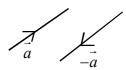
VECTOR ALGEBRA

Vectors

Quantities having both magnitude and direction.

Eg: Velocity, accelaration force, weight, momentum etc.



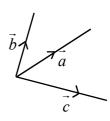
Types of Vector

Zero vector - vector having zero magnitude.

Unit vector - vector having magnitude 1.

 \vec{i} , \vec{j} , \vec{k} are unit vectors along OX, OY, OZ axis,

Co-initial vectors - Two or more vectors having same initial point.



 $\vec{a} \cdot \vec{b} \otimes \vec{c}$ are co-initial vectors.

Collinear vectors - The vectors having same or parallel line of action.

$$\frac{\vec{a}}{\vec{b}} \qquad \frac{\vec{c}}{\vec{d}} \qquad \frac{\vec{e}}{\vec{f}}$$

here \vec{a} , \vec{b} , \vec{c} , \vec{d} , \vec{e} , \vec{f} are collinear vectors.

Equal vectors - two vectors having same magnitude and direction are called equal vectors.

Negative of a vector - If \vec{a} is a vector then $-\vec{a}$ is called negative of vector \vec{a} . Which has same magnitude and opposite direction as that of \vec{a} .

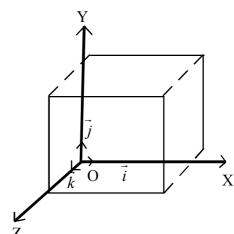
Components of vectors-

Consider the rectangular co-ordinate system in 3 dimensional geometry.

O is the origin and 0X, OY, OZ are +ve X axis, +ve Y axis and +ve z axis.

Let \vec{i} , \vec{j} , \vec{k} be the unit vectors along OX OY and OZ axis respectively. Any vector in space can be expressed in terms of these unit vectors

as
$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$



If P(x, y, z) is a point in the space then \overrightarrow{OP} is called position vector of P and $\overrightarrow{OP} = x\vec{i} + y\vec{j} + z\vec{k}$

Magnitude (modulus) of a vector $\vec{ai} + \vec{bj} + c\vec{k}$ is $\sqrt{a^2 + b^2 + c^2}$.

Addition: Let
$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$

 $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$
Then $\vec{a} + \vec{b} = (a_1 + b_1) \vec{i} + (a_2 + b_2) \vec{j} + (a_3) + b_3) \vec{k}$
ie, if $\vec{a} = 3\vec{i} - 2\vec{j} + 4\vec{k}$ &
 $\vec{b} = 2\vec{i} + \vec{j} + 5\vec{k}$
Then $\vec{a} + \vec{b} = 5\vec{i} - \vec{i} + 9\vec{k}$

Vector joining two points

If
$$P(x_1 y_1 z_1) Q(x_2, y_2, z_3)$$
 are any two points then,
 $\overrightarrow{PQ} = (x_2 - x_1) \overrightarrow{i} + (y_2 - y_1) \overrightarrow{j} + (z_2 - z_1) \overrightarrow{k}$

Section formula : Position vector of the point P which divided the line segment joining $A(\vec{a}) \& B(\vec{b})$ in

the ratio m:n is given by
$$\vec{r} = \frac{m\vec{b} + n\vec{a}}{m+n}$$

Qn.: Find the magnitude of the vector $\vec{a} = 2\vec{i} - 7\vec{j} - 3\vec{k}$

Ans:
$$|\vec{a}| = \sqrt{2^2 + 7^2 + 3^2} = \sqrt{4 + 49 + 9} = \sqrt{62}$$

• Unit vector along a vector \vec{a} is given by $\frac{\vec{a}}{|\vec{a}|}$

Qn: Find the unit vector along $\vec{a} = 3\vec{i} + 2\vec{j} + 4\vec{k}$

Ans:
$$\vec{a} = 3\vec{i} + 2\vec{j} + 4\vec{k}$$

 $|\vec{a}| = \sqrt{3^2 + 2^2 + 4^2} = \sqrt{9 + 4 + 16} = \sqrt{29}$

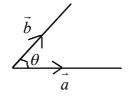
$$\therefore \text{ unit vector along } \vec{a} = \frac{3\vec{i} + 2\vec{j} + 4\vec{k}}{\sqrt{29}}$$

Qn: Find the unit vector in the direction of $\vec{a} + \vec{b}$ where $\vec{a} = 2\vec{i} - \vec{j} + 2\vec{k}$ and $\vec{b} = -\vec{i} - \vec{j} - \vec{k}$ Here $\vec{a} + \vec{b} = \vec{i} + \vec{k}$ $|\vec{a} + \vec{b}| = \sqrt{1^2 + 1^2} = \sqrt{2}$

hence unit vector in the direction of
$$\vec{a} + \vec{b} = \frac{\vec{a} + \vec{b}}{\left|\vec{a} + \vec{b}\right|} = \frac{\vec{i} + \vec{k}}{\sqrt{2}}$$

Product of two Vectors

1) Scalar (dot) Product of two vectors If \vec{a} and \vec{b} are two vectors, then $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}|$. Cos θ Where θ is the angle between $\vec{a} \& \vec{b}$



Results

1)
$$\vec{a} \cdot \vec{b}$$
 is a real number

$$2) \quad \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

3)
$$\vec{a}.\vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$$

4) $\vec{a}.\vec{a} = |\vec{a}|^2$

$$4) \quad \vec{a}.\vec{a} = \left| \vec{a} \right|^2$$

5)
$$\vec{i}.\vec{i} = \vec{j}.\vec{j} = \vec{k}.\vec{k} = 1 \& \vec{i}.\vec{j} = \vec{j}.\vec{k} = \vec{k}.\vec{i} = 0$$

6) Angle between two vectors
$$\vec{a} \& \vec{b}$$

is $\cos \theta = \vec{a}.\vec{b}$
 $|\vec{a}| |\vec{b}|$

7) Projection of
$$\vec{a}$$
 in the direction of \vec{b} is $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

8) If
$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$
 & $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ then $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$

Ex. 1 Find
$$\vec{a} \cdot \vec{b}$$
 where $\vec{a} = \vec{i} - 2\vec{j} + 3\vec{k}$ and $\vec{b} = 3\vec{i} - 2\vec{j} + \vec{k}$

Sol.
$$\vec{a.b} = (1x3) + (-2x^2) + (3x1) = 3+4+3 = 10$$

Show that the vectors $2\vec{i} - \vec{j} + \vec{k}$, $\vec{i} - 3\vec{j} - 5\vec{k}$ and $3\vec{i} - 4\vec{j} - 4\vec{k}$ form the vertices of a right angled Ex. 2 triangle.

Sol: Let the vertices be
$$A(2\vec{i} - \vec{j} + \vec{k})$$
, $B(\vec{i} - 3\vec{j} - 5\vec{k})$ $C(3\vec{i} - 4\vec{j} - 4\vec{k})$
Then $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (1 - 2)\vec{i} + (-3 + 1)\vec{j} + (-5 - 1)\vec{k} = -\vec{i} - 2\vec{j} - 6\vec{k}$
 $\overrightarrow{BC} = (3 - 1)\vec{i} + (-4 + 3)\vec{j} + (-4 + 5)\vec{k} = 2\vec{i} - \vec{j} + \vec{k}$
 $\overrightarrow{AC} = (3 - 2)\vec{i} + (-4 + 1)\vec{j} + (-4 - 1)\vec{k} = \vec{i} - 3\vec{j} - 5\vec{k}$
Now $\overrightarrow{BC}.\overrightarrow{AC} = (2x1) + (-1x - 3) + (1x - 5) = 2 + 3 - 5 = 0$
ie, $\overrightarrow{BC} \perp \overrightarrow{AC}$: $\triangle le$ $\triangle ABC$ is right angled $\triangle le$

Find the projection of the vector $\vec{i} + 3\vec{j} + 7\vec{k}$ on the vector $7\vec{i} - \vec{j} + 8\vec{k}$ Ex. 3

Sol. Let
$$\vec{a} = \vec{i} + 3\vec{j} + 7\vec{k}$$
 $\vec{b} = 7\vec{i} - \vec{j} + 8\vec{k}$

Projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \frac{(1x7) + (3x - 1) + (7x8)}{\sqrt{7^2 + (71)^2 + 8^2}} = \frac{7 - 3 + 56}{\sqrt{49 + 1 + 64}} = \frac{60}{\sqrt{114}}$

For and two vectors $\vec{a} \& \vec{b} \cdot |\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$ (triangle enequality) Ex. 4 $\left| \vec{a} + \vec{b} \right|^2 = (\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b})$

$$= \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b}.$$

$$= |\vec{a}|^2 + 2(\vec{a} \cdot \vec{b}) + |\vec{b}|^2$$

$$\leq |\vec{a}|^2 + 2|\vec{a}||\vec{b}| + |\vec{b}|^2$$

$$= (|\vec{a}| + |\vec{b}|)^2$$

$$|\vec{a} + \vec{b}| \leq |\vec{a}| + |\vec{b}|$$

Cauchy Schwartz inequality
$$\begin{vmatrix} \vec{a}.\vec{b} | \leq |\vec{a}|.|\vec{b}| \\ Proof \end{vmatrix}$$

$$\frac{\vec{a}.\vec{b}}{|\vec{a}||\vec{b}|} = |Cos\theta| \leq 1$$

$$|\vec{a}.\vec{b}| \leq |\vec{a}||\vec{b}|, |\vec{a}| \neq 0, |\vec{b}| \neq 0$$

Vector (or Cross) Product of two vectors

The Vector product of two vectors $\vec{a} \& \vec{b}$ denoted by $\vec{a} \times \vec{b}$ defined as $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| Sin\theta \vec{n}$. Where θ is the angle between $\vec{a} \times \vec{b}$ and \vec{n} is a unit vector perpendicular to \vec{a} and \vec{b} . So that \vec{a} , \vec{b} , \vec{n} form a right handed system.

Results:

- 1) $\vec{a} \times \vec{b}$ is a vector perpendicular to the plane of $\vec{a} & \vec{b}$
- 2) $\vec{i} \times \vec{j} = \vec{k}, \ \vec{j} \times \vec{k} = \vec{i} \quad \& \quad \vec{k} \times \vec{i} = \vec{j}$ $\vec{j} \times \vec{i} = \vec{k}, \ \vec{k} \times \vec{j} = \vec{i} \quad \& \quad \vec{i} \times \vec{k} = \vec{j}$
- 3) Unit vector perpendicular to $\vec{a} \& \vec{b}$ is $\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
- 4) If \vec{a} and \vec{b} represents adjacent sides of a parallelogram $|\vec{a} \times \vec{b}|$ gives its area.
- 5) If \vec{a} and \vec{b} represents sides of a triangle, its area $\frac{1}{2} |\vec{a} \times \vec{b}|$
- 6) If $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ and $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Ex.1 Find $\vec{a} \times \vec{b}$ if $\vec{a} = 2\vec{i} + \vec{j} + 3\vec{k}$ and $\vec{b} = 3\vec{i} + 5\vec{j} - 2\vec{k}$

Sol:
$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 1 & 3 \\ 3 & 5 & -2 \end{vmatrix} = \vec{i}(-2-5) - \vec{j}(-4-9) + \vec{k}(10-3)$$

= $-17\vec{i} + 13\vec{j} - 7\vec{k}$

- Ex.2 Find a unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ where $\vec{a} = \vec{i} + \vec{j} + \vec{k}$, $\vec{b} = \vec{i} + 2\vec{j} + 3\vec{k}$
- Sol: $\vec{a} + \vec{b} = 2\vec{i} + 3\vec{j} + 4\vec{k}$ and $\vec{a} \vec{b} = \vec{j} 2\vec{k}$
 - u.v. perpendiculat to $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ is $\frac{(\vec{a} + \vec{b})x(\vec{a} \vec{b})}{|(\vec{a} + \vec{b})x(\vec{a} \vec{b})|}$

$$\vec{a} + \vec{b} \times \vec{a} - \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 3 & 4 \\ 0 & -1 & -2 \end{vmatrix} = 2\vec{i} + 4\vec{j} - 2\vec{k}$$

Req. u.v. =
$$\frac{\vec{-2i+4j-2k}}{\sqrt{4+16+4}} = \frac{2(\vec{-i+2j-k})}{2\sqrt{6}} = \frac{\vec{-i+2j-k}}{\sqrt{6}}$$

- Ex. 3 Find the area of the parallelogram whose adjacent sides are $\vec{a} = \vec{i} \vec{j} + 3\vec{k}$ and $2\vec{i} 7\vec{j} + \vec{k}$
- Sol. Area of a parallelogram is $|\vec{a} \times \vec{b}|$

$$|\vec{a} \times \vec{b}| = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1 \end{vmatrix} = \vec{i} (-1 + 21) - \vec{j} (1 - 6) + \vec{k} (-7 + 2))$$

$$=\vec{i}(20)+5\vec{j}-5\vec{k}$$

Req. Area =
$$\sqrt{400 + 25 + 25} = \sqrt{500} = 10\sqrt{5}$$
 sq.unit

- * If \vec{a} and \vec{b} are two collinear vectors $\vec{a} \times \vec{b} = 0$
- * If AB C are collinear points then, $\overrightarrow{AB} \times \overrightarrow{BC} = 0$
- * If $\vec{a}, \vec{b}, \vec{c}$ are three coplanar vectors then, $(\vec{a} \times \vec{b}) \cdot \vec{c} = 0$ (Since $\vec{a} \times \vec{b} & \vec{c}$ are $\pm r$)

UNIT TEST

1) If $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ then angle between $\vec{a} \& \vec{b} = ?$

$$(0, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2})$$
 (1)

- Given ABC are the points (2, 1, -1), (3, 2, -1) & (3, 1, 0) find the angle between the vectors \overrightarrow{AB} & \overrightarrow{AC} (3)
- 3) Find the valur of λ so that the following vectors are $\perp r$ (2) $\vec{a} = 2\vec{i} + 3\vec{j} + 4\vec{k}$ and $3 + 2\vec{j} \lambda\vec{k}$
- 4) Find a vector orthogonal to both $\vec{j} + \vec{j} + 5\vec{k}$ and $2\vec{i} \vec{k}$ (2)
- 5) If D, E, F are midpoints of sides of a triangle ABC. Prove that area of triangle DEF = $\frac{1}{4}$ area of triangle ABC.

 (3)

 (Hints: Position vector of midpoint of AB is $\frac{\vec{a} + \vec{b}}{2}$)
- 6) It θ is the angle between two vectors $\vec{a} \& \vec{b}$ then $\frac{\vec{a} \times \vec{b}}{\vec{a} \cdot \vec{b}}$ is $(\cot \theta, -\cot \theta, \tan \theta, -\tan \theta)$ (1)
- 7) Determine area of the parallelogram whose adjacent sides are $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$. (3) Where $\vec{a} = \vec{i} \vec{j} \vec{k}$ & $\vec{b} = 3\vec{c} + 4\vec{j} 5\vec{k}$