)dx.

/2

and f(Q3n/2) =

Find a positive number a satisfying

/‘“ dx _/°° dx
o 14+x2 7 J, 1+4x%

ADDITIONAL EXERCISES—THEORY, EXAMPLES, APPLICATIONS

Challenging Integrals

Evaluate the integrals in Exercises 1-10.
1. '/.(sin‘1 x)*dx
2 /‘ dx
x(x+Dx+2)---
/ xsin~! x dx

s, /L
1 —tan?26

(x +m)

w

4. /sin'lﬁdy
6. /In(ﬁ+\/1+x)dx

7 / dt (2e¥ —e*)dx
- vi=r Ve —6er — 1
dx
9., | —— 10. | —/—
/ x4 +4 / x6—1
Limits
Evaluate the limits in Exercises 11 and 12.
11. lim / sint dt lim x/ COSI
x—=00 J_. x—»O*’

Evaluate the limits in Exercises 13 and 14 by identifying them with
definite integrals and evaluating the integrals.

13.

/ k n—] 1
lim In Y1 + - 14. lim —_—
n—00 kZ n—00 k2=2) /n? — k2

Theory and Applications

15.

16.
17.

18.

19.

Find the length of the curve

y:/ v/cos2tdt, 0<x <m/4.
0

Find the length of the curve y =In(1 — x%), 0<x<1/2

The region in the first quadrant that is enclosed by the x-axis and
the curve y = 3x+/1 — x is revolved about the y-axis to generate
a solid. Find the volume of the solid.

The region in the first quadrant that is enclosed by the x-axis,
the curve y =5/(x+/5 — x), and the lines x =1 and x =4 is
revolved about the x-axis to generate a solid. Find the volume
of the solid.

The region in the first quadrant enclosed by the coordinate
axes, the curve y = ¢*, and the line x =1 is revolved about
the y-axis to generate a solid. Find the volume of the solid.
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20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

The region in the first quadrant that is bounded above by the
curve y = e* — 1, below by the x-axis, and on the right by the
line x =In 2 is revolved about the line x =In 2 to generate a
solid. Find the volume of the solid.

Let R be the “triangular” region in the first quadrant that is
bounded above by the line y = 1, below by the curve y =1n x,
and on the left by the line x = 1. Find the volume of the solid
generated by revolving R about

a) the x-axis
b) theliney =1.
(Continuation of Exercise 21.) Find the volume of the solid gen-

erated by revolving the shaded region about (a) the y-axis, (b)
the line x = 1.

The region between the curve
0, x=0
y=/f= xInx, 0<x<2

is revolved about the x-axis to generate the solid shown here.

a) Show that f is continuous at x = 0.
b) Find the volume of the solid.
The infinite region bounded by the coordinate axes and the curve

y = —In x in the first quadrant is revolved about the x-axis to
generate a solid. Find the volume of the solid.

Find the centroid of the region in the first quadrant that is bounded
below by the x-axis, above by the curve y = In x, and on the
right by the line x =e.

Find the centroid of the region in the plane enclosed by the curves
y = 2(1 — x2)~"/2 and the lines x =0 and x = 1.
Find the length of the curve y =In x fromx =1 to x =e.

Find the area of the surface generated by revolving the curve in
Exercise 27 about the y-axis.

The length of an astroid. The graph of the equation x%3 +
y¥3 =1 is one of a family of curves called astroids (not “aster-
0ids”) because of their starlike appearance (Fig. 7.21). Find the
length of this particular astroid.

30.

31.

32.

ny

am 33,

34.

3s.

36.

37.

7.21 The astroid in Exercises 29 and 30.

The surface generated by an astroid. Find the area of the
surface generated by revolving the curve in Fig. 7.21 about the
x-axis.

Find a curve through the origin whose length is

4 1
14+ —dx.
/(; +4xx

Without evaluating either integral, explain why
1 1 dx

2/ V1—x2dx :/ —_—

-1 S NT=x22

(Source: Peter A. Lindstrom, Mathematics Magazine, Vol. 45,
No. 1, January 1972, p. 47.)

a) GRAPHER Graph the function f(x) = e*¢), -5 < x < 3.
b) Show that / f(x)dx converges and find its value.
-0

1 n—1
Find lim / 1Y ay.
nsoo Jo 14y
Derive the integral formula
n+2
. /X2 — a2
/x(\/xz—az) dx = -(———————>-——+C, n# 2.
n+2
Prove that

/4 /1 dx 72

- < < .

6 Jo VA-—x2-x3 8

(Hint: Observe that for 0 < x < 1, we have 4 — x2 > 4 — x? —

x3 > 4 —2x? , with the left-hand side becoming an equality for
x = 0 and the right-hand side becoming an equality for x = 1.)

For what value or values of a does

* ax 1
)4
,/1 <x2+1 2x) *

converge? Evaluate the corresponding integral(s).



38. For each x > 0, let G(x) = [;~ e~ dt. Prove that xG(x) = 1
for each x > 0.

39. Infinite area and finite volume. What values of p have the
following property: The area of the region between the curve
y=x"P?,1<x < 00, and the x-axis is infinite but the volume
of the solid generated by revolving the region about the x-axis
is finite.

40. Infinite area and finite volume. What values of p have the
following property: The area of the region in the first quadrant
enclosed by the curve y = x 77, the y-axis, the line x = 1, and the
interval [0, 1] on the x-axis is infinite but the volume of the solid
generated by revolving the region about one of the coordinate
axes is finite.

Tabular Integration

The technique of tabular integration also applies to integrals of the
form f f(x) g(x)dx when neither function can be differentiated re-
peatedly to become zero. For example, to evaluate

/ e* cos x dx

we begin as before with a table listing successive derivatives of e
and integrals of cosx:

e* and its cosx and its
derivatives integrals
e \ cosx
2 - sin x
4% + —COS X <—  Stop here: Row is same as first

row except for multiplicative
constants (4 on the left, —1 on
the right)

We stop differentiating and integrating as soon as we reach a row that
is the same as the first row except for multiplicative constants. We
interpret the table as saying

/ e cosx dx

= +(e¥ sinx) — (2% (- cosx)) + f (4€*)(— cos x) dx.

We take signed products from the diagonal arrows and a signed in-
tegral for the last horizontal arrow. Transposing the integral on the
right-hand side over to the left-hand side now gives

S/ez" cosxdx = e* sinx + 2¢* cosx

or

2x o3 2x
e“* sinx + 2e“* cos x
fezxcosxdxz 5 + C,

after dividing by 5 and adding the constant of integration.
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Use tabular integration to evaluate the integrals in Exercises
41-48.

41. | € cos3xdx

42. | &*sindxdx

43. sin 3x sinx dx

44. [ cosSxsindxdx

45. | e*sinbxdx

46. | ¢“*cosbxdx

47. [ In(ax)dx

— e Y Y Y — —

48. /len (ax)dx

The Gamma Function and Stirling’s Formula

Euler’s gamma function I'(x) (“gamma of x”; I" is a Greek capital g)
uses an integral to extend the factorial function from the nonnegative
integers to other real values. The formula is

[ee]
C'x) = f et dr, x>0.
0

For each positive x, the number I'(x) is the integral of *~! e~ with
respect to ¢ from O to oo. Figure 7.22 shows the graph of I' near the
origin. You will see how to calculate I'(1/2) if you do Additional
Exercise 31 in Chapter 13.

7.22 T'(x) is a continuous function of x whose
value at each positive integer n+ 1 is n!. The
defining integral formula for T is valid only for

x >0, but we can extend I' to negative noninteger
values of x with the formula I'(x) = (I'(x + 1))/x,
which is the subject of Exercise 49.
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49. If n is a nonnegative integer, T'(n + 1) = n!

a) Show that I'(1) = 1.
b) Then apply integration by parts to the integral for I'(x + 1)
to show that I'(x + 1) = xI"(x). This gives

re)y=1r() =1
ra) =2r2)=2
r4) =3ra3) =6

F'n+1) =nlC(n) =n! (1)

¢) Use mathematical induction to verify Eq. (1) for every non-
negative integer n.

50. Stirling’s formula. Scottish mathematician James Stirling (1692—
1770) showed that

. e\* [x
tim (3) ar T =1
so for large x,

x (2
I'x) = ()—C) \/ _71(1 +e(x)), €(x)—0asx—o00. (2)
e X
Dropping €(x) leads to the approximation

I'(x) ~ (E)X N 2% (Stirling’s formula) (3)

a)

B 1)

Stirling’s approximation for n!. Use Eq. (3) and the fact
that n! = nI"(n) to show that

n! ~ (E) V2nm. (Stirling’s approximation) (4)
e

As you will see if you do Exercise 68 in Section 8.2, Eq.
(4) leads to the approximation

Yni~ 2, (5)

e

CALCULATOR Compare your calculator’s value for n! with
the value given by Stirling’s approximation for n = 10, 20,
30, ..., as far as your calculator can go.
CALCULATOR A refinement of Eq. (2) gives

reo = (5) 20 4 oy,

Cix) ~ (z)x Eel/(m)

which tells us that

n! ~ (f)n V2nwe'/0, (6)

e

or

Compare the values given for 10! by your calculator, Stir-
ling’s approximation, and Eq. (6).



