

REDOX REACTION

S.No.	CONTENTS				
1.	Introduction	259			
2.	Oxidation number	259			
3.	Applications of oxidation number	263			
4.	Oxidation and Reduction	267			
5.	Types of redox reactions	268			
6.	Balancing of redox reactions	269			
7.	Law of equivalence	272			
8.	Exercise-I (Conceptual Questions)	276			
9.	Exercise-II (Previous Years Questions)	283			
10.	Exercise-III (Analytical Questions)				
11.	Exercise-IV (Assertion & Reason)	286			

Ε

NEET SYLLABUS

REDOX REACTIONS : Concept of oxidation and reduction, redox reactions oxidation number, balancing redox reactions in terms of loss and gain of electron and change in oxidation numbers.

OBJECTIVES

After studying this unit, we will be able to :

- *identify redox reactions as a class of reactions in which oxidation and reduction reactions occur simultaneously;*
- define the terms oxidation, reduction, oxidant (oxidising agent) and reductant (reducing agent);
- explain mechanism of redox reactions by electron transfer process;
- use the concept of oxidation number to identify oxidant and reductant in a reaction;
- classify redox reaction into combination (synthesis), decomposition, displacement and disproportionation reactions;
- suggest a comparative order among various reductants and oxidants;
- balance chemical equations using
 (i) oxidation number
 (ii) ion electron method;

"A person starts to live when he can live outside himself."

Albert Einstein

REDOX REACTION

6.0 Introduction :

Redox reactions shows vital role in non renewable energy sources. In cell reactions where oxidation and reduction both occurs simultaneously will have redox reaction for interconversion of energy.

6.1 Redox Reaction (Oxidation-Reduction) :

Many chemical reactions involve transfer of electrons from one chemical substance to another. These electrontransfer reactions are termed as **oxidation-reduction** or **redox reactions**.

Or

Those reactions which involve oxidation and reduction both simultaneously are known as oxidation reduction or redox reactions.

Or

Those reactions in which increase and decrease in oxidation number of same or different atoms occurs are known as redox reactions.

6.2 Oxidation State :

Oxidation state of an atom in a molecule or ion is the hypothetical or real charge present on an atom due to electronegativity difference.

Or

Oxidation state of an element in a compound represents the number of electrons lost or gained during its change from free state into that compound.

Some important points concerning oxidation number :

(1) Electronegativity values of no two elements are same –

P > H C > H S > C C | > N

- (2) Oxidation number of an element may be positive or negative.
- (3) Oxidation number can be zero, whole number or a fractional value.

Ex.	$Ni(CO)_4$	\Rightarrow	O.S of Ni = 0
	N ₃ H	\Rightarrow	O.S of N = -1/3
	HCl	\Rightarrow	O.S of Cl = -1

(4) Oxidation state of same element can be different in same or different compounds.

Ex. $H_2S \implies O.S \text{ of } S = -2$ $H_2SO_3 \implies O.S \text{ of } S = +4$ $H_2SO_4 \implies O.S \text{ of } S = +6$

6.3 Some helping rules for calculating oxidation number :

(A) In case of covalent bond :

(i) For homoatomic molecule

A - AA = A $A \equiv A$ \downarrow \downarrow $\downarrow \downarrow$ \downarrow \downarrow O.N. : 0 0 0 0 0 0 For heteroatomic molecule (EN of B > A) (ii) A – B A = B $A \equiv B$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ O.N. : +1 -1 +2 -2 +3 -3

cai : (Lnem	nistry	ÁLLEN					
(iii)	The c Na, C	oxidation stat Cu, I, Cl, O e	te of an element in its free state is zero. Example- Oxidation state of tc. are zero.					
(iv)	Oxida	ation state of	atoms present in homoatomic molecules is zero.					
	Ex. H	$H_2, O_2, N_2,$	P_4 , $S_8 = zero$					
(v)	Oxida	ation state of	an element in any of its allotropic form is zero.					
	Ex.	C _{Discond} , C	S_{marking} , $S_{\text{Marcelinic}}$, $S_{\text{Reambing}} = 0$					
(vi)	Oxida	ation state of	all the components of an allov are 0.					
• •	Ex.	(Na – Hg)						
		$\downarrow \downarrow \downarrow$						
(vii)	In co	0 0 mplex compo	ounds, oxidation state of some neutral molecules (ligands) is zero.					
(*)	Ex C	CONONH						
(viii)	Oxida	ation state of	fluoring in all its compounds is -1					
(ix)	Oxida	ation state of	IA & II A group elements are +1 and +2 respectively					
(<u></u>)	Oxida	ation state of	hydrogen in most of its compounds is ± 1 except in metal hydrides (-1)					
(24)	Fy	NaH	LiH CaH MoH					
	LA.	J. J.						
	05	• • •	1 + 1 - 1 + 2 - 1 + 2 - 1					
(vi)	Ovid	. +1	1 + 1 = 1 + 2 = 1 + 2 = 1					
(AI)		Porovidos	$(\Omega^{-2}) \rightarrow \Omega$ vidation state $(\Omega) = -1$					
	(a)	Fv	$(O_2) \rightarrow O$					
	(b)	LA. Super Oxid	$\ln_2 O_2, \text{ BaO}_2$					
	(0)	Fv	KO					
		LA.						
			* -1/2					
	(c)	Ozonide	$(\Omega^{-1}) \rightarrow \Omega$ ($\Omega^{-1}) \rightarrow \Omega$) = -1/3					
	(0)	Fy	KO					
		L2A.						
			• -1/3					
	(d)	ΟΕ (Οχυσα	en difluoride)					
	(u)	F - O - F						
		Oxidation s	state (O) = $+2$					
	(e)	O_2F_2 (dioxy	ygen difluoride)					
		◆ Oxidation s	state (O) = $+1$					
(xii)	Oxida	ation state of	monoatomic ions is equal to the charge present on the ion.					
	Ex.	$Mg^{+2} \rightarrow Ox$	idation state = $+2$					
(xiii)	The a	algebric sum o	of oxidation state of all the atoms present in a polyatomic neutral molecule is 0.					
	Ex.	H_2SO_4						
		If O.S of S	is x then					
		2 (+1) + x -	+ 4 (-2) = 0					
		x - 6 = 0						
		x = +6						

Z:\NDDE02\B04HB0\TARGET\CHEM\ENS\WODULE-1\6.RED0X\01-THEORY P65

Ex. $H_2 SO_3$ If O.S of S is x then 2(+1) + x + 3(-2) = 0x - 4 = 0x = +4

(xiv) The algebric sum of oxidation state of all the atoms in a polyatomic ion is equal to the charge present on the ion.

Ex. \underline{SO}_{4}^{-2} If O.S of S is x then x + 4(-2) = -2x - 6 = 0x = +6 Ex. $H\underline{C}O_3^-$ If O.S of C is x then +1 + x + 3 (-2) = -1x - 4 = 0x = +4**(B)** In case of co-ordinate bond (EN of B > A): $B \rightarrow B$ $A \rightarrow B$ $A \rightarrow A$ $B \rightarrow A$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow O.S.: +2 -2 +2 -2 +2 -2 0 Ο In case of Ionic bond : **(C)** Charge on cation = O.S of cationCharge on anion = O.S of anion NaCl \rightarrow Na+ Ex. + Cl- \downarrow \downarrow +1-1 $MgCl_{2} \rightarrow$ Mg+2 + 2Cl- \downarrow \downarrow +2 -1 Illustrations Oxidation number of cobalt in $[Co(NH_2)_6]$ Cl₂Br is – **Illustration 1.** (1) + 6(2) Zero (3) + 3(4) + 2Solution. Let the oxidation number of Co be x Oxidation number of NH₃ is zero Oxidation number of Cl is -1Oxidation number of Br is -1

> Hence, $x + 6(0) - (1 \times 2) - 1 = 0$ x = +3

...

So, the oxidation number of cobalt in the given complex compound is +3.

rie-meaical :	Chemistry		ALLEN
Illustration 2.	The order of increasing oxidation nu	mbers of S in S_8 , $S_2O_8^{-2}$,	$S_2O_3^{-2}, S_4O_6^{-2}$ is given below –
	(1) $S_8 < S_2 O_8^{-2} < S_2 O_3^{-2} < S_4 O_6^{-2}$	(2) $S_2 O_8^{-2} < S_2 O_8^{-2}$	$D_3^{-2} < S_4 O_6^{-2} < S_8^{-2}$
	$(3) S_2 O_8^{-2} < S_8 < S_4 O_6^{-2} < S_2 O_3^{-2}$	(4) $S_8 < S_2 O_3^{-2}$	$< S_4 O_6^{-2} < S_2 O_8^{-2}$
Solution.	The oxidation number of S are shown	n below along with the co	ompounds
	$S_8 S_2O_8^{-2} S_2O_3^{-2}$	$S_4O_6^{-2}$	
	0 +6 +2	+2.5	
	Hence the order of increasing oxidati	on state of S is –	
	$S_8 < S_2O_3^{-2} < S_4O_6^{-2} < S_2O_8^{-2}$		
Illustration 3.	The oxidation number of Cl in NOCl	O, is –	
	(1) +11 (2) +9	4 (3) +7	(4) +5
Solution.	The compound may be written as NC)+ ClO,⁻.	
	For ClO, $$, Let oxidation number of C	l = a	
	4 a + 4 × (-2)	= -1	
		a = +7	
	Hence, the oxidation number of Cl ir	$NOCIO_i is + 7$	
Illustration 4.	The two possible oxidation states of I	N atoms in NH_4NO_3 are	respectively –
0.1.4	(1) +3, +5 $(2) +3, -5$	(3) –3, +5	(4) -3, -5
Solution.	There are two N atoms in NH_4NO_3 , b	ut one N atom has negat	ive oxidation states (attached to H)
	and the other has positive oxidation s	tates (attached to O). The	erefore evaluation should be made
	separately as –		
	Oxidation states of N is NH_4^+		s of N in NO_3^{-1}
	$a + 4 \times (+1) = +1$	and $a + 3(-2) =$	= -1
	$\therefore a = -3$	a = + 3	
	There the two oxidation states are -3	and +5 respectively.	
Illustration 5.	The oxidation states of S in $H_2S_2O_8$ is	5 -	
	(1) +8 (2) -8	(3) +6	(4) +4
Solution.	In $H_2S_2O_8$, two O atoms form peroxie	de linkage i.e.	
	0 0		
	$\uparrow \qquad \uparrow$		
	H - O - S - O - O - S - O - H		
	\mathbf{v} \mathbf{v}		
	$2 \times 1 + 2a + $	6(-2) + 2(-1) = 0	
	$2 \times 1 + 2a + 6$	0 (2) + 2 (1) = 0	
	$\therefore u = 10$ Thus the oxida	ation states of S in H S () is +6
		$\frac{1}{2} \frac{1}{2} \frac{1}$	8.13 10
Illustration 6.	The oxidation number of S in $(CH_3)_2$	SO is –	
	(1) 1 (2) 2	(3) 0	(4) 3
Solution.	Let the oxidation number of S is 'a'		
	Oxidation number of $CH_3 = +1$		
	Oxidation number of $O = -2$		
	2(+1) + a + (-2) = 0		
	a = 0		
	Hence the oxidation no. of S in dime	thyl sulphoxide is zero.	
262			

ALLEN

(1) K	I_	(2) KIO	(3) KIO ₂	(4) IF _r
The	oxidation number	of phosphorus in Ba(H ₂ P($D_{2})_{2}$ is –	5
(1) +3	3	(2) +2	(3) +1	(4) –1
Oxida	ation number of N	Ni in Ni(CO) ₄ is –		
(1) 0		(2) 4	(3) 8	(4) 2
Posit	ive oxidation state	e of an element indicates th	nat it is –	
(1) El	ementry form	(2) Oxidised	(3) Reduced	(4) Only reductant
Predi	ict the highest and	l lowest oxidation state of	(a) Ti and (b) Tl in combine	ed state.
(1) a[0, +3] b[0, +2]	(2) a[+3, 0] b[+4, 0]	(3) a[+4, 0] b[+4, 0]	(4) a[+4. +2] b[+3, +1]
The o	oxidation state of	oxygen atom in potassium	superoxide is –	
(1) Ze	ero	(2) - 1/2	(3) –1	(4) –2

Strength of acid	α Oxie	dation Number	
Strength of base	$\alpha \overline{Ox}$	1 idation Number	-
Example :	Order of acidic st	rength in HClO	D, HClO_2 , HClO_3 , HClO_4 will be.
Solution :			Oxidation Number of chlorine
	HClO (Hypo chlo	orous acid)	+1
	$HClO_2$ (Chlorous	acid)	+3
	HClO ₃ (Chloric a	cid)	+5
	HClO ₄ (Perchlori	c acid)	+7
:	Strength of acid	α Oxidation	Number
So the orde	er will be -		

```
HClO_4 > HClO_3 > HClO_2 > HClO
```

(B) To determine the oxidising and reducing nature of the substances :

Oxidising agents are the substances which accept electrons in a chemical reaction i.e., electron acceptors are oxidising agent.

Reducing agents are the substances which donate electrons in a chemical reaction i.e., electron donors are reducing agent.

Highest O.S.	+4	+5	+5	+6	+7	+6	+7	+8	+8	+2	+1
Elements	С	Ν	Р	S	Cl	Cr	Mn	Os	Ru	0	Н
Lowest O.S.	-4	-3	-3	-2	-1	0	0	0	0	-2	-1

(a) If effective element in a compound is present in maximum oxidation state then the compound acts as oxidising agent.

Ex.	$KMnO_4$	$K_2 Cr_2 O_7$	H_2SO_4	SO_3	H_3PO_4	HNO_3	$HClO_4$	
	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
	+7	+6	+6	+6	+5	+5	+7	
								_

(b) If effective element in a compound is present in minimum oxidation state then the compound acts as reducing agent.

PH_3	NH_3	CH_4
\downarrow	\downarrow	\downarrow
-3	-3	-4

(c) If effective element in a compound is present in intermediate oxidation state then the compound can act as oxidising agent as well as reducing agent.

HNO ₂	H_3PO_3	SO_2	H_2O_2
\downarrow	\downarrow	\downarrow	\downarrow
+3	+3	+4	-1

(C) To calculate the equivalent weight of compounds :

The equivalent weight of an oxidising agent or reducing agent is that weight which accepts or loses one mole electrons in a chemical reaction.

(a) Equivalent weight of oxidant = $\frac{\text{Molecular weight}}{\text{No. of electrons gained by one mole}}$

Example : In acidic medium

 $6e^{-} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 2Cr^{3+} + 7H_2O$

Here atoms which undergoes reduction is Cr. Its O. S. is decreasing from +6 to +3

Equivalent weight of
$$K_2Cr_2O_7 = \frac{\text{Molecular weight of } K_2Cr_2O_7}{3 \times 2} = \frac{M}{6}$$

Note :- [6 in denominator indicates that 6 electrons were gained by $Cr_2O_7^{2-}$ as it is clear from the given balanced equation]

(b) Equivalent weight of a reducant =
$$\frac{\text{Molecular weight}}{\text{No. of electrons lost by one mole}}$$

In acidic medium, $C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^-$

Here, atoms which undergoes oxidation is C. Its oxidation state is increasing from +3 to +4.

Here, Total electrons lost in $C_2O_4^{-2} = 2$ So, equivalent weight of $C_2O_4^{-2} = \frac{M}{2}$

(c) In different conditions a compound may have different equivalent weight because, it depends upon the number of electrons gained or lost by that compound in that reaction.

Example :

(i) $MnO_4^- \longrightarrow Mn^{+2}$ (acidic medium) (+7) (+2)

Here 5 electrons are taken by MnO_4^- so its equivalent weight = $\frac{M}{5} = \frac{158}{5} = 31.6$

(ii) $MnO_4^- \longrightarrow MnO_2$ (neutral medium) or (Weak alkaline medium) (+7) (+4)

Here, only 3 electrons are gained by MnO_4^- so its equivalent weight = $\frac{M}{3} = \frac{158}{3} = 52.7$

(iii) Note : When only alkaline medium is given consider it as weak alkaline medium. (iii) $MnO_4^- \longrightarrow MnO_4^{-2}$ (strong alkaline medium) (+7) (+6)

Here, only one electron is gained by MnO_4^- equivalent weight = $\frac{M}{1}$ = 158

ALLEN

Note :- $KMnO_4$ acts as an oxidant in every medium although with different strength which follows the order –

acidic medium > neutral medium > alkaline medium

while, K₂Cr₂O₇ acts as an oxidant only in acidic medium as follows

$$\begin{array}{ccc} \operatorname{Cr}_2 \operatorname{O}_7^{2-} &\longrightarrow& 2\operatorname{Cr}^{3+} \\ (2 \times 6) &\longrightarrow& (2 \times 3) \end{array}$$

Here, 6 electrons are gained by $K_2Cr_2O_7$ equivalent weight = $\frac{M}{6} = \frac{294}{6} = 49$

(D) To determine the possible molecular formula of compound :

Since the sum of oxidation number of all the atoms present in a compound is zero, so the validity of the formula can be confirmed.

GOLDEN KEY POINTS

SOME OXIDIZING AGENTS/REDUCING AGENTS WITH EQUIVALENT WEIGHT :

Species	Changed to	Reaction	Electrons exchanged or change in O.N.	Eq. wt.
MnO ₄ ⁻ (O.A.)	$Mn^{+2}_{\text{in acidic medium}}$	$MnO_{4}^{-} + 8H^{+} + 5e^{-} \longrightarrow Mn^{2+} + 4H_{2}O$	5	$E = \frac{M}{5}$
MnO ₄ ⁻ (O.A.)	MnO_2 in neutral medium or in weak alkaline medium	$MnO_{4}^{-} + 3e^{-} + 2H_{2}O \longrightarrow MnO_{2} + 4OH^{-}$	3	$E = \frac{M}{3}$
MnO ₄ ⁻ (O.A.)	MnO_4^{2-} in strong alkaline medium	$MnO_4^- + e^- \longrightarrow MnO_4^{2-}$	1	$E = \frac{M}{1}$
Cr ₂ O ₇ ²⁻ (O.A.)	Cr^{3+} in acidic medium	$\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-} + 14\operatorname{H}^{+} + 6e^{-} \longrightarrow 2\operatorname{Cr}^{3+} + 7\operatorname{H}_{2}\operatorname{O}$	6	$E = \frac{M}{6}$
MnO ₂ (O.A.)	Mn ²⁺ in acidic medium	$MnO_2 + 4H^+ + 2e^- \longrightarrow Mn^{2+} + 2H_2O$	2	$E = \frac{M}{2}$
Cl ₂ (O.A.) in bleaching powder	Cl⁻	$Cl_2 + 2e^- \longrightarrow 2Cl^-$	2	$E = \frac{M}{2}$
CuSO ₄ (O.A.) in iodometric titration	Cu+	$Cu^{2+} + e^- \longrightarrow Cu^+$	1	$E = \frac{M}{1}$
S ₂ O ₃ ²⁻ (R.A.)	S406	$2S_2O_3^{2-} \longrightarrow S_4O_6^{2-} + 2e^-$	2	$E = \frac{2M}{2} = M$
			(for two moles)	
H ₂ O ₂ (O.A.)	H ₂ O	$\mathrm{H_2O_2} + 2\mathrm{H^{\scriptscriptstyle +}} + 2\mathrm{e^{\scriptscriptstyle -}} \longrightarrow 2\mathrm{H_2O}$	2	$E = \frac{M}{2}$
H ₂ O ₂ (R.A.)	O_2	$H_2O_2 \longrightarrow O_2 + 2H^+ + 2e^-$ (O.N. of oxygen in H_2O_2 is -1 per atom)	2	$E = \frac{M}{2}$
Fe ²⁺ (R.A.)	Fe ³⁺	$Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$	1	$E = \frac{M}{1}$
I⁻ (R.A)	I ₂ (in acidic medium)	$2I^{-} \longrightarrow I_{2} + 2e^{-}$	2 (for two moles)	$E = \frac{M}{1}$
[- (R.A)	IO ₃ ⁻ (in basic medium)	$I^- + 6OH^- \longrightarrow IO_3^- + 3H_2O + 6e^-$	6	$E = \frac{M}{6}$

Illustrations -

Illustration 7. Find the n-factor of reactant in the following chemical changes.

(i) $\text{KMnO}_4 \xrightarrow{H^+} \text{Mn}^{2+}$ (ii) $\text{KMnO}_4 \xrightarrow{OH^-(\text{concentrated basic medium})} \text{Mn}^{6+}$ (iv) $\text{K}_2\text{Cr}_2\text{O}_7 \xrightarrow{H^+} \text{Cr}^{3+}$ (v) $\text{C}_2\text{O}_4^{2^-} \xrightarrow{O} \text{CO}_2$ (vi) $\text{FeSO}_4 \xrightarrow{O} \text{FeSO}_4$ (vii) $\text{Fe}_2\text{O}_3 \xrightarrow{O} \text{FeSO}_4$ (i) In this reaction, KMnO_4 which is an oxidizing agent, itself gets reduced to Mn^{2+} under acidic conditions.

$$n = |1 \times (+7) - 1 \times (+2)| = 5$$

(ii) In this reaction, $\rm KMnO_4$ gets reduced to $\rm Mn^{4+}$ under neutral or slightly (weakly) basic conditions.

$$n = |1 \times (+7) - 1 \times (+4)| = 3$$

(iii) In this reaction, $KMnO_4$ gets reduced to Mn^{6+} under basic conditions.

$$n = |1 \times (+7) - 1 \times (+6)| = 1$$

(iv) In this reaction, $K_2Cr_2O_7$ which acts as an oxidizing agent reduced to Cr^{3+} under acidic conditions. (It does not react under basic conditions.)

$$n = |2 \times (+6) - 2 \times (+3)| = 6$$

(v) In this reaction, $C_2 O_4^{2-}$ (oxalate ion) gets oxidized to CO_2 when it is reacted with an oxidizing agent.

$$n = |2 \times (+3) - 2 \times (+4)| = 2$$

(vi) In this reaction, ferrous ions get oxidized to ferric ions.

$$n = |1 \times (+2) - 1 \times (+3)| = 1$$

(vii) In this reaction, ferric ions are getting reduced to ferrous ions.

$$n = |2 \times (+3) - 2 \times (+2)| = 2$$

Illustration 8. Suppose that there are three atoms A, B, C and their oxidation numbers are 6, -1, -2, respectively. Then the molecular formula of compound will be.

Solution Since, the charge on a free compound is zero. So

$$+6 = (-1 \times 4) + (-2) + 6 = -6$$

or
$$+6 = (-1 \times 2) + (-2 \times 2) = -2 + (-4) = -6$$

So molecular formula, AB_4C or AB_2C_2 .

Z:\NDDE02\B0AI+B0\TARGET\CHEM\ENG\WODULE-1\6.REDOX\01-THEORY.P6; Ε

ALLEN

BEGINNER'S BOX-2

- 1. Molecular weight of $KMnO_4$ in acidic medium and neutral medium will be respectively
 - (1) 7 \times equivalent weight and 2 \times equivalent weight
 - (2) 5 \times equivalent weight and 3 \times equivalent weight
 - (3) 4 \times equivalent weight and 5 \times equivalent weight
 - (4) 2 \times equivalent weight and 4 \times equivalent weight
- **2.** In acidic medium, equivalent weight of $K_2Cr_2O_7$ (Molecular weight = M) is –

(1) M/3	(2) M/4
(3) M/6	(4) M/2

6.5 OXIDATION AND REDUCTION :

There are two concepts of oxidation and reduction.

(A)	Classical/old concept :	
	OXIDATION	REDUCTION
(1)	Addition of O ₂	Addition of H ₂
	$2Mg + O_2 \rightarrow 2MgO$	$N_2 + 3H_2 \rightarrow 2NH_3$
	$C + O_2 \rightarrow CO_2$	$H_2 + Cl_2 \rightarrow 2HCl$
(2)	Removal of H_2	Removal of O_2
	$H_2S + Cl_2 \rightarrow 2HCl + S$ (oxidation of H_2S)	CuO + C \rightarrow Cu + CO (reduction of CuO)
	$4\text{HI} + \text{O}_2 \rightarrow 2\text{I}_2 + 2\text{H}_2\text{O}$ (oxidation of HI)	$H_2O + C \rightarrow CO + H_2$ (reduction of H_2O)
(3)	Addition of electronegative element	Addition of electropositive element
	Fe + S \rightarrow FeS (oxidation of Fe)	$\text{CuCl}_2 + \text{Cu} \rightarrow \text{Cu}_2\text{Cl}_2$ (reduction of CuCl_2)
	$SnCl_2 + Cl_2 \rightarrow SnCl_4$ (oxidation of $SnCl_2$)	$HgCl_2 + Hg \rightarrow Hg_2Cl_2$ (reduction of $HgCl_2$)
(4)	Removal of electropositive element	Removal of electronegative element
	2NaI + $H_2O_2 \rightarrow 2NaOH + I_2$ (oxidation of NaI)	$2\text{FeCl}_3 + \text{H}_2 \rightarrow 2\text{FeCl}_2 + 2\text{HCl} \text{ (reduction of FeCl}_3)$

(B)	Electro	nic/Modern Concept :	
	OXIDA	ΓΙΟΝ	REDUCTION
(1)	De-electr	ronation	Electronation
(2)	Oxidatio	n process are those process in	Reduction process are those process in which
	which or	ne or more e⁻s are lost by an atom,	one or more e⁻s are gained by an atom, ion or
	ion or m	olecule.	molecule.
(3)	Example	-	
	(a)	$Zn \rightarrow Zn^{+2} + 2e^{-}$	$Cu^{+2} + 2e^- \rightarrow Cu$
		$M \rightarrow M^{n+} + ne^{-}$	$M^{n+} + ne^- \rightarrow M$
	(b)	${\rm Sn^{+2}} \rightarrow {\rm Sn^{+4}} + (4-2) e^{-}$	$Fe^{+3} + (3-2) e^{-} \rightarrow Fe^{+2}$
		$M^{+n_1} \rightarrow M^{+n_2} + (n_2 - n_1)e^-$	$M^{+x_1} + (x_1 - x_2) e^{-} \to M^{+x_2}$
	(c)	$Cl^- \rightarrow Cl + e^-$	$O + 2e^- \rightarrow O^{2-}$
		$A^{-n} \rightarrow A + ne^{-}$	$A + xe^{-} \rightarrow A^{-x}$
	(d)	$MnO_4^{-2} \rightarrow MnO_4^{-} + (2-1)e^{-}$	$[Fe (CN)_4]^{3-} + (4-3)e^- \rightarrow [Fe (CN)_4]^{-4}$
		$A^{-n_1} \rightarrow A^{-n_2} + (n_1 - n_2)e^{-n_2}$	$A^{-n_1} + (n_2 - n_1)e^- \rightarrow A^{-n_2}$

6.6 TYPES OF REDOX REACTIONS :

(A) Intermolecular redox reaction :- When oxidation and reduction takes place separately in different compounds, then the reaction is called intermolecular redox reaction.

 $SnCl_2 + 2FeCl_3 \longrightarrow SnCl_4 + 2FeCl_2$ $Sn^{+2} \longrightarrow Sn^{+4}$ (Oxidation) $Fe^{+3} \longrightarrow Fe^{+2}$ (Reduction)

(B) Intramolecular redox reaction :- During the chemical reaction, if oxidation and reduction takes place in single compound then the reaction is called intramolecular redox reaction.

(C) Disproportionation reaction :- When reduction and oxidation takes place in the same element of the same compound then the reaction is called disproportionation reaction.

(D) Comproportionation reaction: Reverse of disproportionation reaction known as comproportionation reaction. Ex. $HCIO + Cl^- \rightarrow Cl_2 + OH^-$

BEGINNER'S BOX-3

1.	Oxidation is defined as –				
	(1) Gain of electrons		(2) Decrease in positive valency		
	(3) Loss of electrons		(4) Addition of electropos	itive element	
2.	Reduction is defined as –				
	(1) Increase in positive val	ency	(2) Gain of electrons		
	(3) Loss of protons		(4) Decrease in negative v	valency	
3.	In the reaction $MnO_4^- + S$	$SO_3^{-2} + H^+ \longrightarrow SO_4^{-2} +$	$H Mn^{2+} + H_2O$		
	(1) MnO_4^- and H^+ both ar	e reduced	(2) MnO_4^{-} is reduced and H^+ is oxidised		
	(3) MnO_4^{-} is reduced and	SO32- is oxidised	(4) MnO_4^{-} is oxidised and	SO_3^{2-} is reduced	
4.	The charge on cobalt in [Co(CN) ₆] ⁻³ is –			
	(1) –6	(2) –3	(3) +3	(4) +6	
5.	Which of the following ha	logen always show only o	ne oxidating state in its co	mpounds?	
	(1) Cl	(2) F	(3) Br	(4) I	
268					

6.	Which of the following reactions do not involve ox	idation-reduction ?
	(1) 2Rb + $2H_2O \longrightarrow 2RbOH + H_2$	(2) $2CuI_2 \longrightarrow 2CuI + I_2$
	(3) $NH_4Cl + NaOH \longrightarrow NaCl + NH_3 + H_2O$	(4) $3Mg + N_2 \longrightarrow Mg_3N_2$
7.	The fast reaction between water and sodium is the	example of –
	(1) Oxidation (2) Reduction	(3) Intermolecular redox (4) Intramolecular redox
8.	Choose the redox reaction from the following-	
	(1) Cu + $2H_2SO_4 \longrightarrow CuSO_4 + SO_2 + 2H_2O$	(2) $BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 + 2HCl$
	(3) $2NaOH + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2O$	(4) $\text{KNO}_3 + \text{H}_2\text{SO}_4 \longrightarrow 2\text{HNO}_3 + \text{K}_2\text{SO}_4$
9.	Which of the following is not a redox reaction ?	
	(1) $MnO_4^- \longrightarrow MnO_2^- + O_2^-$	(2) $Cl_2 + H_2O \longrightarrow HCl + HClO$
	1) Oxidation (2) Reduction (3) Intermolecular redox (4) Intram (3) Intermolecular redox (4) Intram (3) Intermolecular redox (4) Intram (4) Intram (5) N undergoes oxidation (2) Reduction (2) Reduction (2) Reduction (2) Reduction (2) Reduction (2) Intermolecular redox (4) Intram (3) Intermolecular redox (4) Intram (2) BaCl ₂ + H ₂ SO ₄ \longrightarrow BaSO ₄ + (4) KNO ₃ + H ₂ SO ₄ \longrightarrow 2HNO ₃ \therefore (4) KNO ₃ + H ₂ SO ₄ \longrightarrow 2HNO ₃ \therefore (5) Intermolecular redox (4) Intram (2) BaCl ₂ + H ₂ SO ₄ \longrightarrow 2HNO ₃ \therefore (3) Intermolecular redox (4) Intram (2) BaCl ₂ + H ₂ SO ₄ \longrightarrow 2HNO ₃ \therefore (3) Intermolecular redox (4) Intram (2) Cl ₂ + H ₂ SO ₄ \longrightarrow 2HNO ₃ \therefore (3) Intermolecular redox (4) Intram (4) MnO ₄ \longrightarrow 4 \longrightarrow 2 \square 2	(4) $MnO_4^- + 8H^+ + 5Ag \longrightarrow Mn^{+2} + 4H_2O + 5Ag^+$
10.	In the reaction 6Li + $N_2 \longrightarrow 2Li_3N$	
	(1) Li undergoes reduction	(2) Li undergoes oxidation
	(3) N undergoes oxidation	(4) Li is oxidant
11.	$H_2O_2 + H_2O_2 \longrightarrow 2H_2O + O_2$ is an example of	dispropotionation because –
	(1) Oxidation number of oxygen only decreases	

- (2) Oxidation number of oxygen only increases
- (3) Oxidation number of oxygen decreases as well as increase
- (4) Oxidation number of oxygen neither decreases nor increases

6.7 BALANCING OF REDOX REACTION :

- (A) Oxidation number change method.
- (B) Ion electron method.

(A) Oxidation number change method :

This method was given by Johnson. In a balanced redox reaction, total increase in oxidation number must be equal to total decreases in oxidation number. This equivalence provides the basis for balancing redox reactions.

The general procedure involves the following steps :

- (i) Select the atom in oxidising agent whose oxidation number decreases and indicate the gain of electrons.
- (ii) Select the atom in reducing agent whose oxidation number increases and indicate the loss of electrons.
- (iii) Now cross multiply i.e.multiply oxidising agent by the number of loss of electrons and reducing agent by number of gain of electrons.
- (iv) Balance the number of atoms on both sides whose oxidation numbers change in the reaction.
- (v) In order to balance oxygen atoms, add H_2O molecules to the side deficient in oxygen.
- (vi) Then balance the number of H atoms by adding H^+ ions to the side deficient in hydrogen.

	Illustrations							
Illustration 9.	Balance the following reaction by the oxidation number method –							
	$Cu + HNO_3 \longrightarrow Cu(NO_3)_2 + NO_2 + H_2O_3$							
Solution	Write the oxidation number of all the atoms.							
	0 +1+5-2 +2+5-2 +4-2 +1-2							
	$Cu + HNO_3 \longrightarrow Cu(NO_3)_2 + NO_2 + H_2O$							
	There is change in oxidation number of Cu and N.							
	0 +2+5-2							
	Cu \longrightarrow Cu(NO ₃) ₂ (1) (Oxidation no. is increased by 2)							
	+5 +4							
	$HNO_3 \longrightarrow NO_2$ (2) (Oxidation no. is decreased by 1)							
	To make increase and decrease equal, eq. (2) is multiplied by 2.							
	$Cu + 2HNO_{3} \longrightarrow Cu(NO_{3})_{2} + 2NO_{2} + H_{2}O$							
	Balancing nitrates ions, hydrogen and oxygen, the following equation is obtained.							
	$Cu + 4HNO_3 \longrightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$							
	This is the balanced equation.							
Illustration 10.	Balance the following reaction by the oxidation number method –							
	$MnO_4^- + Fe^{+2} \longrightarrow Mn^{+2} + Fe^{+3}$							
Solution	Write the oxidation number of all the atoms.							
	+7 -2							
	MnO_4^- + Fe^{+2} \longrightarrow Mn^{+2} + Fe^{+3}							
	change in oxidation number has occured in Mn and Fe.							
	+7							
	$MnO_4^- \longrightarrow Mn^{+2}$ (1) (Decrement in oxidation no. by 5)							
	$Fe^{+2} \longrightarrow Fe^{+3}$ (2) (Increment in oxidation no. by 1)							
	To make increase and decrease equal, eq. (2) is multiplied by 5.							
	$MnO_4^- + 5Fe^{+2} \longrightarrow Mn^{+2} + 5Fe^{+3}$							
	To balance oxygen, $4H_{\rm 2}O$ are added to R.H.S. and to balance hydrogen, $8H^{\scriptscriptstyle +}$ are added to							
	L.H.S.							
	$MnO_4^- + 5Fe^{+2} + 8H^+ \longrightarrow Mn^{+2} + 5Fe^{+3} + 4H_2O$							
	This is the balanced equation.							

(B) Ion-Electron method :-

This method was given by Jette and La Mev in 1972.

The following steps are followed while balancing redox reaction (equations) by this method.

- (i) Write the equation in ionic form.
- (ii) Split the redox equation into two half reactions, one representing oxidation and the other representing reduction.
- (iii) Balance these half reactions separately and then add by multiplying with suitable coefficients so that the electrons are cancelled. Balancing is done using following substeps.

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\WODULE-1\6.REDOX\01-THEORY.P65

Е

A		

- (a) Balance all other atoms except H and O.
- (b) Then balance oxygen atoms by adding H_2O molecules to the side deficient in oxygen. The number of H_2O molecules added is equal to the deficiency of oxygen atoms.
- (c) Balance hydrogen atoms by adding H⁺ ions equal to the deficiency in the side which is deficient in hydrogen atoms.
- (d) Balance the charge by adding electrons to the side which is rich in +ve charge. i.e. deficient in electrons. Number of electrons added is equal to the deficiency.
- (e) Multiply the half equations with suitable coefficients to equalize the number of electrons.
- (iv) Add these half equations to get an equation which is balanced with respect to charge and atoms.
- (v) If the medium of reaction is basic, OH⁻ ions are added to both sides of balanced equation, which is equal to number of H⁺ ions in Balanced Equation.

Illustrations

Illustration 11. Balance the following reaction by ion-electron method in acidic medium :

 $\operatorname{Cr}_2 \operatorname{O}_7^{2-} + \operatorname{C}_2 \operatorname{O}_4^{2-} \longrightarrow \operatorname{Cr}^{3+} + \operatorname{CO}_9$

$$\operatorname{Cr}_2\operatorname{O}_7^{2-} + \operatorname{C}_2\operatorname{O}_4^{2-} \longrightarrow \operatorname{Cr}^{3+} + \operatorname{CO}_2$$

Solution

Write both the half reaction. (a) $Cr_{0}O_{7}^{2-} \longrightarrow Cr^{3+}$ (Reduction half reaction) $C_2O_4^{2-} \longrightarrow CO_2$ (Oxidation half reaction) Atoms other than H and O are balanced. (b) $Cr_{2}O_{7}^{2-} \longrightarrow 2Cr^{3+}$ $C_2 O_4^{2-} \longrightarrow 2CO_2$ Balance O-atoms by the addition of H₂O to another side (c) $Cr_{0}O_{7}^{2-} \longrightarrow 2Cr^{3+} + 7H_{0}O$ $C_{2}O_{4}^{2-} \longrightarrow 2CO_{2}$ (d) Balance H-atoms by the addition of H⁺ to another side $Cr_{2}O_{7}^{2-} + 14 H^{+} \longrightarrow 2Cr^{3+} + 7H_{2}O$ $C_2 O_4^{2-} \longrightarrow 2CO_2$ Now, balance the charge by the addition of electron (e^{-}) . (e) $\operatorname{Cr}_{2}O_{7}^{2-} + 14 \operatorname{H}^{+} + 6e^{-} \longrightarrow 2\operatorname{Cr}^{3+} + 7\operatorname{H}_{2}O$(1) $C_{2}O_{4}^{2-} \longrightarrow 2CO_{2} + 2e^{-}$(2)

(f) Multiply equations by a constant to get the same number of electrons on both side. In the above case second equation is multiplied by 3 and then added to first equation.

$$Cr_{2}O_{7}^{2-} + 14 H^{+} + 6e^{-} \longrightarrow 2Cr^{3+} + 7H_{2}O$$

$$3C_{2}O_{4}^{2-} \longrightarrow 6CO_{2} + 6e^{-}$$

$$Cr_{2}O_{7}^{2-} + 3C_{2}O_{4}^{2-} + 14 H^{+} \longrightarrow 2Cr^{3+} + 6CO_{2} + 7H_{2}O$$

ALLEN

Illustration 12. Balance the following reaction by ion-electron method :

$$\operatorname{Cr}(\operatorname{OH})_3 + \operatorname{IO}_3^{-} \xrightarrow{\operatorname{OH}^{-}} \operatorname{I}^{-} + \operatorname{CrO}_4^{2-}$$

Solution

- $Cr(OH)_3 + IO_3^- \xrightarrow{OH^-} I^- + CrO_4^{2-}$
- (a) Separate the two half reactions.

 $Cr(OH)_3 \longrightarrow CrO_4^{2-}$ (Oxidation half reaction) $IO_3^- \longrightarrow I^-$ (Reduction half reaction)

(b) Balance O-atoms by adding H_2O . $H_2O + Cr(OH)_3 \longrightarrow CrO_4^{2-}$

 $IO_3^- \longrightarrow I^- + 3H_2O$

(c) Balance H-atoms by adding H⁺ to side having deficiency and add equal no. of OH⁻ ions to the side (∴ medium is known)

$$H_2O + Cr(OH)_3 \longrightarrow CrO_4^{-2} + 5H^+$$

 $5OH^- + H_2O + Cr(OH)_3 \longrightarrow CrO_4^{2-} + 5H^+ + 5OH^-$

- or $5OH^- + Cr(OH)_3 \longrightarrow CrO_4^{2-} + 4H_2O$
 - $IO_3^- + 6H^+ \longrightarrow I^- + 3H_2O$
 - $IO_3^- + 6H^+ + 6OH^- \longrightarrow I^- + 3H_2O + 6OH^-$
- or $IO_3^- + 3H_2O \longrightarrow I^- + 6OH^-$
- (d) Balance the charges by adding electrons

 $5OH^- + Cr(OH)_3 \longrightarrow CrO_4^{2-} + 4H_2O + 3e^-$

- $IO_3^- + 3H_2O + 6e^- \longrightarrow I^- + 6OH^-$
- (e) Multiply first equation by 2 and add to second to give

 $100H^{-} + 2Cr(OH)_{3} \longrightarrow 2CrO_{4}^{2-} + 8H_{2}O + 6e^{-1}$

 $IO_3^- + 3H_2O + 6e^- \longrightarrow I^- + 6OH^-$

6.8 LAW OF EQUIVALENCE

The law states that one equivalent of an element combine with one equivalent of the other, and in a chemical reaction equal number of equivalents or milli equivalents of reactants react to give equal number of equivalents or milli equivalents of products separately.

According :

(i) $aA + bB \rightarrow mM + nN$

m. eq of A = number of m. eq of B = number of m. eq of M = number of m. eq of N

(ii) In a compound $M_x N_y$

Number of m. eq of $M_x N_v = m.eq$ of M = number of m.eq of N

GOLDEN KEY POINTS FOR REDOX REACTIONS : $N_1V_1 = N_2V_2$ is always true. But $(M_1 \times V_1) \times n_1 = (M_2 \times V_2) \times n_2$ (always true where n term represents valency factor). Illustrations -**Illustration 13** Calculate the normality of a solution containing 15.8 g of $KMnO_4$ in 50 mL acidic solution. Normality (N) = $\frac{W \times 1000}{E \times VmL}$ Solution $E = \frac{\text{molar mass of KMnO}_4}{\text{Valence factor}} = 158/5 = 31.6$ where W = 15.8 g, V = 50 mLSo, N = 10Calculate the normality of a solution containing 50 mL of 5 M solution K₂Cr₂O₇ in acidic medium. **Illustration 14** Solution Normality (N) = Molarity × Valency factor= $5 \times 6 = 30$ N **Illustration 15** Find the number of moles of $KMnO_4$ needed to oxidise one mole Cu_2S in acidic medium. The reaction is $KMnO_4 + Cu_2S \longrightarrow Mn^{2+} + Cu^{2+} + SO_2$ Solution From law of equivalence equivalents of Cu_2S = equivalents of KMnO₄ moles of $Cu_2S \times v.f = moles of KMnO_4 \times v.f.$ $1 \times 8 = n_2 \times 5$ $n_2 = \frac{8}{5} = 1.6$ The number of moles of oxalate ions oxidized by one mole of MnO_4^- ion in acidic medium. **Illustration 16** (B) $\frac{2}{5}$ (A) $\frac{5}{2}$ (D) $\frac{5}{3}$ (C) $\frac{3}{5}$ Equivalents of $C_2 O_4^{2-}$ = equivalents of MnO_4^{-} Solution x (mole) $\times 2 = 1 \times 5$; x = $\frac{5}{2}$ What volume of 6 M HCl and 2 M HCl should be mixed to get two litre of 3 M HCl ? **Illustration 17 Solution** Let, the volume of 6 M HCl required to obtain 2 L of 3M HCl = x L \therefore Volume of 2 M HCl required = (2 - x) L M_1V_1 M_2V_2 + M_3V_3 = 6M HCl 2M HCl 3M HCl $6 \times (x) + 2 \times (2 - x) = 3 \times 2$ $\Rightarrow 6x + 4 - 6x = 6 \Rightarrow 4x = 2$ $\therefore x = 0.5 L$ Hence, volume of 6 M HCl required = 0.5 LVolume of 2M HCl required = 1.5 L

ALLEN

Illustration 18	In a reaction vessel, 1.184 g of NaOH is required to be added for completing the reaction. How many millilitre of 0.15 M NaOH should be added for this requirement ?									
Solution	Amount of NaOH prese	ent in 1000 mL	of 0.15 M NaOH = 0.1	$.5 \times 40 = 6 \text{ g}$						
	\therefore 1 mL of this solution	n contain NaOH	$=\frac{6}{1000} \times 10^{-3} \text{ g}$							
	∴ 1.184 g of NaOH w	ill be present in	$=\frac{1}{6\times10^{-3}}\times1.184=19$	7.33 mL						
Illustration 19	What weight of Na_2CO_4 H_2SO_4 ?	What weight of $\rm Na_2CO_3$ of 85% purity would be required to prepare 45.6 mL of 0.235N $\rm H_2SO_4$?								
Solution	Meq. of $Na_2CO_3 = Meq.$ of $H_2SO_4 = 45.6 \times 0.235$									
	$\therefore \frac{W_{Na_2CO_3}}{E_{Na_2CO_3}} \times 1000 = 45$	$\therefore \frac{W_{Na_2CO_3}}{E_{Na_2CO_3}} \times 1000 = 45.6 \times 0.235 \Rightarrow \frac{W_{Na_2CO_3}}{106/2} \times 1000 = 45.6 \times 0.235$								
	$\therefore W_{Na_2CO_3} = 0.5679 \text{ g}$									
	For 85 g of pure Na ₂ O	CO_3 , weight of sa	ample = 100 g							
	∴ For 0.5679 g of pur	e Na ₂ CO ₃ , weigł	nt of sample $=\frac{100}{85} \times 0.56$	679 = 0.6681 g						
Illustration 20	The number of moles of	KMnO ₄ that will	be required to react with 2	2 mol of ferrous oxalate is						
	(A) $\frac{6}{5}$	(B) $\frac{2}{5}$	(C) $\frac{4}{5}$	(D) 1						
Solution	$Mn^{7+} + 5 e^- \rightarrow Mn^{2+}] \times 3$	3								
	$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$]								
	$C_2O_4^{2-} \rightarrow 2CO_2 + 2e^-$									
	3 moles of $KMnO_4 = 5 m$	noles of FeC_2O_4								
	∴ 2 mol of ferrous oxala	te = $\frac{6}{5}$ mole of k	KMnO ₄							
	Hence, (A) is the correct	answer.								
Illustration 21	What volume of 6 M HN	D_3 is needed to ox	tidize 8 g of Fe ²⁺ to Fe ³⁺ , H	INO_3 gets converted to NO?						
	(A) 8 mL	(B) 7.936 mL	(C) 32 mL	(D) 64 mL						
Solution	Meq. of $HNO_3 = Meq.$ of	f Fe ²⁺								
	or $6 \times 3 \times V = \frac{8}{56} \times 100$	0								
	V = 7.936 mL									
	valency factor = 3 $\downarrow^{+5} 2^+$ $(NO_3^- \rightarrow NO)$									

_____0

Hence, (B) is the correct answer.

ALL	. E M			Pre-Medical : Chem	istry
Illust	ration 22	Which of the following is / a	re correct?		
		(A) g mole weight = molecula	ar weight in g = wt. of 6.0	2×10^{23} molecules	
		(B) mole = N_A molecule = 6.	02×10^{23} molecules		
		(C) mole = g molecules			
		(D) none of the above			
Solut	tion	Ans. (A), (B) and (C)			
		BEC	GINNER'S BOX-4		
1.	In the half	reaction : $2ClO_3^- \longrightarrow Cl_2$			
	(1) 5 electro	ons are gained			
	(2) 5 electro	ons are liberated			
	(3) 10 elect	rons are gained			
	(4) 10 elect	rons are liberated			
2.	The numbe	er of electrons required to balar	nce the following equation	_	
	$NO_{3}^{-} + 4H$	$^{+} + e^{-} \longrightarrow 2H_2O + NO$ are	-		
	(1) 5	(2) 4	(3) 3	(4) 2	
3.	Which of th	ne following equations is a bala	nced one –		
	(1) 5BiO ₃ ⁻	+ $22H^+$ + Mn^{2+} \longrightarrow $5Bi^{3+}$ \cdot	+ $7H_2O + MnO_4^{-}$		
	(2) 5BiO ₃ ⁻	+ $14H^+$ + $2Mn^{2+}$ \longrightarrow $5Bi^{3+}$	$+ 7H_2O + 2MnO_4^{-}$		
	(3) 2BiO ₃ ⁻	+ $4H^+$ + Mn^{2+} \longrightarrow $2Bi^{3+}$ +	$2H_2O + MnO_4^-$		
	(4) 6BiO ₃ -	+ $12H^+$ + $3Mn^{2+} \longrightarrow 6Bi^{3+}$	$+ 6H_2O + 3MnO_4^{-}$		

ANSWER KEY

BEGINNER'S BOX-1	Que.	1	2	3	4	5	6					
DECIMALING DOX-1	Ans.	2	3	1	2	4	2					
							-					
REGINNER'S ROX-2	Que.	1	2									
BEOMAER O BOX-2	Ans.	2	3									
	Que.	1	2	3	4	5	6	7	8	9	10	
REGINNER'S BOX-3	Ans.	3	2	3	3	2	3	3	1	3	2	
BEGINNER O BOX 0	Que.	11										
	Ans.	3										
REGINNER'S BOX-A	Que.	1	2	3								
BEOINNER 5 DOX-4	Ans.	3	3	2								

276

E	XERCISE	-l (Conce	ptual Que	estions)			Buil	d Up	You	r Under	rstanding
	O	XIDATION	NUMBER		12.	Oxidation state of nitrogen is incorrectly given for:					
1. 2.	In [Ni(CO) ₄ (1) 4 The oxidati], the oxidati (2) 0 ion number o	on state of 1 (3) 2 of nitrogen i	Ni is : (4) 8 in NH ₂ OH is :		(1) [((2) N (3) (1 (4) N	Co(NH Co(NH N ₂ OH N ₂ H ₅) ₂ Mg.N.	Sound ^[3] ₃) ₅ Cl]C I SO ₄	l ₂	Oxidatio -3 -1 +2 -3	on State
	(1) 0	(2) +1	(3) –1	(4) –2	13.	Oxic	lation :	numbe	r of C i	n HNC is	:
3.	Of the follow oxidation s (1) Hydrogo (3) Carbon	wing element tate in all of en	ts, which one its compour (2) Fluori (4) Oxyge	e has the same nds ? ne en	14.	(1) + Oxic (1) 2 (3) 9	-2 lation 200 94/200	(2) — numbe)	3 r of Fe	(3) +3 in Fe _{0.94} C (2) 200/ (4) None	(4) Zero) is : 94
4.	Oxidation r (1) +1	number of flu (2) +2	uorine in OF (3) —1	F₂ is : (4) −2	15.	Oxic (C ₃ C	lation 0 ₂) is :	numbe	r of ca	rbon in ca	rbon suboxide
5 .	The oxida CH_2Cl_2 , CH_2Cl_2	tion numbe HCl ₃ and CC	or of C in l_4 are respe	CH_4 , CH_3Cl , ctively :		(1) -	$\frac{+2}{3}$	(2) -	<u>⊦4</u> 3	(3) +4	(4) $\frac{-4}{3}$
	(1) +4, +2, (3) -4, -2,	0, -2, -4 0, +2, +4	(2) +2, + (4) -2, -4	4, 0, -4, -2 1, 0, +4,. +2	16.	Oxic be :-	lation	numbe	er of su	lphur in N	$a_2S_2O_3$ would
6.	Phosphoru (1) Ortho p (3) Meta ph	s has the oxi hosphoric ac iosphoric aci	idation state cid(2) Phosp id (4) Pyropl	e of +3 in : phorus acid hosphoric acid	17.	(1) + Two	-2 oxidat	(2) + tion sta	4 ites for	(3) –2 chlorine ai	(4) 0 re found in the
7.	Oxidation s (1) –1	tate of oxyge (2) +1	en in hydrog (3) 0	en peroxide is (4) –2	18	(1) (CaOCl ₂	(2) K	(Cl	(3) KClO O N	(4) Cl ₂ O ₇
8.	The oxidat (1) +1	ion number ((2) +2	of Pt in [Pt(0 (3) +3	C₂H₄)Cl₃] [−] is : (4) +4	10.	(A) k (B) []	Mn*O Ni*(CO		(1 (2 1 (3	+4 2) +7 2) 0	
9.	Which one correct? (1) Oxidatio	e of the foll on state of S	owing state in $(NH_4)_2S_2$	ements is not O ₈ is +6		(D) N The wou	la ₂ O ₂ * correc	t code	for the	6) −1 0.N. of as	sterisked atom
	(2) Oxidatio (3) Oxidatio	on number o on state of S	f Os in OsC in H ₂ SO ₅ is	0 ₄ is +8 5 +8		(1) (2)	A 1 4	B 2 3	C 3 2	D 4 1	
	(4) Oxidatio	on number o	f O in KO ₂ i	is $-\frac{1}{2}$		(2) (3) (4)	2 4	3 1	1 2	4 3	
10.	Which of the number in (1) Os (3) Both (1)	he following combined sta) and (2)	shows high ate : (2) Ru (4) None	nest oxidation	19.	-1/3 in ca (1) A	3 oxida ase of : Ammor	nia (NH	Tate of I_{3}	nitrogen w (2) Hydra	rill be obtained zoic acid (N ₃ H)
11 .	Oxidation n is : (1) +2	number of sc (2) +1	(3) -3	lium amalgam (4) Zero	20.	(3) M Oxic (1) + (3) +	lation 2 and 1 and	numbe +3 +3	r of Fe	in Fe_3O_4 a (2) +1 ar (4) None	are : and +2
• ·											

ALLEN

ALI	LEN								Pre	-meaicai :	Chemistry
21.	21. Compound $YBa_2Cu_3O_7$ is a super conductor The O.N. of the copper in the compound wi be:[O.No. of Y=+3]						28.	In which of Fe is same (1) K_IFe(C	the followin :- N),], Fe2O2	g pair oxidati	on number of
	(1) +	-7/3	(2) zero	(3)	+2	(4) +1		(3) Fe_2O_3 , I	FeO	$(4) Fe_2(SO_4)$	$_{3}, K_{4}[Fe(CN)_{6}]$
22.	The	oxidatio	on state o	of iodine	in H ₄ I	O ₆ ⁻ is :-	29.	In the conve	ersion of Br_2	to BrO_3^- the c	oxidation state
	(1) + (3) +	-7 -5		(2) (4)	-1 +1			of bromine (1) 0 to 5	changes fro (2) 1 to 5	m :- (3) 0 to −3	3 (4) 2 to 5
23.	Amo an a	ongst th tom in -	e followii + 6 oxida	ng, iden tion stat	tify the e:-	species with	30.	The sum o is :-	f oxidation s	tates of sulph	nur in $H_2S_2O_8$
	(1) [MnO_4^-		(2)	Cr(CN	$[]_{6}^{3-}$		(1) +2	(2) +6	(3) +7	(4) +12
	(3) 1	NiF_6^{2-}		(4)	CrO_2C		31 .	In which o oxidation r	f the followi number of Cr	ng compoun r is not +6 :-	ids of Cr, the
24.	The in:-	oxidatio	n state of	+ 1 for 1	ohosph	orous is found		(1) CrO ₃ (3) Cr ₂ O ₃		(2) CrO ₂ C (4) K ₂ Cr ₂ C	Cl ₂ D ₇
	(1) F	hospho Irthoph	orous acid	(H ₃ PO ₃ acid (H) PO)		32.	Oxidation s	state of cobal	t in [Co(NH ₃)	4 (H20)Cl]SO4
	(3) F (4) F	lypo ph lypo ph	osphoric osphoroi osphoric	us acid (I acid (H	$H_{3}PO_{2}$ $H_{3}PO_{2}$			is (1) 0	(2) +4	(3) –2	(4) +3
25.	In w	vhich of	the follo	owing c	ompou	nds iron has	33 .	Oxidation (1) Zero	number of ca (2) +1	arbon in grap (3) +4	hite is :- (4) +2
	(1) F (2) k	^F eSO ₄ (N K ₄ [Fe(CN	$H_4)_2 SO_4.0$	6H ₂ O			34 .	Oxidation 1 :-	number of 'N	l' in N ₃ H (hyd	razoic acid) is
	(3) [I (4) F	Fe(CO) ₅] Fe _{0.94} O						$(1) - \frac{1}{3}$	(2) –3	(3) +3	$(4) + \frac{2}{3}$
26.	Sele num (1) H	ect the Iber of c H ₂ O	compoui xygen is	nd in w -1:- (2)	which the O_2F_2	ne oxidation	35.	Phosphore (1) Phosph	ous has the o orus acid	xidation state	e of +3 in :-
	(3) N	Na ₂ O		(4)	BaO_2			(2) Orthop	nosphoric ac	id	
27.	Mate state	ch List - e of N) a	· I (compo nd select	ound) wi the corr	th list - ect ans	II (Oxidation wer using the		(3) Meta pr (4) Pyro ph	osphoric ac osphoric aci	d d	
	code Lis	es given t - I	below the	e list:- List-II			36.	The oxidation (1) –1	on number of (2) –3	arsenic atom : (3) +3	in H ₃ AsO ₄ is :- (4) +5
	(A) F (B) F	INO_3 INO_2 NH Cl	(a (b (c	(a) - 1/3 (b) - 3			37.	In substanc X is :-	e Mg(HXO ₃)), the oxidation	on number of
	(C) I (D) I	NaN_3	(c	l) + 3				(1) 0	(2) +2	(3) +3	(4) +4
	Cod	es are:-	(e	2) + 5			38.	Oxidation (1) – 1	number of P (2) – 3	in KH ₂ PO ₃ is (3) + 5	s : (4) + 3
	(1)	A e	В В	C b	D a		39.	The oxida	tion numbe	er of iron i	n potassium
	(2)	e	b	d	a			ferricyanide	e K ₃ [Fe (CN)	₆] is :-	r - racoran
	(3) (4)	d b	e	a d	c			(1) Two		(2) Six	
	(4)	U	L	u	e			(S) Inree		(4) Four	077
							1				Z //

Pre-	Medical	: Chemistr	у		
40.	The oxid PO_2^{3-} , PO (1) -3, +1 (3) +3, -3	ation numbe D ₄ ³⁻ and PO ₃ ³ I, +3, +5 3, +5, +1	r of phospho are respectiv (2) -3, +3 (4) -3, +1	orus in PH ₄ +, vely :- , +5, +1 , +5, +3	
41.	Which of in increas (1) H ₂ SO (2) H ₂ S ₂ C (3) H ₂ S, H (4) H ₂ S, H	the following ing oxidation $_3$, H ₂ S, H ₂ SO $_3$, H ₂ SO ₃ , H ₂ SO $_3$, H ₂ SO ₃ , H ₂ SO $_4$ ₂ S ₂ O ₃ , H ₂ SO	g compounds number of S 0 ₄ , H ₂ S ₂ O ₃ 2S, H ₂ SO ₄ 0 ₄ , H ₂ S ₂ O ₃ O ₃ , H ₂ SO ₄	are arranged :-	
42 .	lodine sh compoun (1) KI	ows the high d :- (2) KI ₃	nest oxidation (3) IF ₅	4) KIO ₄	
43 .	The sum atoms pre (1) –4	of the oxidat esent in the c (2) 3	ion states of a ompound C ₆ H (3) + 5	all the carbon I ₅ CHO is : (4) – 4/7	
44 .	Oxidation is (1) +1 (3) -1	n number of s	odium in sodi (2) 0 (4) +2	ium amalgam	

APPLICATIONS OF REDOX REACTIONS

45. A reducing agent is a substance which can : (2) Donate electrons (1) Accept electrons (3) Accept protons (4) Donate protons

- **46.** The reaction $H_2S + H_2O_2 \rightarrow S + 2H_2O_2$ manifests :
 - (1) Oxidising action of H_2O_2
 - (2) Reducing nature of H_2O_2
 - (3) Acidic nature of H_2O_2
 - (4) Alkaline nature of H_2O_2
- **47**. If an element is in its lowest oxidation state, under proper conditions it can act as : (1) Reducing agent
 - (2) An oxidising agent
 - (3) Oxidising as well as reducing agent
 - (4) Neither oxidising nor reducing agent
- **48.** In a reaction of H_2O (steam) + C (glowing) \rightarrow CO + H_2 (1) $H_{2}O$ is the reducing agent (2) $H_{2}O$ is the oxidising agent
 - (3) carbon is the oxidising agent
 - (4) oxidation-reduction does not occur
- 49. The compound that can work both as an oxidising as well as reducing agent is : (1) KMnO₄ (2) $H_{2}O_{2}$ (3) $Fe_2(SO_4)_3$ (4) $K_{2}Cr_{2}O_{7}$ **50.** Reaction (A) $S^{-2} + 4 H_2O_2 \rightarrow SO_4^{-2-} + 4 H_2O_2$ (B) $Cl_2 + H_2O_2 \rightarrow 2HCl + O_2$ The true statement regarding the above reactions is : (1) H_2O_2 acts as reductant in both the reactions. (2) H_2O_2 acts as oxidant in reaction (A) and reductant in reaction (B). (3) H_2O_2 acts as an oxidant in both the reactions. (4) $H_{_{\!\mathcal{D}}}O_{_{\!\mathcal{D}}}$ acts as reductant in reaction (A) and oxidant in reaction(B) HNO_{2} acts as an oxidant with which one of the **51**. following reagent:-(1) KMnO₄ (2) H_2S (3) $K_2 Cr_2 O_7$ (4) Br_2 **52.** In which of the following reaction H_2O_2 acts as reducing agent :-(1) $2\text{FeCl}_2 + 2\text{HCl} + \text{H}_2\text{O}_2 \rightarrow 2\text{FeCl}_3 + 2\text{H}_2\text{O}$ (2) $Cl_2 + H_2O_2 \rightarrow 2HCl + O_2$ (3) $2HI + H_2O_2 \rightarrow 2H_2O + I_2$ (4) $H_2SO_3 + H_2O_2 \rightarrow H_2SO_4 + H_2O_2$ A sulphur containing species that can not be a **53**. reducing agent is :-(2) SO_3^{-2} (1) SO₂ (4) $S_2O_3^{2-}$ $(3) H_2 SO_4$ **54**. When H_2 reacts with Na, it acts as :-(1) Oxidising agent (2) Reducing agent (3) Both (4) Cannot be predicted 55. Which one is the oxidising agent in the reaction given below $2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{-2} + H_2O$ (2) $Cr_2 O_7^{-2}$ $(1) H^+$ (3) Cr++ $(4) H_{2}O$ **56**. In the course of a chemical reaction an oxidant -(1) Loses electron (2) Gains electron (3) Both loses and gain electrons (4) Electron change does not occur

Z:\NODE02\B0AI+B0\T ARGET\CHEM\ENG\WODULE-1\6.REDOX\02-EXERCISE.P65 Ε

279

AL						Fre		Chemistry
57.	In the reaction:-			66 .	What woul	ld be the e	quivalent w	eight of the
	$C + 4HNO_3 \rightarrow CO_2 + 2$	$2H_{2}O + 4NO_{2}$			reductant ir	n the reactio	n:	5
	HNO, acts as :-	Σ Σ		[FelO	CN), 1-3 + H.O	. + 20H⁻ –	→ 2[Fe(CN),]4-+	$+2H_{0}O + O_{0}$
	(1) An oxidising agent	(2) An acid		[(-	[Given · Fe	= 56 C = 1	2 N = 14 O	= 16 H = 11
	(3) A reducing agent	(4) A base			(1) 17	00,0 1	(2) 212	10,11 1]
	(b) IT reducing agent	(1) 11 0030			(3) 34		(4) 32	
58 .	A compound contains	atoms A, B a	nd C. The		(0) 04		(4) 02	
	oxidation number of A	is $+2$, of B is	+5 and of	67 .	The equival	ent weight o	of $Na_2S_2O_3$ as	reductant in
	C is -2. The possible for	ormula of the	compound		the reactior	۱,		
	is :				$Na_2S_2O_3+H$	$I_2O+Cl_2 \rightarrow N$	Na ₂ SO ₄ +2HC	Cl+S is :
	(1) ABC_{a}	(2) $B_{2}(AC_{2})_{2}$			(1) (Mol. wt	.)/1	(2) (Mol. w	л.)/2
	(3) $A_{3}(BC_{4})_{2}$	(4) $A_{3}(B_{4}C)_{2}$			(3) (Mol. wt	.)/6	(4) (Mol. w	л.)/8
-				68	Fauitzalant	weight of	EaC () in t	ha change .
59 .	Equivalent weight of N_2	in the change	$N_2 \rightarrow NH_3$	00.		weight of 1	геС ₂ О ₄ III II :-	ne change :
	is				$FeC_2O_4 \rightarrow 1$	$Fe^{3+} + CO_2$	1S :	
	28	28	28		(1) M/3		(Z) M/0	
	(1) $\frac{20}{6}$ (2) 28	(3) $\frac{28}{2}$	(4) $\frac{23}{3}$		(3) M/2		(4) M/1	
				69 .	What will	be n-factor	for Ba(MnC	$(\mathbf{D}_{4})_{2}$ in acidic
60 .	Equivalent weight of NH	a in the change	$e N_2 \rightarrow NH_3$		medium? (V	Vhere it beh	aves as oxida	int)
	is :	0	2 0		(1) 5	(2) 10 ((3) 6 (4) 3	3
	17	10	17	70	T1 1	(1	(1	• 1• 1 1
	(1) $\frac{17}{6}$ (2) 17	(3) $\frac{17}{2}$	(4) $\frac{17}{2}$	70.	The numbe	er of mole o	t oxalate ion:	s oxidised by
	0	Z	3		one mole o	$f MnO_4^{-1} s:$	(0) 0 (5	
(1			OI 1		(1) 1/5		(2) 2/5	
61.	In the reaction, $2S_2U_3^2$	$+ I_2 \rightarrow S_4 O_6^2$	+ 21°, the		(3) 5/2		(4) 5	
	eq. wt. of $Na_2S_2O_3$ is eq		/0	71.	Oxidising p	roduct of sul	ostance Na ₂ A	sO ₂ would be
	(1) Mol. wt.	(2) Mol. wt.,	12		(1) $As_0 O_2^{3-}$		(2) AsO ₂ -3	3
	(3) 2 x Mol. wt.	(4) Mol. wt.,	/6		(3) AsO_{2}^{-4}		(4) AsO ₄ ⁻³	
62 .	In the reaction, VO + F	$e_2O_3 \rightarrow FeO +$	$-V_2O_5$, the		_		· · · · · ·	
	eq. wt. of V_2O_5 is equal	to its :	2 0	72.	In a reactio	n 4 mole of	electrons ar	e transferred
	(1) Mol. wt.	(2) Mol. wt.,	/8		to one mole	e of HNO ₃ v	vhen it acts a	s an oxidant.
	(3) Mol .wt./6	(4) Mol. wt.,	/2		The possibl	e reduction	product is :	
		()			(1) (1/2) mo	ole N ₂	(2) (1/2) n	nole N ₂ O
63 .	The eq. wt. of iodine i	in, $I_2 + 2S_2O_3$	$_{3}^{2-} \rightarrow 2I^{-} +$		(3) 1 mole (of NO ₂	(4) 1 mole	NH ₃
	$S_4O_6^{2-}$ is :			73.	The equiva	lent weight	of MnSO	is half of its
	(1) Its Mol. wt.	(2) Mol. wt.,	/2		molecularu	ight when	it is converte	d to ·-
	(3) Mol. wt./4	(4) None of	these		(1) $Mn O$		(2) MnO	u 10 .
64	Molecular weight of K	BrO is M I	Nhat is its		(2) MnO^{-}		(4) MnO_{2}^{-2}	2
04.	Molecular weight of M	DIO_3 is M. V			(0) 14110 4		(1) 1/11/04	
	$P_{\rm H}O = \sum_{\rm r} P_{\rm H} = (a a a b b c)$			74 .	In the follow	ing change, 3	$3Fe + 4H_2O - 3$	\rightarrow Fe ₃ O ₄ + 4H ₂
	$\text{DrU}_3 \rightarrow \text{Dr}$ (actual)	$(2) \mathbf{M} (4)$			If the atomic	c weight of ire	on is 56, then	its equivalent
	(1) M	(2) M/4			weight will I	be :-		
	(3) M/6	(4) 6M			(1) 42	(2) 21	(3) 63	(4) 84
65 .	In the reaction : A^{-n_2} +	$xe^{-} \rightarrow A^{-n_1},$	here x will	75	$Cr \cap -2 \perp F$	$H^+ \rightarrow C_{\bullet}$	+3⊥І⊥НС)
	be			10.	The equivale	ent weight of	the reductor	t in the above
	$(1) n_1 + n_2$	(2) n ₂ – n ₁			aquation is	$\cdot (\Delta t ut \alpha$	f $C_r = 59$ I = 1	27)
	(3) $n_1 - n_2$	(4) n ₁ . n ₂			(1) 00	(0) 107	(2) < 2 = 1	(1) 10 4
	L L	1 <u>1</u> <u>2</u>			(1) 20	(2) 127	(3) 63.5	(4) 10.4

- How many moles of $KMnO_4$ are reduced by 1 mole **76**. of ferrous oxalate in acidic medium:-
 - (2) $\frac{5}{3}$ (3) $\frac{1}{3}$ (4) $\frac{3}{5}$ (1) $\frac{1}{5}$

The number of moles of KMnO₄ reduced by one 77. mole of KI in alkaline medium is :-(1) One (2) Two (3) Five (4) One fifth

REDOX REACTIONS

- **78**. Which one of the following is a redox reaction ? (1) $H_2 + Br_2 \rightarrow 2HBr$ (2) $2NaCl + H_2SO_4 \rightarrow Na_2SO_4 + 2HCl$ (3) HCl + AgNO₃ \rightarrow AgCl + HNO₃ (4) NaOH + HCl \rightarrow NaCl + H₂O
- **79.** Which of the following is not a redox change ? (1) $2H_2S + SO_2 \rightarrow 2H_2O + 3S$ (2) $2BaO + O_2 \rightarrow 2BaO_2$ (3) $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$ (4) $2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2$
- **80**. In the reaction $4Fe + 3O_2 \rightarrow 4Fe^{3+} + 6O^{2-}$ which of the following statements is incorrect? (1) It is a redox reaction (2) Metallic iron is a reducing agent (3) Fe³⁺ is an oxidising agent
 - (4) Metallic iron is reduced to Fe^{3+}

In the reaction, $Cl_2 + OH^- \rightarrow Cl^- + ClO_4^- + H_2O$, **81**. chlorine is : (1) Oxidised (2) Reduced

- (3) Oxidised as well as reduced
- (4) Neither oxidised nor reduced
- **82.** Which is a redox reaction : (1) $2CuI_2 \rightarrow CuI + I_2$ (2) NaCl + AgNO₃ \rightarrow AgCl + NaNO₃ (3) $NH_4Cl + NaOH \rightarrow NH_3 + NaCl + H_2O$ (4) $Cr_2(SO_4)_3 + 6KOH \rightarrow 2Cr(OH)_3 + 3K_2SO_4$
- Which of the following example does not represent **83**. disproportionation -(1) $MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 + 2H_2O$ (2) $2H_2O_2 \rightarrow 2H_2O + O_2$ (3) $4\text{KClO}_3 \rightarrow 3\text{KClO}_4 + \text{KCl}$
- - (4) $3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$

- 84. The decomposition of $KClO_3$ to KCl and O_2 on heating is an example of : (1) Intermolecular redox change
 - (2) Intramolecular redox change
 - (3) Disproportionation or auto redox change
 - (4) Comproportionation

85. Which of the following change represents a disproportionation reaction (s) : (1) $Cl_2 + 2OH^- \rightarrow ClO^- + Cl^- + H_2O$ (2) $Cu_2O + 2H^+ \rightarrow Cu + Cu^{2+} + H_2O$

3) 2HCuCl₂
$$\xrightarrow{\text{dilution with}}$$
 Cu + Cu²⁺ + 4Cl⁺ + 2H⁺

(4) All of the above

- **86**. One mole of iron [55.8 gm], when oxidised to +2 oxidation state gives up : (1) $1N_A$ electron (2) $2N_A$ electron (4) 0.5 mole of electron (3) $3N_A$ electron
- **87**. How many electrons should $X_{2}H_{4}$ liberate so that in the new compound X shows oxidation number of $-\frac{1}{2}$ (E.N. X > H) (1) 10(4) 2 (2) 4 (3) 3
- 88. Which one of the following is not a redox reaction :-(1) $CaCO_3 \rightarrow CaO + CO_2$ $(2) 2H_2 + O_2 \rightarrow 2H_2O$

(3) Na + H₂O
$$\rightarrow$$
 NaOH + $\frac{1}{2}$ H₂

(4)
$$\operatorname{MnCl}_3 \to \operatorname{MnCl}_2 + \frac{1}{2} \operatorname{Cl}_2$$

- **89**. In the reaction -
 - $MnO_4^- + SO_3^{2-} + H^+ \rightarrow SO_4^{-2} + Mn^{+2} + H_2O_4^{-2}$
 - (1) MnO_{4}^{-} and H^{+} both are reduced
 - (2) MnO_4^- is reduced and H^+ is oxidised
 - (3) MnO_4^- is reduced and SO_3^{2-} is oxidised
 - (4) MnO_4^- is oxidised and SO_3^{2-} is reduced

90. $I_2 + KI \rightarrow KI_3$

In the above reaction:-

- (1) Only oxidation taken place
- (2) Only reduction takes place
- (3) Both the above
- (4) Neither oxidation nor reduction

AL	LEN				rie-	mearce	ar . Ch	ennisii y
91.	Which of the following reaction represents the oxi- dising behaviour of H_2SO_4 :- (1) $2PCI_5 + H_2SO_4 \rightarrow 2POCI_3 + 2HCI + SO_2CI_2$ (2) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$ (3) $NaCI + H_2SO_4 \rightarrow NaHSO_4 + HCI$ (4) $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$	98 .	Choose balance $x \operatorname{Cr}_2 \operatorname{O}_7^{2-}$ (1) (2) (3)	e the set s the follo + yH ⁺ 2 1 2	t of co owing e + z e y 14 14 7 7	efficient equation ⁻ → a Cr z 6 6 6	s that : ⁺³ + + bF 2 2 2 2	correctly H ₂ O b 7 7 7 7
92.	Select the example of disproportionation reaction (1) $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$ (2) $NH_4NO_3 \rightarrow N_2O + 2H_2O$ (3) $4H_3PO_3 \rightarrow PH_3 + 3H_3PO_4$ (4) $AgCl + 2NH_3 \rightarrow Ag(NH_3)_2Cl$	99.	(4) In the re What is (1) 5 (3) 6	2 eaction:M the value	7 $nO_4^- +$ e of n :	6 xH+ + ne (2) 8 (4) 3	$1 \rightarrow Mn^2$	/ + + yH ₂ O
93 .	Which of the following reaction involves oxidation & reduction :- (1) NaBr + HCl \rightarrow NaCl + HBr (2) HBr + AgNO ₃ \rightarrow AgBr + HNO ₃ (3) 2NaOH + H ₂ SO ₄ \rightarrow Na ₂ SO ₄ + 2H ₂ O (4) H ₂ + Br ₂ \rightarrow 2HBr	100.	 The nur followin NO₃⁻ + (1) 5 (3) 3 The model of the equivale 	nber of e g equatio 4H ⁺ + e plar mass ent mass	electron on – \rightarrow s of in the s	2H ₂ O + (2) 4 (4) 2 CuSO ₄ .5 reaction	NO is NO is H ₂ O is (a) and (ance the 249. Its (b) would
94.	The reaction $2K_2MnO_4 + Cl_2 \rightarrow 2KMnO_4 + 2KCl$ is an example of(1) Redox(2) Reduction only(3) Neutralization(4) Disproportionation		be (a) Read (b) Elec (1) (a) 24 (3) (a) 24	ction Cut trolysis o 49 (b) 24 49 (b) 12	SO ₄ + of CuSC 49 24.5	$\begin{array}{l} \text{KI} \rightarrow p \\ \text{O}_4 \text{ solutio} \\ (2) \text{ (a)} \\ (4) \text{ (a)} \end{array}$	product n. 124.5 (k 124.5 (k	o) 124.5 o) 249
95.	Which of the following reaction involves neither oxidation nor reduction :- (1) $\operatorname{CrO}_4^{2-} \rightarrow \operatorname{Cr}_2O_7^{2-}$ (2) $\operatorname{Cr} \rightarrow \operatorname{CrCl}_3$ (3) $\operatorname{Na} \rightarrow \operatorname{Na}^+$ (4) $2\operatorname{S}_2O_3^{2-} \rightarrow \operatorname{S}_4O_6^{2-}$	102.	2KMnO In the al be involv (1) Two (3) Ten	9 ₄ +5H ₂ S+ bove read ved in the	+6H+→ ction, h 2 oxidati	2Mn ²⁺ +2 ow many on of 1 n (2) Fiv (4) On	2K+ + 5S y electro nole of re e le	+ 8H ₂ O. ns would eductant?
96.	$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ $Zn \text{ undergoes} -$ (1) Reduction (2) Oxidation (3) Both oxidation and reduction (4) Neither oxidation nor reduction	103. 104.	. The valu H ₂ O is (1) 5 (3) 3 . What is	ie of <i>n</i> in the value	: MnO	- 4 +8 H++ (2) 4 (4) 2 n the foll	$ne^- \rightarrow 1$ owing e	Mn ²⁺ + 4 quation :
-	RALANCING OF REDOV REACTIONS		Cr(OH)	- 4 + OH-	\rightarrow Ci	$O_4^{2-} + H$	$I_2O + ne$	₽- ?
97.	Balance the following given half reaction for the		(1) 3 (3) 5			(2) 6 (4) 2		
	$\operatorname{CrO}_4^{2-} \to \operatorname{CrO}_2^{-} + \operatorname{OH}^{-}$ is :	105.	. For the	redox re	action			
	(1) $CrO_4^{-2} + 2H_2O + 3e^- \rightarrow CrO_2^- + 4OH^-$		Zn + N	$10^{-}_{3} \rightarrow$	Zn ²⁺ +	- NH ₄ + i	n basic	medium,
	(2) $2CrO_4^{-2} + 8H_2O \rightarrow CrO_2^{-} + 4H_2O + 8OH^{-}$ (3) $CrO_4^{-2} + H_2O \rightarrow CrO_4^{-} + H_2O + OH^{-}$		coefficie equation (1) 4 1	ents of Zr n respect 7	n, NO_3^- tively ar	and OH e : (2) 7	I⁻ in the 4 1	balanced
	(4) $3\text{CrO}_4^{-2} + 4\text{H}_2\text{O} + 6\ e^- \rightarrow 2\text{CrO}_2^{-1} + 8\text{OH}^-$		(3) 4, 1,	, 10		(4) 1,	4, 10	
								281

	-	
AL		

106.	In the balanced equation		108.	In the following reaction	the value of 'X' is
	$[Zn + H^{\scriptscriptstyle +} + NO_3^{\scriptscriptstyle -} \rightarrow NH_4^{\scriptscriptstyle +}$	+ Zn^{+2} + H_2O] coefficient		$H_2O + SO_3^{2-} \rightarrow SO_4^{2-} +$	$2H^+ + X$
	of NH4 ⁺ is:-			(1) 4e ⁻	(2) 3e [_]
	(1) 4	(2) 3		(3) 2e⁻	(4) 1 <i>e</i> -
	(3) 2	(4) 1	109.	The number of electrons	required to balance the
107.	. In the balanced equation			following equation are:	
	In the balanced equation $MnO_4^- + H^+ + C_2O_4^{2-} \rightarrow Mn^{2+} + CO_2 + H_2O, \text{ the}$			$\mathrm{NO}_{3}^{-} + 4\mathrm{H}^{+} \rightarrow 2\mathrm{H}_{2}\mathrm{O} + \mathrm{I}_{2}$	NO
	moles of CO_2 formed are	2 :-		(1) 2 on right side(3) 3 on right side	(2) 3 on left side (4) 5 on left side
	(1) 2	(2) 4			
	(3) 5	(4) 10			

EX	ERC	ISE-I	(Conc	eptua	al Que	stions	5)						ANS	WER	KEY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	3	2	3	3	2	1	2	3	3	4	3	1	2	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	1	3	2	1	1	1	4	3	3	4	1	1	1	4
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	3	4	1	1	1	4	3	4	3	4	4	4	1	2	2
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	1	1	2	2	2	2	2	3	1	4	2	1	3	1	4
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	1	3	2	3	3	1	4	1	2	3	4	2	2	2	2
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	4	2	1	3	4	3	1	1	2	4	2	3	1	3	3
Que.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
Ans.	4	3	4	1	1	2	1	2	1	3	3	1	1	1	3
Que.	106	107	108	109											
Ans.	4	4	3	2											
282					•										

(2) Mn^{2+} and O_2

(2) $K_2 MnO_4$

(2) $Fe(NO_2)_2$

(4) $FeSO_3$

(2) Mn+7

 $(4) Mn_{o}O_{o}$

(2) $H_{3}PO_{4}$

(4) $H_{3}PO_{3}$

(4) MnO

(4) Mn^{4+} and MnO_2

ALLEN

NEET(UG) 2018

16.	For	r the red	ox reaction	
	Mr	$10^{-}_{4} + C_{2}$	O ₄ ^{2–} + H ⁺	\longrightarrow Mn ²⁺ + CO ₂ + H ₂ O
	the	correct	coefficients of	of the reactants for the
	bal	anced eq	uation are	
		MnO_4^-	$C_2O_4^{2-}$	H^+
	(1)	16	5	2
	(2)	2	5	16
	(3)	2	16	5
	(4)	5	16	2

AIIMS 2018

- 2 g $\ensuremath{\mathsf{FeSO}_4}$ is completely oxidised by acidic 17. $0.05\,\mathrm{M\,KMnO_4}$ solution then what will be volume of $\rm KMnO_4$ required (Fe = 56, S = 32, O = 16)(1) 0.10 L (2) 0.05 L
 - (3) 0.30 L (4) 0.40 L

EXERCISE-II (Previous Year Questions)							ions)						ANS	WER	KEY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	2	4	2	4	1	2	2	3	2	1	3	1	1	2
Que.	16	17													
Ans.	2	2													
284															

					Pre-M	edical	: Che	mistry
EXERCISE-III (Analytical Questions)			С	neck`	Your	Unde	rstar	ding
1 . In the reaction $CH_3OH \rightarrow HCOOH$, the num of electrons that must be added to the right is (1) 4 (2) 3 (3) 2 (4) 1	ıber :-	8.	Consider t $xMnO_4^- + y$	ne follov 2C ₂ O ₄ ²⁻ +	wing rea - zH ⁺ \rightarrow	ction:		
 Which statement is wrong :- (1) Oxidation number of oxygen is +1 in perox (2) Oxidation number of oxygen is +2 in oxy difluoride (3) Oxidation number of oxygen is -1/2 superoxides (4) Oxidation number of oxygen is -2 in most or compound 	ides gen in f its	9.	$xMn^{2+} + 2$ The value respectivel (1) 5,2 and (3) 2, 5 and (3) 2, 5 and (a) $H_2O_2 +$ (b) $H_2O_2 -$ (c) $H_2O_2 +$ (d) $H_2O_2 +$	$yCO_2 +$ s of x, y:- d 16 d 16 f the foll gent ? $2H^+ +$ $2e^- \rightarrow$ $2e^- \rightarrow$ $2OH^$	$\frac{z}{2} H_2 G$ y and z (lowing r $2e^- \rightarrow$ $O_2 + 2H$ $2OH^-$ $- 2e^- \rightarrow$	2 in the 2) 2,5 a 4) 5,2 a reaction $2H_2O$ H^+ $O_2 + 2$	e react and 8 and 8 H ₂ O ₂ a 2H ₂ O	ion are acts as a
3 . In the reaction $8Al + 3Fe_3O_4 \rightarrow 4Al_2O_3 + 9Fe$, number of electrons transferred from reductant oxidant is :- (1) 8 (2) 4 (3) 16 (4) 24	the it to	10.	 (1) (a), (c) What will K₃[Fe(CN)_e (1) +4 	(2) (b) be the : (2) +3	, (d) (oxidati 3 (3) (a), (1 .on nur 3) +2	b) (4) nber o (4)	f Fe in Zero
 In which of the following reaction hydrogen is ac as an oxidising agent :- (1) With iodine to give hydrogen iodide (2) With lithium to give lithium hydride (3) With nitrogen to give ammonia 	ting	11.	In the follo $2FeCl_3 + 1$ (1) $FeCl_3$ is (2) $FeCl_3$ is (3) $FeCl_3$ is (4) H_2S is	wing real $H_2S \longrightarrow$ s oxidan $z H_2S$ and s oxidise oxidant	action → 2FeCl t re oxidis d & H ₂	₂ + 2H sed S is red	Cl + S luced	
(4) With sulphur to give hydrogen sulphide 5. Oxidation number of Xe in XeF_5^- is : (1) +1 (2) +2 (3) +3 (4) +4		12.	In oxidatic $MnO_4^- + 0$ balance eq are :- (1) 2, 5, 1 (3) 2, 16	n reduct $C_2O_4^{-2} + uation co6$	tion read $H^+ \rightarrow M$ pefficient (ction In ⁺² + (t for Mn 2) 16, 4 4) 5 2	$\begin{array}{c} \text{CO}_2 + \text{H} \\ \text{O}_4^{-}, \text{C}_2^{-} \\ \text{5, 2} \\ 16 \end{array}$	H ₂ O the O ₄ ⁻² , H ⁺
 6. Which is the best description of the behaviour bromine in the reaction given below :- H₂O + Br₂ → HOBr + HBr (1) Both oxidized and reduced (2) Oxidized only (3) Reduced only 	r of	13. 14.	Which of reductant:- (1) H_2S (3) H_2O_2 Which of	the follo	owing a ((wing re	ct both 2) SO ₃ 4) F_2 action i	as oxi s spon	dant & taneous
(4) Proton acceptor only (4) Proton acceptor only 7. The correct order of acidic strength is – (1) $HClO_4 < HClO_3 < HClO_2 < HClO$ (2) $HClO_2 < HClO_3 < HClO_4 < HClO$ (3) $HClO_4 < HClO < HClO_2 < HClO_3$ (4) $HClO < HClO_4 < HClO_4 < HClO_4$		15.	$\begin{array}{c} \text{(1)} \text{ Mn}^{+2} + 3 \\ \text{(2)} \text{ MnO}_{4}^{} \\ \text{(3)} \text{ MnO}_{4}^{} \\ \text{(4)} \text{ Mn}^{+2} + 5 \\ \text{Oxidation} \\ \text{is:-} \\ \text{(1)} + 1 \end{array}$	Frequencino $5Fe^{+3} + 4^{-3} + 5Fe^{+3} + 5Fe^{+2} + 5Fe^{+2} + 7Fe^{+2} + 7Fe^{+2} + 7Fe^{+2} + 7Fe^{+2} + 7Fe^{+2} + 7Fe^{+2} + 7Fe^{-1}$		MnO ₄ ⁻ Mn ⁺² + Mn ⁺² + MnO ₄ ⁻ rine in 2) +3	+ 5Fe ⁺ 5Fe ⁺² 5Fe ⁺³ + 5Fe ⁺ perchlc	$^{2} + 8H^{+}$ + $4H_{2}O$ + $4H_{2}O$ $^{3} + 8H^{+}$ pric acid
(-,			(3) +5		(4) +7		
EXERCISE-III (Analytical Questions)						ANS	NER	KEY
Que. 1 2 3 4 5 6	7	8	9 10	11	12	13	14	15

Ans.

•------•

E	XERCISE	-IV (Ass	ertion & R	eason)		0 D		Targ	et AIIMS
			Directio	ons for Asse	rtion	& Keaso	n question	S	
Tł	nese questic these	ons consist Questions	of two state you are req	ements each, p uired to choos	orinted se any	as Assert one of the	ion and Rea e following f	son. While a our response	answering es.
(A)	If both As	sertion & F	Reason are T	rue & the Reas	son is a	correct ex	xplanation of	the Assertic	on.
(B)	If both As	sertion & F	Reason are T	rue but Reasor	n is not	acorrecte	explanation (of the Assert	ion.
(C)	If Assertic	on is True b	ut the Reaso	on is False.					
(D)	If both As	sertion & F	Reason are fa	alse.					
1.	Assertion Reason :- (1) A	:- O.N. of Carbon alw (2) B	carbon in H vays shows ar (3) C	-C≡N is +4. n O.N. of +4. (4) D	8.	Assertio it's comp Reason	n :- Oxidatio ounds is +4. : - An element	on number of t has a fixed o	Carbon in all xidation state.
2.	Assertion	:- In NH₄N	10 ₃ , the oxid	ation number		(1) A	(2) B	(3) C	(4) D
	of the two Reason : ammonium nitrate ion. (1) A	N-atoms is – One N ion while t (2) B	not equal. atom is pro- the other is p (3) C	esent in the present in the (4) D	9.	Assertio +6. Reason : in peroxi	n :- Oxidatio - In CrO ₅ , fou de linkage.	on number of 1r oxygen ator	Cr in CrO ₅ is ns are involved
3.	Assertion in H ₂ O wh Reason : hydrides, H number of (1) A	:- Oxidatio ile -1 in Ca CaH ₂ is a m nydrogen is -1. (2) B	n state of Hy aH ₂ . netal hydride s assigned t (3) C	ydrogen is +1 and for metal he oxidation (4) D	10.	 (1) A Assertion is zero. Reason (1) A 	(2) B n :- Oxidatio :- Cr is a m (2) B	(3) C n number of o netal. (3) C	(4) D Cr in [Cr(CO) ₆] (4) D
4.	Assertion : is zero. Reason :- compound. (1) A	:- Oxidation · CH ₂ O (for (2) B	number of ca rmaldehyde) (3) C	arbon in CH ₂ O is a covalent (4) D	11.	Assertic Na $_2S_4O_6$ Reason : O-atoms. (1) A	on :- The ox is 2.5 - Two S-atom (2) B	tidation no. Is are not dire (3) C	of sulphur in ctly linked with (4) D
5.	Assertion is zero. Reason :- carbonyl. (1) A	:- Oxidation • Nickel is 1 (2) B	n number of 1 bonded to n (3) C	Ni in [Ni(CO) ₄] eutral ligand, (4) D	12.	Assertio Fluorine Reason :	n :- In the r is oxidant. Fluorine car	reaction, $\frac{1}{2}$ O	$_2 + F_2 \rightarrow OF_2$ sitive oxidation
6.	Assertion : number of Reason :- peroxide lin (1) A	In HClO ₄ +4. - HClO ₄ (_I nkages. (2) B	, Chlorine has perchloric) a (3) C	s the oxidation acid has two (4) D	13.	(1) A Assertio In the abo while S ⁻²	(2) B n :- H ₂ S + ove reaction, has been re	(3) C $Cl_2 \longrightarrow 2H$ Cl has been of duced to S	(4) D ICl + S oxidised to Cl⁻
7.	Assertion is +4. Reason : in different (1) A	:- Oxidatic Sulphur is i compound: (2) B	on number o in different o s. (3) C	f S in HSO ₃ - ixidation state (4) D		Reason oxidation element oxidised. (1) A	:- In a read number dec whose oxida (2) B	ction the electroases is red ation number (3) C	ement whose luced and the r increases is (4) D

ALLEN

Assertio	n :- Nitrous	acid (HNO_)	may act as an	20.	A
oxidising Reason remains s	agent as we :- The oxid ame in all t	ell as a reduc ation numbe he compound	ing agent. er of Nitrogen ds.		R 9 (1
(1) A	(2) B	(3) C	(4) D	21.	A
Assertion accepts e Reason : is known (1) A	n :- A reducir lectron. - A substand as reducing (2) B	ng agent is a su ce which help agent. (3) C	ubstance which os in oxidation (4) D	0.0	T R o re (1
Assertion number of reductant Reason reductant (1) A	n :- In a rec of the oxidat increases. :- Oxidant loses electro (2) B	dox reaction, nt decreases t gains elec on(s). (3) C	the oxidation while that of tron(s) while (4) D	22.	A n a R 5 3 (1
Assertion Reason : number b (1) A	n :- H ₂ SO ₄ ca - Sulphur ca eyond +6. (2) B	an not act as r in not increas (3) C	educing agent. e its oxidation (4) D	23.	A ay 2
Assertion form NaC Reason (1) A	n :- When (Cl & NaClO ₃ :- Cl ₂ is a ((2) B	Cl ₂ react with boxidizing agen (3) C	nt. (4) D	24.	– (1 A re
Assertion Zn(s) + Cu $can be sp Zn(s) \rightarrowCu^{+2}(aq) -Reason :two reactionsand the co(1) A$	n :- $\mu^{+2}(aq) \rightarrow Zn$ plit into follo $Zn^{+2} + 2e^{-}$ + $2e^{-} \rightarrow C$ - Every redations, one represent other represent (2) B	u ⁺² (aq) + Cu(s wing half rea (Oxidation h u (Reduction h ox reaction ca oresenting los enting gain o (3) C	s) actions alf reaction) alf reaction) an be split into ss of electrons f electrons. (4) D	25.	2 R (1 A o R ir (1
	Assertion oxidising Reason remains s (1) A Assertion accepts e Reason s is known (1) A Assertion reductant (1) A Assertion Reason s number b (1) A Assertion Reason s (1) A Assertion form NaC Reason s (1) A Cassertion form NaC Reason s (1) A Assertion form NaC Reason s (1) A Assertion Cut ² (aq) - Reason s (1) A	Assertion :- Nitrous oxidising agent as we Reason :- The oxid remains same in all the (1) A (2) B Assertion :- A reducing accepts electron. Reason :- A substance is known as reducing (1) A (2) B Assertion :- In a red number of the oxidation reductant increases. Reason :- Oxidation reductant loses electron (1) A (2) B Assertion :- H ₂ SO ₄ ca Reason :- Sulphur ca number beyond +6. (1) A (2) B Assertion :- H ₂ SO ₄ ca Reason :- Sulphur ca number beyond +6. (1) A (2) B Assertion :- When C form NaCl & NaClO ₃ Reason :- Cl ₂ is a co (1) A (2) B Assertion :- Zn(s) +Cu ⁺² (aq) \rightarrow Zn can be split into follo Zn(s) \rightarrow Zn ⁺² + 2e ⁻ Cu ⁺² (aq) + 2e ⁻ \rightarrow CC Reason :- Every redo two reactions, one rep and the other represe (1) A (2) B	Assertion :- Nitrous acid (HNO ₂) oxidising agent as well as a reduce Reason :- The oxidation number remains same in all the compound (1) A (2) B (3) C Assertion :- A reducing agent is a su accepts electron. Reason :- A substance which help is known as reducing agent. (1) A (2) B (3) C Assertion :- In a redox reaction, number of the oxidant decreases reductant increases. Reason :- Oxidant gains elect reductant loses electron(s). (1) A (2) B (3) C Assertion :- H ₂ SO ₄ can not act as r Reason :- Sulphur can not increase number beyond +6. (1) A (2) B (3) C Assertion :- When Cl ₂ react with form NaCl & NaClO ₃ Reason :- Cl ₂ is a oxidizing agent (1) A (2) B (3) C Assertion :- Zn(s) +Cu ⁺² (aq) \rightarrow Zn ⁺² (aq) + Cu(s) can be split into following half reat Zn(s) \rightarrow Zn ⁺² + 2e ⁻ (Oxidation h Cu ⁺² (aq) + 2e ⁻ \rightarrow Cu (Reduction h Reason :- Every redox reaction cat two reactions, one representing loss and the other representing gain o (1) A (2) B (3) C	Assertion :- Nitrous acid (HNO ₂) may act as an oxidising agent as well as a reducing agent. Reason :- The oxidation number of Nitrogen remains same in all the compounds. (1) A (2) B (3) C (4) D Assertion :- A reducing agent is a substance which accepts electron. Reason :- A substance which helps in oxidation is known as reducing agent. (1) A (2) B (3) C (4) D Assertion :- A substance which helps in oxidation number of the oxidant decreases while that of reductant increases. Reason :- Oxidant gains electron(s) while reductant loses electron(s). (1) A (2) B (3) C (4) D Assertion :- In a redox reaction, the oxidation number of the oxidant decreases while that of reductant increases. Reason :- Oxidant gains electron(s) while reductant loses electron(s). (1) A (2) B (3) C (4) D Assertion :- H ₂ SO ₄ can not act as reducing agent. Reason :- Sulphur can not increase its oxidation number beyond +6. (1) A (2) B (3) C (4) D Assertion :- When Cl ₂ react with conc. NaOH form NaCl & NaClO ₃ Reason :- Cl ₂ is a oxidizing agent. (1) A (2) B (3) C (4) D Assertion :- When Cl ₂ react with conc. NaOH form NaCl & NaClO ₃ Reason :- Cl ₂ is a oxidizing agent. (1) A (2) B (3) C (4) D Assertion :- When Cl ₂ react with conc. NaOH form NaCl & NaClO ₃ Reason :- Cl ₂ is a oxidizing agent. (1) A (2) B (3) C (4) D Assertion :- Zn(s) +Cu ⁺² (aq) \rightarrow Zn ⁺² (aq) + Cu(s) can be split into following half reactions Zn(s) \rightarrow Zn ⁺² + 2e ⁻ (Oxidation half reaction) Cu ⁺² (aq) + 2e ⁻ \rightarrow Cu (Reduction half reaction) Reason :- Every redox reaction can be split into two reactions, one representing loss of electrons, and the other representing gain of electrons. (1) A (2) B (3) C (4) D	Assertion :- Nitrous acid (HNO ₂) may act as an oxidising agent as well as a reducing agent. Reason :- The oxidation number of Nitrogen remains same in all the compounds. (1) A (2) B (3) C (4) D Assertion :- A reducing agent is a substance which accepts electron. Reason :- A substance which helps in oxidation is known as reducing agent. (1) A (2) B (3) C (4) D Assertion :- In a redox reaction, the oxidation number of the oxidant decreases while that of reductant increases. Reason :- Oxidant gains electron(s) while reductant loses electron(s). (1) A (2) B (3) C (4) D Assertion :- In a redox reaction, the oxidation number of the oxidant gains electron(s) while reductant loses electron(s). (1) A (2) B (3) C (4) D Assertion :- H ₂ SO ₄ can not act as reducing agent. Reason :- Oxidant gains electron (s) while reductant loses electron(s). (1) A (2) B (3) C (4) D Assertion :- H ₂ SO ₄ can not act as reducing agent. (1) A (2) B (3) C (4) D Assertion :- When Cl ₂ react with conc. NaOH form NaCl & NaClO ₃ Reason :- Cl ₂ is a oxidizing agent. (1) A (2) B (3) C (4) D Assertion :- Zn(s) + Cu ⁺² (aq) → Zn ⁺² (aq) + Cu(s) can be split into following half reactions Zn(s) → Zn ⁺² + 2e ⁻ (Oxidation half reaction) Cu ⁺² (aq) + 2e ⁻ → Cu (Reduction half reaction) Cu ⁺² (aq) + 2e ⁻ → Cu (Reduction half reaction) Cu ⁺² (aq) + 2e ⁻ → Cu (Reduction half reaction) (1) A (2) B (3) C (4) D

20.	Assertion Reason :- gaining of e (1) A	:- MnO₄ ⁻ is a Decrease in electron mean (2) B	always reduce n oxidation ns oxidation. (3) C	ed to Mn ⁺² . number or (4) D
21.	Assertion This is a di Reason :- oxidise or re reaction. (1) A	:- KClO ₃ — sporportiona The reaction educe is know (2) B	\rightarrow KClO ₄ + tion type rea in which one on as disprop (3) C	KCl ction. e substance ortionation (4) D
22.	Assertion : medium is alkaline me Reason :- I 5 mole elect 3 mole elect (1) A	-Equivalent v M/5 (M=mo dium, it is ec in acidic mediu trons while in ctrons. (2) B	veight of KMr lecular weigh jual to M/3. im, 1 mol of N alkaline med (3) C	MO_4 in acidic of the in MnO_4^- gains ium it gains (4) D
23.	Assertion a agent in the $2MnO_4^-(aq. \rightarrow 2MnO_4^-)$ $\rightarrow 2MnO_4^-$ Reason :- 0 -1 to +5. (1) A	:- Bromide io e reaction.) + Br ⁻ (aq.) D₂(aq.) + BrC Oxidation nur (2) B	n is serving as + H ₂ O) ⁻ ₃ (aq.) + 2O nber of Br inc (3) C	s a reducing H ⁻ (aq.) reases from (4) D
24.	Assertion reaction N_2 28/6.	:- Equivalen $\rightarrow NH_3$ is 1	t weight of 1 7/3 while th	$\rm NH_3$ in the nat of $\rm N_2$ is

Reason :- Equivalent weight

Molecular weight	
number of e ⁻ lost or gained/mole	

(1) A	(2) B	(3) C	(4) D

Assertion :- In acidic medium, equivalent weight of $K_2Cr_2O_7$ is equal to 294/6. **Reason :-** In acidic medium, $Cr_2O_7^{-2}$ is reduced in Cr^{+3} . (3) C (1) A (2) B (4) D

EXERCISE-IV (Assertion & Reason)												ANS	WER	KEY	
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	1	1	2	1	4	2	4	1	2	1	2	4	3	4
Que.	16	17	18	19	20	21	22	23	24	25					
Ans.	1	1	2	1	4	3	1	1	1	1					
											287				

ALLEN

Z:\NDDE02\B0AHB0\TARGET\CHEM\ENG\WODULE-1\6,REDOX\03-TABLEP65

	Oxidation state			
1.	Hydrogen peroxide	H ₂ O ₂	H-O-O-H	O =
2.	Nitrous acid	HNO ₂	H—0—N=0	N =
3.	Nitric acid	HNO ₃	H—O—N O	N =
4.	Hypo chlorous acid	HClO	H—O—Cl	Cl =
5.	Chlorous acid	HClO ₂	$H - O - Cl \rightarrow O$	Cl =
6.	Chloric acid	HCIO ₃	H—O—CI ^{AO} O	Cl =
7.	Perchloric acid	HClO ₄	H—O—CI→O O	Cl =
8.	Hydrazine	N ₂ H ₄	H H H—N—H	N =
9.	Carbonic acid	H ₂ CO ₃	Н—О—С—О—Н ∥ О	C=
10.	Chromium pentoxide	CrO ₅		Cr =
11.	Nitrosyl chloride/ Tilden's reagent	NOCI	CI-N=O	N =
12.	Chromyl chloride	CrO ₂ Cl ₂	Cl—Cr—Cl ŏ	Cr =
13.	Perchloric anhydride	Cl ₂ O ₇		Cl =
14.	Calcium oxy-chloride/ Bleaching powder	CaOCl ₂	Ca(O*Cl)**Cl	*Cl = **Cl =
288				<u>-</u>

1.	Sulphoxilic acid			
		H_2SO_2	H—O—S—O—H	
2.	Sulphurous acid	H ₂ SO ₃	0 ↑ H—O—S—O—H	
3.	Sulphuric acid	H ₂ SO ₄	0 H—O—S—O—H Ŏ	
4.	Peroxymonosulphuric acid (Caro's acid)	H ₂ SO ₅	H—O—S—O—O—H	
5.	Thiosulphurous acid	$H_2S_2O_2$	S ↑ H—O—S—O—H	
6.	Thiosulphuric acid	$H_2S_2O_3$	S H—O—S—O—H Ŏ	
7.	Dithionous acid	$H_2S_2O_4$	0 ↑ ↑ H—O—S—S—O—H	
8.	Pyrosulphurous acid	$H_2S_2O_5$	H—O—S—S—O—H ↔	
9.	Dithionic acid	H ₂ S ₂ O ₆	0 0 ↑ ↑ H—O—S—S—O—H ↓ ↓ 0 0	
10.	Pyrosulphuric acid/ Fuming sulphuric acid/ Oleum	H ₂ S ₂ O ₇	H—O—S—O—S—O—H → 0 → 0 → 0 → 0 → 0 → 0 → H	
11.	Peroxydisulphuric acid (Marshal's acid)	H ₂ S ₂ O ₈	0 H—0—S—0—0—S—0—H ↓ ↓ ↓	

_____0

		OXY ACIDS OF PHOSPHOROUS						
Hypophophorous acid	H ₃ PO ₂	О ↑ Н—Р—О—Н Н						
Orthophosphorous acid/ Phophorous acid	H ₃ PO ₃	0 ↑ H—O—P—O—H H						
Orthophosphoric acid/ Phophoric acid	H ₃ PO ₄	0 ↑ H—O—P—O—H I H						
Hypophosphoric acid	H ₄ P ₂ O ₆	0 ↑ ↑ H-O-P-P-O-H 1 0 0 H H H H						
Pyrophosphoric acid	H ₄ P ₂ O ₇	0 1 H−0−P−0−P−0−H 1 0 0 H H H H						
Metaphosphoric acid	HPO ₃	О ↑ 0—Р—О—Н						
Peroxymonophosphoric acid	H ₃ PO ₅	0 ↑ H—O—P—O—O—H 0 H						
Peroxydiphosphoric acid	H ₄ P ₂ O ₈	0 1 H—O—P—O—O—P—O—H 1 0 1 H H H H						
	Typophophophorous acid Orthophosphorous acid/ Phophorous acid Orthophosphoric acid/ Phophoric acid Hypophosphoric acid Pyrophosphoric acid Metaphosphoric acid Peroxymonophosphoric acid Peroxydiphosphoric acid	Hypophophophorous acidH3PO2Orthophosphorous acid/ Phophorous acidH3PO3Orthophosphoric acid/ Phophoric acidH3PO4Hypophosphoric acidH4P206Pyrophosphoric acidH4P207Metaphosphoric acidH4P207Peroxymonophosphoric acidH3PO3Peroxydiphosphoric acidH3PO3Peroxydiphosphoric acidH3PO3	Hypophophorous acidH_3PO2H - O - HOrthophosphorous acid/H_3PO3H - O - P - O - HPhophorous acidH_3PO4H - O - P - O - HOrthophosphoric acidH_3PO4H - O - P - O - HHypophosphoric acidH_4P2O6H - O - P - P - O - HHypophosphoric acidH_4P2O7H - O - P - P - O - HPyrophosphoric acidH_4P2O7H - O - P - O - HPyrophosphoric acidH_4P2O7H - O - P - O - HPeroxymonophosphoric acidH - O - P - O - HPeroxydiphosphoric acidH - O - P - O - HPeroxydiphosphoric acidH - O - P - O - HH - O - P - O - HO - O - HH - O - P - O - HO - O - HH - O - P - O - HO - O - HH - O - P - O - HO - O - HH - O - P - O - HO - O - HH - O - P - O - HO - O - HH - O - P - O - HO - O - HH - O - P - O - HO - P - O - HH - O - P - O - HO - P - O - HH - O - P - O - HO - P - O - HH - O - P - O - HO - P - O - HH - O - P - O - HO - P - O - HH - O - P - O - HO - P - O - HH - O - P - O - HO - P - O - HH - O - P - O - HO - P - O - HH - O - P - O - HO - P - O - HH - O - P - O - HO - P - O - HH - O - P - O - HO - P - O - HH - O - P - O - HO - P - O - HH - O - P - O - HO - P - O - HH - O - P - O - HO - P - O - HH - O - P - O - HO -					

Z:\NDDE02\B0AHB0\TARGET\CHEM\ENG\WODULE-1\6,REDOX\03-TABLEP65

Z.\NDE02\B0ai-B0\TargeT\CHEMENG\WODULE-1\& REDOX\03-TABLEP65

IMPORTANT NOTES

291 •-----•

IMPORTANT NOTES

Z:\NDDE02\B04+B0\TARGET\CHEM\ENG\WODULE-1\6.REDOX\03-TABLE.P65 •-----•