13

ચુંબક સાથે ગમ્મત (Fun with Magnets)

પહેલી અને બૂઝો એવી જગ્યાએ ગયાં જયાં ખૂબ મોટા ઢગલાઓમાં નકામો કચરો એકઠો થયેલો. કંઈક અચરજસભર થઈ રહ્યું હતું. કચરાના ઢગલા તરફ એક ક્રેન ગતિ કરી રહ્યું હતું. ક્રેનનો લાંબો હાથો કચરાના ઢગલા પર એક બ્લૉકને નીચે ઉતારતો હતો અને પછી તે ત્યાંથી તે ગતિ કરવાની શરૂ કરતો હતો. કલ્પના કરો કે શું થયું હશે ? જેવું તે દૂર તરફ ગતિ કરતું હતું, લોખંડનો કચરો બ્લૉક સાથે ચોંટી જતો હતો (આકૃતિ 13.1).

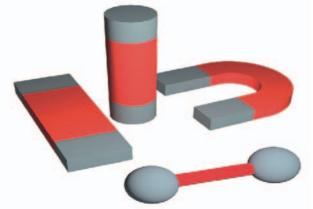
આકૃતિ 13.1 કચરામાંથી લોખંડના ટુકડા ઉપાડવા

તેમણે હમણા જ ચુંબક વિશે ખૂબ જ રસપ્રદ પુસ્તક વાંચેલું અને તેઓ તરત જ સમજી ગયાં કે ક્રેનના તે છેડે ચોક્કસપણે ચુંબક હોવું જોઈએ કે, જે કચરાના ઢગલામાંથી લોખંડને વીણી લેતું હતું.

તમે ચુંબકો જોયાં હશે અને તેની સાથે રમવાની મજા પણ માણી હશે. શું, તમે લોખંડની સપાટીવાળા કબાટ કે રેફ્રિજરેટર સાથે લગાવવામાં આવતાં સ્ટિકર્સ જોયાં છે ? કેટલાંક પિન-હૉલ્ડરમાં, પિન હૉલ્ડરની સાથે ચોંટેલી દેખાય છે. કેટલીક કંપાસપેટીમાં કોઈ પણ પ્રકારની લૉક થાય તેવી રચના ન હોવા છતાં ઢાંકણ સખત રીતે બંધ થાય છે. આવાં સ્ટીકર્સ, પીન- હૉલ્ડર કે કંપાસપેટીમાં અંદરની તરફ ચુંબક લગાડેલું હોય છે (આકૃતિ 13.2).

આકૃતિ 13.2 કેટલીક સામાન્ય વસ્તુઓ જેની અંદર ચુંબક હોય

ચુંબકો કઈ રીતે શોધાયાં


એવું કહેવાય છે કે, પ્રાચીન ગ્રીસમાં એક મેગ્નિસ નામે ભરવાડ રહેતો હતો. તે તેનાં ઘેટાં-બકરાંને નિયમિત રીતે ચરાવવા માટે નજીકના પહાડ પર લઈ જતો હતો. તેનાં પ્રાણીઓનું ધ્યાન રાખવા તે એક લાકડી સાથે રાખતો હતો. લાકડીના એક છેડે લોખંડનો એક નાનકડો ટુકડો લગાડેલો હતો. એક દિવસ પહાડના કોઈક પથ્થર સાથેથી લાકડીને છૂટી પાડવા માટે તેને ખૂબ બળ લગાડવું પડ્યું જેથી તેને આશ્ચર્ય થયું (આકૃતિ 13.3). એને જાણે એવું લાગ્યું કે, લાકડી ખડક વડે આકર્ષાઈ હતી. ખડક એ કુદરતી

આકૃતિ 13.3 ટેકરીઓ ઉપર કુદરતી ચુંબક

ચુંબક હતો અને તેણે ભરવાડની લાકડીની લોખંડની ટોચને આકર્ષી હતી. એવું કહેવાય છે કે, આ રીતે કુદરતી ચુંબકની શોધ થઈ હતી. કદાચ ભરવાડના નામ પરથી આવા ખડકને મૅગ્નેટાઇટ એવું નામ આપવામાં આવ્યું. મૅગ્નેટાઇટમાં લોખંડ હોય છે. કેટલાક લોકો એવું માનતા હતા કે, મૅગ્નેટાઇટની શોધ સૌપ્રથમ મૅગ્નેશિયા વિસ્તારમાંથી થઈ હતી. જે પદાર્થો લોખંડને આકર્ષવાનો ગુણધર્મ ધરાવતા હોય છે તેને હવે ચુંબક (magnet) કહેવાય છે. આવી કંઈક વાર્તા હતી.

કોઈ કિસ્સામાં લોકોએ હવે શોધી કાઢ્યું છે કે, કેટલાક ખડકો લોખંડને આકર્ષવાનો ગુણધર્મ ધરાવતા હોય છે. તેમણે એ પણ શોધ્યું કે, આ ખડકના નાના ટુકડાઓમાં કેટલાક ખાસ ગુણો હોય છે. આ કુદરતી રીતે બનતા પદાર્થને તેમણે ચુંબક નામ આપ્યું. પાછળથી લોકોએ લોખંડના ટુકડામાંથી ચુંબક બનાવવાની રીત પણ શોધી કાઢી. તેને કૃત્રિમ ચુંબક કહે છે. આજકાલ વિવિધ આકારોમાં કૃત્રિમ ચુંબક બનાવવામાં આવે છે. દાખલા તરીકે, ગજિયો ચુંબક,

આકૃતિ 13.4 વિવિધ આકારનાં ચુંબકો

નાળ ચુંબક, નળાકાર ચુંબક અથવા (બૉલ-એન્ડેડ) છેડા ગોળાકાર હોય તેવું ચુંબક. આકૃતિ 13.4 આ પ્રકારનાં ચુંબકો દર્શાવે છે.

प्रवृत्ति 1

એક પ્લાસ્ટિક કે કાગળનો કપ લો. આકૃતિ 13.5માં દર્શાવ્યા મુજબ તેને ક્લેમ્પની મદદથી સ્ટૅન્ડ પર લગાડો. કપની અંદર ચુંબક મૂકી તેને કાગળથી એવી રીતે ઢાંકો જેથી ચુંબક દેખાય નહિ. લોખંડની બનેલી એક ક્લિપ સાથે દોરો જોડો. દોરાનો બીજો છેડો સ્ટૅન્ડના પાયા સાથે બાંધો. (ધ્યાન રાખો કે આ યુક્તિમાં દોરાની લંબાઈ યોગ્ય રીતે ટૂંકી રાખવાની છે.) ક્લિપને કપના તળિયાની નજીક લાવો. પતંગની જેમ આ ક્લિપ કોઈ પણ આધાર વગર હવામાં અધ્ધર રહે છે.

આકૃતિ 13.5 ચુંબકની અસર – હવામાં લટકતી પેપર ક્લિપ

13.1 ચુંબકીય અને બિનચુંબકીય પદાર્થો (Magnetic and Non-magnetic Materials)

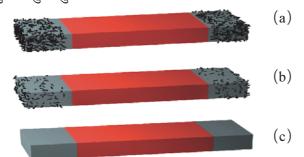
प्रवृत्ति 2

ચાલો મેગ્નિસનાં પગલે ચાલીએ. આ વખતે આપણે ફક્ત લોખંડ અને ચુંબકનાં સ્થાન બદલીશું. આપણી ભરવાડવાળી લાકડીના છેડે આપણે ચુંબક રાખીશું. હૉકી-સ્ટિકના છેડે અથવા ચાલવાની લાકડીના છેડે, ક્રિકેટનાં સ્ટમ્પના છેડે ગુંદર વડે અથવા ટેપ વડે આપણે નાનું ચુંબક લગાડી શકીએ. ચાલો, હવે શાળાના મેદાનમાં 'મેગ્નિસ વૉક' (લટાર મારવા) માટે જઈએ. આપણી 'મેગ્નિસ લાકડી' શાળાના મેદાનમાંથી શું ઉપાડશે ? વર્ગખંડની વસ્તુઓ વિશે શું કહેશો ?

તમારી આસપાસમાંથી રોજબરોજના ઉપયોગની વસ્તુઓ એકઠી કરો. તેમને 'મેગ્નિસ લાકડી' વડે ચકાસો. તમે એક ચુંબક લઈને પણ આ વસ્તુઓને તેના વડે અડીને કઈ વસ્તુ ચુંબક સાથે ચોંટે છે તેનું અવલોકન કરી શકો છો.

તમારી નોંધપોથીમાં કોષ્ટક 13.1 મુજબ કોષ્ટક તૈયાર કરી, તમારાં અવલોકનો નોંધો. હવે આ વસ્તુઓ જે પદાર્થીમાંથી બની હોય તેની યાદી બનાવો. ચુંબક તરફ આકર્ષાતી હોય તેવી વસ્તુઓમાં શું કોઈ પદાર્થ સામાન્ય છે ?

આપણે સમજીએ છીએ કે, ચુંબક કેટલાક પદાર્થીને આકર્ષે છે, જ્યારે કેટલાક પદાર્થી ચુંબક તરફ આકર્ષાતા નથી. જે પદાર્થી ચુંબક તરફ આકર્ષાય છે તે **ચુંબકીય પદાર્થી** છે – ઉદાહરણ તરીકે, લોખંડ, નિકલ, કોબાલ્ટ. જે પદાર્થી ચુંબક તરફ આકર્ષાતા નથી તે **બિનચુંબકીય પદાર્થી** છે. કોષ્ટક 13.1માંથી કયા પદાર્થી તમને બિનચુંબકીય જોવા મળ્યા ? શું માટી એ ચુંબકીય કે બિનચુંબકીય પદાર્થ છે ?


બૂઝો પાસે તમારા માટે એક સવાલ છે. એક દરજી તેના ખમીસ ઉપર બટન ટાંકી રહ્યો હતો. તેના હાથમાંથી સોય સરકીને જમીન પર પડી ગઈ. શું, તમે દરજીને સોય શોધવામાં મદદ કરી શકશો ?

કોષ્ટક 13.1 : ચુંબક તરફ આકર્ષાતા પદાર્થો શોધવા

વસ્તુનું નામ	વસ્તુ જે પદાર્થની બનેલી હોય તેનું નામ (કાપડ / પ્લાસ્ટિક / ઍલ્યુમિનિયમ / લાકડું / કાચ / લોખંડ / અન્ય)	મેગ્નિસ લાકડી / ચુંબક વડે આકર્ષણ (હા / ના)
લોખંડનો ગોળો	લોખંડ	હા
માપપટ્ટી	પ્લાસ્ટિક	ના
બૂટ	ચામડું	?

કોઈ ચુંબકને રેતી કે માટીમાં ઘસો. ચુંબકને બહાર ખેંચો. શું ચુંબક સાથે રેતી કે માટીના કણો ચોંટેલા છે ? હવે રેતી કે માટીના કણને દૂર કરવા ચુંબકને હળવેથી હલાવો. શું, કેટલાક કણો હજુ પણ ચોંટેલા છે ? તે માટીમાંથી વીશેલા લોખંડના નાના કણો (લોખંડની રજ) હોઈ શકે.

આવી પ્રવૃત્તિ દ્વારા આપણે જે-તે સ્થળની માટી અથવા રેતીમાં લોખંડના રજકણો છે કે નહિ તે શોધી શકીએ છીએ. આ પ્રવૃત્તિ તમારા ઘરની આજુબાજુ, શાળાએ કે રજાઓમાં ફરવા જાઓ ત્યાં કરી જુઓ. શું લોખંડની રજ ચોંટી હોય તેવું ચુંબક આકૃતિ 13.6માં દર્શાવ્યા મુજબના કોઈ ચુંબક જેવું દેખાય છે ? તમે શું જાણ્યું તેનું કોષ્ટક બનાવો.

આકૃતિ 13.6 (a) લોખંડની ઘણી ૨૪ ચોંટેલી (b) લોખંડની થોડીક ૨૪ ચોંટેલી (c) લોખંડની ૨૪ ન ચોંટેલી હોય

કોષ્ટક 13.2 ઃ માટીમાં ઘસેલું ચુંબક લોખંડની કેટલી ૨જકણ ?

સ્થળનું નામ (સોસાયટી અને (ગામ / નગર / શહેર)	શું ચુંબક સાથે લોખંડની ૨જ ચોંટેલી તમે જોઈ ? (ઘણીબધી / થોડીક / જરાય નહિ)

જો તમે આ કોષ્ટકને ભરીને પહેલી અને બૂઝોને મોકલી શકો, તો તેઓ દેશના વિવિધ ભાગની માટીમાં લોખંડની રજના પ્રમાણની તુલના કરી શકે. તેઓ તમારી સાથે આ માહિતીની આપ-લે કરી શકે છે.

13.2 ચુંબકના ધ્રુવ (Poles of Magnet)

આપણે જોયું કે ચુંબકને માટીમાં ઘસતાં (જો હાજર હોય તો) લોખંડની ૨જકણ ચોંટી જાય છે. શું તે જે રીતે ચોંટી હતી તેમાં કંઈ ખાસ દેખાયું ?

प्रवृत्ति 4

કાગળ પર થોડી લોખંડની રજકણ ફેલાવો. હવે તેના પર ગજિયો ચુંબક મૂકો. તમે શું નોંધ્યું ? શું લોખંડની રજકણ ચુંબક પર બધે જ ચોંટી જાય છે ? શું તમે એ જોયું કે, ચુંબકના કેટલાક ભાગ કરતાં બીજા ભાગ પર વધારે રજકણો ચોંટે છે (આકૃતિ 13.7)? ચુંબક સાથે ચોંટેલી લોખંડની રજકણ હટાવી, પ્રવૃત્તિ ફરી વાર કરો.

આકૃતિ 13.7 ગજિયા ચુંબક સાથે ચોંટેલી લોખંડની ૨જકણ

શું, જે રીતે લોખંડની રજકણ ચુંબક તરફ આકર્ષાય છે તે તરાહમાં કોઈ ફેરફાર તમે નોંધ્યો ? આ પ્રવૃત્તિ તમે લોખંડની રજકણને બદલે પીન કે લોખંડની ખીલીઓ લઈને વિવિધ આકારનાં ચુંબક સાથે કરી શકો છો.

જે રીતે લોખંડની રજક્શ ચુંબક સાથે ચોંટે છે તે દર્શાવતી આકૃતિ દોરો. શું તમારી આકૃતિ જે 13.6(c)માં દર્શાવેલી આકૃતિ છે તેની સાથે સમાનતા ધરાવે છે ?

પહેલી પાસે તમારા માટે એક કોયડો છે. તમને બે એકસરખી પટ્ટીઓ આપવામાં આવે છે, જે લોખંડની બની હોય તેવી લાગે છે. જેમાંની એક ચુંબક છે અને બીજી માત્ર લોખંડની પટ્ટી છે. ચુંબકની પટ્ટી કઈ છે તે તમે કઈ રીતે શોધશો ?

આપણે જાણ્યું કે, ચુંબકના બે છેડાની નજીકના વિસ્તારમાં લોખંડની રજકણ વધુ આકર્ષાય છે. આ છેડાઓ નજીક ચુંબકના ધ્રુવો હોય છે તેવું કહેવામાં આવે છે. વિવિધ આકારનાં ચુંબકને વર્ગમાં લાવી જુઓ. લોખંડની રજકણનો ઉપયોગ કરીને આ ચુંબકોના ધ્રુવનાં સ્થાન જાણવાની કોશિશ કરો. આકૃતિ 13.4માં દર્શાવેલા છે તે પ્રકારનાં ચુંબકના ધ્રુવનાં સ્થાન તમે નક્કી કરી શકશો ?

13.3 દિશાઓની શોધ (Finding Directions)

પ્રાચીન કાળથી લોકો ચુંબક વિશે જાણતા હતા. ચુંબકના ઘણા ગુણધર્મો વિશે પણ તેઓ જાણતા હતા. ચુંબકના ઉપયોગો વિશે તમે ઘણી રસપ્રદ વાર્તાઓ સાંભળી હશે. આવી જ એક વાર્તા ચીનના બાદશાહ હોઆંગ-ટાઇ (Hoang Ti)ની છે. એવું કહેવાય છે કે તેના રથ ઉપર એક એવી સ્ત્રીનું પૂતળું હતું કે જે કોઈપણ દિશામાં ફરી શકતું હતું. તેનો એક હાથ એવી રીતે લંબાયેલો હતો કે જાણે તે કોઈ દિશા બતાવી રહી હોય (આકૃતિ 13.8). પૂતળાનો એક ખાસ ગુણધર્મ હતો. તે એવી સ્થિતિમાં ઊભું રહેતું હતું કે તેનો લંબાયેલો હાથ હંમેશાં દક્ષિણ દિશા તરફ તાકેલો રહે. પૂતળાના લંબાયેલા હાથ તરફ જોઈને, બાદશાહ પોતાના રથ ઉપર નવાં સ્થળોએ જાય ત્યારે દિશાઓ નક્કી કરી શકતો હતો.

આકૃતિ 13.8 દિશાશોધક પૂતળા સાથેનો ૨થ

ચાલો, આપણા માટે પણ આવું એક દિશાસૂચક બનાવીએ.

प्रवृत्ति 5

એક ગજિયો ચુંબક લો. ઓળખાય તે માટે તેના કોઈ એક છેડે નિશાની કરો. હવે, લાકડાના સ્ટૅન્ડ પરથી તેને મુક્ત રીતે લટકાવી શકાય, તે રીતે ચુંબકની મધ્યમાં દોરી બાંધો (આકૃતિ 13.9). ધ્યાન રાખો કે, ચુંબક મુક્ત રીતે ફરી શકે છે જ્યારે ચુંબક સ્થિર

આકૃતિ 13.9 મુક્ત રીતે લટકાવેલું ચુંબક હંમેશાં ચોક્કસ દિશામાં જ સ્થિર થાય છે

થાય ત્યારે તેના બે છેડાની સ્થિતિ નોંધતાં બે નિશાન જમીન પર કરો. બંને નિશાનને જોડતી રેખા દોરો. ચુંબક સ્થિર હોય ત્યારે તેની દિશા આ રેખા દર્શાવે છે. હવે કોઈપણ એક દિશામાં હળવેથી ચુંબકને ધક્કો મારો અને તેને સ્થિર થવા દો. ફરીથી તેની સ્થિર સ્થિતિ વખતે બંને છેડાનું સ્થાન અંકિત કરો. શું હવે ચુંબક અલગ દિશા તરફ સ્થિર થાય છે ? ચુંબકને બીજી દિશામાં ફેરવી અને તે કઈ દિશામાં સ્થિર થાય છે તે અંતિમ સ્થિતિ નોંધો.

શું તમે એ નોંધ્યું કે, ચુંબક હંમેશાં એક જ દિશામાં સ્થિર થાય છે ? તો હવે તમને બાદશાહના રથ પરના પૂતળાનું રહસ્ય સમજાયું ?

હવે ચુંબકને બદલે લોખંડની પટ્ટી, પ્લાસ્ટિક કે લાકડાની ફૂટપટ્ટી લઈને આ પ્રવૃત્તિનું પુનરાવર્તન કરો. આ પ્રવૃત્તિ માટે હલકી વસ્તુઓનો ઉપયોગ ન કરો અથવા જયાં પવન આવતો હોય, ત્યાં આ પ્રવૃત્તિ કરવાનું ટાળો. શું બીજી વસ્તુઓ પણ હંમેશાં સમાન દિશામાં જ સ્થિર થાય છે ?

આપણે જોયું કે, મુક્ત રીતે લટકાવેલ ગજિયો યુંબક હંમેશાં ચોક્કસ દિશામાં જ સ્થિર થાય છે, જે ઉત્તર-દક્ષિણ દિશા છે. તમે જયાં આ પ્રયોગ કરતાં હો તે સ્થળે સૂર્યના ઊગવાની દિશા જાણીને અટકળે પૂર્વ દિશા નક્કી કરો. જો તમે પૂર્વ તરફ મોં કરીને ઊભા હો તો તમારી ડાબી તરફ ઉત્તર દિશા હોય છે. સૂર્યના ઉપયોગથી શોધવામાં આવતી દિશાઓ ચોક્કસપણે સ્પષ્ટ નથી હોતી, પણ તે ઉત્તરથી દક્ષિણ દિશા નક્કી કરવામાં મદદરૂપ થશે. આનો ઉપયોગ કરીને તમે જાણી શકો કે ચુંબકનો કયો છેડો ઉત્તર તરફ અને કયો છેડો દક્ષિણ તરફ નિર્દેશ કરે છે.

ચુંબકનો જે છેડો ઉત્તર તરફ નિર્દેશ કરે છે તેને ઉત્તર શોધતો છેડો અથવા ચુંબકનો ઉત્તર ધ્રુવ તમારા વર્ગખંડથી કઈ દિશા તરફ તમારી શાળાનો મુખ્ય દરવાજો આવેલો છે ?

કહે છે. બીજો છેડો જે દક્ષિણ તરફ નિર્દેશ કરે છે તેને દક્ષિણ શોધતો છેડો અથવા ચુંબકનો દક્ષિણ ધ્રુવ કહે છે. ચુંબકનો આકાર કોઈપણ હોય પરંતુ તેને બે ધ્રુવ હોય જ છે. સામાન્ય રીતે ઉત્તર ધ્રુવ (N) અને દક્ષિણ ધ્રુવ (S) એ ચુંબક પર દર્શાવેલા જ હોય છે.

યુંબકનો આ ગુણધર્મ આપણને ખૂબ જ ઉપયોગી છે. મુસાફરો સદીઓથી યુંબકોના આ ગુણધર્મનો ઉપયોગ કરતાં આવ્યા છે. એવું કહેવાય છે કે, જૂના જમાનામાં મુસાફરો કુદરતી યુંબકને દોરીથી લટકાવીને દિશાઓ જાણી લેતા હતા, જેને તે હંમેશાં પોતાની સાથે રાખતા હતા. પછીથી યુંબકના આ ગુણધર્મને આધારે એક સાધન વિકસાવવામાં આવ્યું. તેને હોકાયંત્ર કહે છે. સામાન્ય રીતે હોકાયંત્ર એ નાનું, કાચથી ઢંકાયેલું બૉક્સ છે. બૉક્સની અંદર એક ચુંબકીય સોયને ધરી પર રાખેલી હોય છે જે મુક્ત રીતે ફરી શકે છે (આકૃતિ 13.10). હોકાયંત્રમાં એક ચંદો (ડાયલ) હોય છે જેના પર દિશાઓ અંકિત કરેલી હોય છે. આપણે જે

આકૃતિ 13.10 હોકાયંત્ર

સ્થળે દિશા શોધવી હોય ત્યાં હોકાયંત્ર રાખવામાં આવે છે. એની સોય જ્યારે સ્થિર થાય ત્યારે ઉત્તર-દક્ષિણ દિશા દર્શાવે છે. પછી હોકાયંત્રને ત્યાં સુધી ફેરવવામાં આવે છે જ્યાં સુધી ચંદા પર અંકિત કરેલાં ઉત્તર અને દક્ષિણ એ સોયના બે છેડાઓ સાથે એકસમાન ગોઠવાય. ચુંબકીય સોયનો ઉત્તર ધ્રુવ ઓળખાય તે માટે તેને હંમેશાં જુદા રંગથી રંગેલો હોય છે.

13.4 તમારું પોતાનું ચુંબક બનાવો (Make Your Own Magnet)

ચુંબક બનાવવાની ઘણી પદ્ધતિઓ છે. ચાલો સૌથી સરળ પદ્ધતિ દ્વારા શીખીએ. લોખંડનો એક લંબચોરસ ટુકડો લો. તેને ટેબલ પર મૂકો. હવે ગજિયો ચુંબક લો તથા તેના એક ધ્રુવને લોખંડના ટુકડાના કોઈ એક છેડા પાસે રાખો. ચુંબકને ઊંચક્યા સિવાય લોખંડના ટુકડાના બીજા છેડા સુધી તેની પૂરી લંબાઈ પર ઘસો. હવે, ચુંબકને ઊંચું કરી અને તેના ધ્રુવને (જે ધ્રુવથી શરૂઆત કરી હતી તે જ ધ્રુવ) લોખંડના ટુકડાના જે છેડાથી શરૂઆત કરી હતી ત્યાં લાવો (આકૃતિ 13.11). ચુંબકને ફરીથી લોખંડના ટુકડા પર અગાઉ મુજબ જ ફેરવો. આ ક્રિયાનું 30-40 વખત પુનરાવર્તન કરો. લોખંડનો ટુકડો ચુંબક બન્યો છે કે નહિ તે જાણવા પીન કે લોખંડની રજકણ તેની નજીક લાવો. જો ન થયો હોય, તો આ ક્રિયાને થોડા વધુ સમય

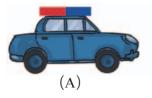
આકૃતિ 13.11 તમારું પોતાનું ચુંબક બનાવવું

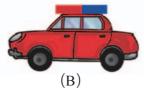
માટે ચાલુ રાખો. યાદ રાખો કે ચુંબકનો ધ્રુવ અને ગતિની દિશા બદલાઈ ન જાય. તમે લોખંડની ખીલી, બ્લેડ કે સોયનો ઉપયોગ કરીને પણ તેને ચુંબકમાં બદલી શકો છો.

ચુંબક કઈ રીતે બનાવવું તે હવે, તમે જાણો છો. શું, તમારું પોતાનું હોકાયંત્ર બનાવવું ગમશે ?

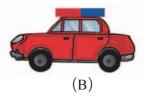
प्रवृत्ति 6

ગજિયા ચુંબકનો ઉપયોગ કરીને લોખંડની એક સોયને ચુંબકીય બનાવો. હવે, આ ચુંબકીય સોયને બૂચ કે સ્પોન્જના નાના ટુકડામાંથી પસાર કરો. હવે, બૂચના આ ટુકડાને એક વાટકા કે ટમ્બલરના પાણીમાં તરતો




આકૃતિ 13.12 કપમાં હોકાયંત્ર

મૂકો. એ ખાતરી કરો કે, સોય પાણીને અડકે નહિ (આકૃતિ 13.12). તમારું હોકાયંત્ર કાર્ય કરવા તૈયાર છે. જ્યારે બૂચ તરતું હોય ત્યારે સોય કઈ દિશા દર્શાવે છે તે નોંધો. સોય લગાવેલા બૂચને વિવિધ દિશાઓમાં ફેરવો. બૂચ ફર્યા વગર હવે સોયને જે દિશામાં રાખીને તરે છે તે નોંધો. શું જ્યારે બૂચ ફરતો બંધ થાય ત્યારે, સોય હંમેશાં એક જ દિશામાં નિર્દેશ કરે છે ?


13.5 ચુંબકો વચ્ચે આકર્ષણ અને અપાકર્ષણ (Attraction and Repulsion Between Magnets)

ચાલો, ચુંબક સાથે બીજી એક રસપ્રદ રમત રમીએ. રમકડાંની બે ગાડી લઈ તેને A અને B એમ નામ આપો. ગાડીની લંબાઈ સાથે બંને ગાડી પર ગજિયો ચુંબક મૂકો તથા તેને રબરબૅન્ડથી બાંધો (આકૃતિ 13.13). A ગાડીમાં ચુંબકનો દક્ષિણ ધ્રુવ આગળ તરફ રાખો. B ગાડીમાં વિરુદ્ધ દિશાનાં

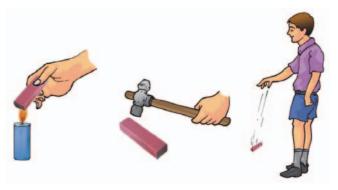
(A)

આકૃતિ 13.13 શું વિરુદ્ધ ધ્રુવો એકબીજાને આકર્ષે છે ?

આકૃતિ 13.14 શું સમાન ધ્રુવો વચ્ચે અપાકર્ષણ થાય છે ?

ચુંબકને લગાવો. હવે બંને ગાડીઓને એકબીજાની નજીક ગોઠવો (આકૃતિ 13.13). તમે શું નોંધ્યું ? શું ગાડીઓ તેમની જગ્યાએ જ રહે છે ? શું ગાડીઓ એકબીજાથી દૂર જાય છે ? શું તેઓ એકબીજા તરફ આવીને અથડાઈ જાય છે ? કોષ્ટક 13.3માં દર્શાવ્યા મુજબ તમારાં અવલોકનો નોંધો. હવે બંને રમકડાંની ગાડીઓને એવી રીતે ગોઠવો કે જેથી ગાડી Aનો પાછળનો ભાગ ગાડી Bના આગળના ભાગ પાસે રહે (આકૃતિ 13.14). શું, તેઓ આગળ દર્શાવ્યા મુજબ જ ગતિ કરે છે ? ગાડીઓ હવે જે રીતે ગતિ કરે છે તે દિશા નોંધો. પછી, ગાડી Aની પાછળ ગાડી Bને મૂકો અને તેઓ દરેક કિસ્સામાં કઈ દિશામાં ગતિ કરે છે તે નોંધો. બંને ગાડીનો પાછળનો ભાગ સામે-સામે હોય તે રીતે આ પ્રવૃત્તિનું પુનરાવર્તન કરો. દરેક કિસ્સામાં તમારાં અવલોકનો નોંધો.

આ પ્રવૃત્તિ પરથી તમને શું જાણવા મળ્યું ? શું સમાન ધ્રુવો એકબીજાને આકર્ષે છે કે અપાકર્ષે છે ? વિરુદ્ધ ધ્રુવો વિશે શું કહેશો ? શું તેઓ આકર્ષે છે કે અપાકર્ષે છે ?


ચુંબકના આ ગુણધર્મો ચુંબકને મુક્ત રીતે લટકાવી અને બીજા ચુંબકના એક પછી એક ધ્રુવ નજીક લાવીને પણ જોઈ શકાય છે.

કોષ્ટક 13.3

(બૂઝોને એક પ્રશ્ન છે.)
જો ચુંબકને હોકાયંત્ર પાસે
લાવીએ તો શું થાય ?
થોડીક ચેતવણીઓ

ગાડીની સ્થિતિ	ગાડી કઈ રીતે ગતિ કરે છે ? એકબીજા તરફ / થી દૂર ગતિ કરે છે / જરા પણ ગતિ કરતી નથી
ગાડી Aનો આગળનો	
ભાગ ગાડી Bના આગળના	
ભાગ તરફ	
ગાડી Aનો પાછળના	
ભાગની સામે ગાડી Bનો	
આગળનો ભાગ	
ગાડી Bની પાછળ ગાડી	
Aનો આગળનો ભાગ	
ગાડી Bના પાછળના	
ભાગની સામે ગાડી Aનો	
પાછળનો ભાગ	

જો ચુંબકને ગરમ કરવામાં, ટીપવામાં કે અમુક ઊંચાઈએથી પછાડવામાં આવે તો તેના ગુણધર્મો નાશ પામે છે (આકૃતિ 13.15). વળી, જો ચુંબકને યોગ્ય રીતે સંગ્રહ કરવામાં ન આવે તોપણ તે નબળું પડે છે. તેમને સુરક્ષિત રાખવા માટે ગજિયા ચુંબકના

આકૃતિ 13.15 ગરમ કરવાથી, ટીપવાથી કે પછાડવાથી ચુંબક તેના ગુણધર્મો ગુમાવે છે

આકૃતિ 13.16 તમારા ચુંબકને સુરક્ષિત રાખો

વિરુદ્ધ ધ્રુવો સાથે રહે તેમ તેને જોડીમાં રાખવામાં આવે છે. તેમને લાકડાના ટુકડાથી છૂટા પાડી અને બંને છેડે નરમ લોખંડની પટ્ટીઓ મૂકીને રાખવામાં આવે છે (આકૃતિ 13.16). નાળચુંબક માટે, તેના ધ્રુવ

સાથે જોડાય તેમ લોખંડનો ટુકડો રાખવો જોઈએ.

ચુંબકને કેસેટ, મોબાઇલ, ટેલિવિઝન, સંગીતનાં સાધનો, કૉમ્પેક્ટ ડિસ્ક (સીડી) અને કમ્પ્યૂટરથી દૂર રાખવા જોઈએ.

પારિભાષિક શબ્દો 🙂

હોકાયંત્ર	Compass
ચુંબક	Magnet
મૅગ્નેટાઇટ	Magnetite
ઉત્તર ધ્રુવ	North Pole
દક્ષિણ ધ્રુવ	South Pole

સારાંશ 🖙

- 🧶 મૅગ્નેટાઇટ એ કુદરતી ચુંબક છે.
- ચુંબક એ લોખંડ, નિકલ અને કોબાલ્ટ જેવા પદાર્થીને આકર્ષે છે. આવા પદાર્થીને ચુંબકીય પદાર્થી કહે છે.
- જે પદાર્થો ચુંબક તરફ આકર્ષાતા નથી તેને બિનચુંબકીય પદાર્થો કહે છે.
- દરેક ચુંબકને બે ચુંબકીય ધ્રુવો હોય છે ઉત્તર અને દક્ષિણ.
- મુક્ત રીતે લટકાવેલું ચુંબક હંમેશાં N S દિશાનો નિર્દેશ કરે છે.
- ચુંબકના વિરુદ્ધ ધ્રુવો એકબીજાને આકર્ષે છે જ્યારે સમાન ધ્રુવો એકબીજાને અપાકર્ષે છે.

- 1. નીચેની ખાલી જગ્યા પૂરો :
 - (i) કૃત્રિમ ચુંબક _____, ___ અને ____ જેવા વિવિધ આકારમાં બનાવવામાં આવે છે.
 - (ii) જે પદાર્થી ચુંબક તરફ આકર્ષાય છે તેને ______ કહે છે.
 - (iii) કાગળ એ _____ પદાર્થ નથી.
 - (iv) જૂના જમાનામાં, નાવિકો દિશા જાણવા માટે ______ના ટુકડાને લટકાવતા હતા.
 - (v) ચુંબકને હંમેશાં _____ ધ્રુવ હોય છે.
- 2. નીચેનાં વાક્યો ખરાં છે કે ખોટાં તે કહો :
 - (i) નળાકાર ચુંબકને એક જ ધ્રુવ હોય છે.
 - (ii) કૃત્રિમ ચુંબકોની શોધ ગ્રીસમાં થઈ.
 - (iii) ચુંબકના સમાન ધ્રુવો એકબીજાને અપાકર્ષે છે.
 - (iv) જ્યારે ચુંબકને લોખંડની રજકણ નજીક લાવવામાં આવે ત્યારે મહત્તમની રજકણ તેના વચ્ચેના ભાગમાં ચોંટી જાય છે.
 - (v) ગજિયો ચુંબક હંમેશાં ઉત્તર-દક્ષિણ દિશા તરફ નિર્દેશ કરે છે.
 - (vi) કોઈપણ સ્થળે હોકાયંત્રનો ઉપયોગ પૂર્વ-પશ્ચિમ દિશા જાણવા માટે થાય છે.
 - (vii) રબર એ ચુંબકીય પદાર્થ છે.
- 3. એવું જોવામાં આવ્યું કે, પેન્સિલની અણી કાઢવાનો સંચો પ્લાસ્ટિકનો બનેલો હોવા છતાં ચુંબકના બંને ધ્રુવો વડે આકર્ષિત થાય છે. સંચાનો થોડોક ભાગ બનાવવા માટે ઉપયોગ થયો હોય એવા પદાર્થનું નામ આપો.
- કૉલમ 1માં ચુંબકના એક ધ્રુવને બીજા ચુંબકના કયા ધ્રુવ નજીક રાખેલો છે, તે જણાવતી વિવિધ સ્થિતિઓ દર્શાવી છે. કૉલમ 2 આ દરેક પરિસ્થિતિમાં પરિણામી ફેરફારને દર્શાવે છે. ખાલી જગ્યા ભરો :

કૉલમ 1	કૉલમ 2
N - N	
N	આકર્ષણ
S-N	
S	અપાકર્ષણ

- 5. ચુંબકના કોઈ પણ બે ગુણધર્મો લખો.
- 6. ગજિયા ચુંબકના ધ્રુવો ક્યાં આવેલા હોય છે ?
- 7. એક ગજિયા ચુંબકને ધ્રુવ દર્શાવતી કોઈ જ નિશાની નથી. તો તમે તેના કયા છેડા પાસે ઉત્તર ધ્રુવ છે તે કઈ રીતે જાણશો ?
- 8. તમને લોખંડની પટ્ટી આપેલી છે. તેનું ચુંબક તમે કઈ રીતે બનાવશો ?
- 9. દિશાઓ જાણવા માટે હોકાયંત્રનો ઉપયોગ કઈ રીતે થાય છે ?

10. પાણીના ટબમાં તરી રહેલી રમકડાની એક ધાતુની બનેલી હોડીની નજીક વિવિધ દિશાઓમાંથી ચુંબક લાવવામાં આવે છે. તેના પર થતી અસરને કૉલમ 1માં દર્શાવેલી છે. આ અસર માટેનાં શક્ય કારણોને કૉલમ 2માં દર્શાવેલાં છે. કૉલમ 1 અને કૉલમ 2નાં વિધાનો સાથે યોગ્ય રીતે જોડો.

કૉલમ 1	કૉલમ 2
હોડી ચુંબક તરફ આકર્ષાય છે.	હોડીના મુખ તરફ ઉત્તર ધ્રુવ રહે તે રીતે ચુંબક
	લગાવેલું છે.
હોડીને ચુંબકની અસર થતી નથી.	હોડીના મુખ તરફ દક્ષિણ ધ્રુવ રહે તે રીતે
	ચુંબક લગાવેલું છે.
જો હોડીના મુખ તરફ ચુંબકનો ઉત્તર ધ્રુવ લાવવામાં	હોડીની લંબાઈ સાથે નાનકડું ચુંબક લગાવેલું
આવે, તો હોડી ચુંબક તરફ ગતિ કરે છે.	છે.
જો હોડીના મુખ તરફ ચુંબકનો ઉત્તર ધ્રુવ લાવવામાં	હોડી ચુંબકીય પદાર્થની બનેલી છે.
આવે, તો હોડી ચુંબકથી દૂર જાય છે.	
હોડી દિશા બદલ્યા વગર ગતિ કરે છે.	હોડી બિનચુંબકીય પદાર્થની બનેલી છે.

કેટલીક સૂચિત પ્રવૃત્તિઓ

- 1. હોકાયંત્રનો ઉપયોગ કરીને તમારા ઘર તથા વર્ગખંડની બારીઓ તથા બારણા કઈ દિશામાં ખૂલે છે તે શોધી કાઢો.
- 2. બે ગજિયા ચુંબકના ઉત્તર ધ્રુવ એક જ તરફ રહે તે રીતે તેમને એકબીજા ઉપર ગોઠવવાનો પ્રયત્ન કરો. જુઓ કે શું થાય છે અને તમારાં અવલોકનો નોંધપોથીમાં નોંધો.
- 3. કામ કરતી વખતે લાકડાંના વહેરમાં સુથાર વડે લોખંડની થોડી ખીલીઓ અને સ્ક્રૂ ભેગા થઈ ગયા હતા. હાથથી શોધવામાં સમય બગાડવાને બદલે આ કચરામાંથી તેને શોધવામાં તમે કઈ રીતે મદદ કરી શકો ?
- 4. તમે એવી બુદ્ધિશાળી ઢીંગલી બનાવી શકો કે જે તેને ગમતી વસ્તુ ઉપાડી શકે (આકૃતિ 13.17) ? એક ઢીંગલી લો અને તેના કોઈ પણ એક હાથમાં ચુંબક લગાડો. ચુંબક ન દેખાય તે માટે તેને હાથમોજું પહેરાવી દો. હવે તમારી બુદ્ધિશાળી ઢીંગલી તૈયાર છે. તમારા મિત્રને ઢીંગલીના હાથની નજીક જુદી-જુદી વસ્તુઓ લાવવાનું કહો. વસ્તુના પદાર્થને જાણતા હોવાથી તમે પહેલેથી જ એ કહી શકશો કે ઢીંગલી તેને પકડશે કે નહિ.

આકૃતિ 13.17 બુદ્ધિશાળી ઢીંગલી

વાંચવાલાયક બાબતો

ગુલિવરની યાત્રા જેમાં એક આખો ટાપુ 'લાપુતા' હવામાં તરતો હોય તેવી કલ્પના કરવામાં આવી છે. શું તેમાં ચુંબકનો સમાવેશ કરેલ છે ?