

ALKYL HALIDES

- 2. In the reactions given below,
 - (i) KCN, (ii) LiAlH₄ R - ClProduct A (i) AgCN, (ii) LiAlH₄ R - ClProduct B

the compounds A and B are :

- (a) chain isomers
- (b) position isomers (c) functional isomers (d) metamers
- Which is the major product expected from the following S_{N^2} reaction ? 3.

 H_2O Ethanol/

Consider the following E_1/S_{N^1} reaction : 4.

The missing product(s) is(are) :

(a) 1, 2 and 3

(b) 3 and 4

(c) 2 and 3 (d) 1,2,3 and 4 **5.** What is the product of the following S_{N^2} reaction ?

- 6. Select the reagent that will yield the greater amount of substitution on reaction with $CH_3 CH_2 Br$:
 - (a) CH_3CH_2OK in dimethyl sulfoxide (DMSO)
 - (b) $(CH_3)_3 COK$ in dimethyl sulfoxide (DMSO)
 - (c) Both (a) and (b) will give comparable amounts of substitution
 - (d) Neither (a) nor (b) will give any amount of substitution
- **7.** Under the specified conditions, substrate *X* undergoes substitution and elimination reactions to give products *A D*. *A* and *B* are stereoisomers, but not enantiomers. *C* and *D* are enantiomers. *A* is not an isomer of *C*. Which of the following could be the starting material *X* ?

10. Rate limiting S_{N^1} follows the sequence

$$\overset{\oplus}{R} \overset{\ominus}{\longrightarrow} \overset{\Theta}{\underset{(a)}{\overset{\oplus}{\longrightarrow}}} \overset{B}{\underset{(b)}{\overset{\oplus}{\longrightarrow}}} \overset{B}{\underset{(c)}{\overset{\oplus}{\longrightarrow}}} \overset{B}{\underset{(c)}{\overset{B}{\longrightarrow}}} \overset{B}{\underset{(c)}{\overset{B}{\longrightarrow}} \overset{B}{\underset{(c)}{\overset{B}{\longrightarrow}}} \overset{B}{\underset{(c)}{\overset{B}{\longrightarrow}}} \overset{B}{\underset{(c)}{\overset{B}{\longrightarrow}}} \overset{B}{\underset{(c)}{\overset{B}{\longrightarrow}}} \overset{B}{\underset{(c)}{\overset{B}{\longrightarrow}}} \overset{B}{\underset{(c)}{\overset{B}{\longrightarrow}} \overset{B}{\underset{(c)}{\overset{B}{\longrightarrow}}} \overset{B}{\underset{(c)}{\overset{(c)}{\overset{B}{\longrightarrow}}} \overset{B}{\underset{(c)}{\overset{B}{\longrightarrow}}} \overset{B}{\underset{(c)}{\overset{B}{\longrightarrow}}} \overset{B}{\underset{(c)}{\overset{B}{\longrightarrow}}} \overset{B}{\underset{(c)}{\overset{B}{\longrightarrow}}} \overset{B}{\underset{(c)}{\overset{(c$$

True statement about sequence on the basis of assumption that *R* contains 3 different groups is :

- (a) more stable carbocation, greater is in the proportion of racemization
- (b) the more nucleophilic the solvent greater in the proportion of inversion
- (c) In above sequence (b) represent separately solvated, pair of ions
- (d) All of these
- 11. Compare the two methods shown for the preparation of carboxylic acids :

Method 1:RBrMg
diethyl etherRMgBr $1. CO_2$
 $2. H_3O$ RCO_2H Method 2:RBrNaCNRCN H_2O, HCI
heat RCO_2H

Which one of the following statements correctly describes this conversion ?

- (a) Both method 1 and method 2 are appropriate for carrying out this conversion
- (b) Neither method 1 nor method 2 is appropriate for carrying out this conversion
- (c) Method 1 will work well, but method 2 is not appropriate
- (d) Method 2 will work well, but method 1 is not appropriate
- **12.** Which of the following statements is true ?
 - (a) CH_3CH_2S is both a stronger base and more nucleophilic than CH_3CH_2O
 - (b) CH_3CH_2S is a stronger base but is less nucleophilic than CH_3CH_2O
 - (c) CH_3CH_2S is a weaker base but is more nucleophilic than CH_3CH_2O
 - (d) CH_3CH_2S is both a weaker base and less nucleophilic than CH_3CH_2O
- **13.** In the given pair of alcohols, in which pair second alcohol is more reactive than first towards hydrogen bromide ?

14. Which product would be expected to predominate in the given reaction ?

15. Which is the major product of the following reaction ?

17. Rate of S_{N^2} reaction is :

22. Which compound might be synthesized by the S_{N^2} displacement of an alkyl-halide ?

27. The back-side attack on 2-bromobutane by methoxide (CH_3O) gives the product shown below. Which Fischer projection represents 2-bromobutane used as the reactant in this reaction ?

(a)
$$Me \xrightarrow{Et} H$$
 (b) $H \xrightarrow{Et} Br$ (c) $Br \xrightarrow{H} H$ (d) $Me \xrightarrow{H} H$
Br Me Et

- **28.** Consider the following statements :
 - (1) Bridgehead halides are inert towards both S_{N^1} and S_{N^2} reactions (till one of the ring size is eight member ring)
 - (2) The first step in both \boldsymbol{S}_{N^1} and \boldsymbol{E}_1 reactions is the same
 - (3) S_{N^2} reactions proceed with total retention of configuration
 - (4) E_2 eliminations are by the use of a solvent of low polarity and high concentration of a strong base
 - Which of the above statements are correct?
 - (a) 1, 2 and 4 (b) 1 and 3
 - (c) 2, 3 and 4 (d) 1, 2, 3 and 4
- **29.** Consider the following alcohols :

The order of decreasing reactivities of these alcohols towards substitution with HBr is :

- (a) III > I > IV > II (b) III > I > II > IV
- (c) I > III > IV > II (d) I > III > IV > IV
- 30. In solvolysis of 1,2-dimethyl propyl *p*-toluene sulfonate in acetic acid at 75°C, how many (alkene substitution) products will be formed ?
 (a) 2 (b) 3 (c) 4 (d) 5
- Benzotrichloride reacts with milk of lime to form :(a) Benzal(b) Benzoic acid(c) Benzyl alcohol(d) Phenol

33. The configurations of the reactant and the product in the following reaction, respectively, are:

Product (A) and (B) in above reaction is :

43. Which of the following would be true for the reaction shown ?

- (a) The rate of the reaction depends only on the alkyl bromide concentration.
- (b) The rate of the reaction depends only on the methanol concentration.
- (c) The rate of the reaction depends on both the alkyl halide concentration and the methanol concentration.
- (d) The rate of the reaction depends on the concentration of neither reactant.

44. The correct order of rate of
$$S_N 1$$
 is :

ANSWERS — LEVEL 1															
1.	(c)	2.	(c)	3.	(b)	4.	(a)	5.	(a)	6.	(a)	7.	(c)	8.	(b)
9.	(b)	10.	(d)	11.	(c)	12.	(c)	13.	(d)	14.	(a)	15.	(c)	16.	(c)
17.	(c)	18.	(a)	19.	(c)	20.	(b)	21.	(d)	22.	(d)	23.	(b)	24.	(d)
25.	(d)	26.	(b)	27.	(d)	28.	(a)	29.	(a)	30.	(d)	31.	(b)	32.	(b)
33.	(d)	34.	(d)	35.	(c)	36.	(c)	37.	(a)	38.	(d)	39.	(c)	40.	(d)
41.	(b)	42.	(b)	43.	(a)	44.	(b)								

1. The following organic halide derivatives (*A* to *J*) are reacted in ethanol solution with each of the nucleophiles : acetate, methylthiolate, cyanide and hydroxide anions. Six possible results from these combinations of reactants are designated (1) through (6) below :

Write the number corresponding to your best estimate of the outcome of each reaction in the appropriate answer box below.

Cl	CH ₂ -Cl	CH ₃ – I	$H_{3C} \rightarrow H_{H}$	Cl CH ₃
A	В	С	D	E
Br	Cl	H H H H	CH ₂ – Br HIIII H ₃ C	HIND HICH3
F	G	Н	I	J

Possible Outcome :

- (1) No reaction
- (3) Elimination
- (5) No reaction or slow substitution
- (2) Substitution
- (4) Substitution and elimination
- (6) No reaction or slow elimination

Compound		A	В	С	D	E	F	G	Н	I	J
(i)	CH ₃ CO ₂ Na										
(ii)	CH ₃ SNa										
(iii)	NaCN										
(iv)	NaOH										

2. In each of the following sections three organic halogen compounds are listed. In the box given enter a number (1 to 3) indicating the order of reactivity of the designated (1 is most reactive and 3 is least).

(a)	S_{N^2} substitution by	NaOCOC	H_3 in methanol:				
	1. $CH_3CH_2CH_2Br$		2. $(CH_3)_2 CHBr$		3. CH ₂	CHCH ₂ Br	
(b)	S_{M^2} substitution by	NaI in ac	etone:				
	$1.^{N}C_{6}H_{5}Cl$		2. C ₆ H ₅ CH ₂ Cl		3. C ₆ H ₅	CHClCH ₃	
(c)	S_{N^2} substitution by	NaCN in	methanol:				
	1. CH ₃ CH ₂ Cl		2. CH ₃ CH ₂ F		3. CH ₃ C	H ₂ I	
(d)	S_{M^2} substitution by	NaSCH ₃	in methanol:				
	$1.^{(CH_3)}_2 CHCH_2 C$	H₂Br□	2. CH ₃ CH ₂ CHBr	CH_2CH_3	3. (CH ₃)	₃ CCH ₂ Br	

3. Isobutyl alcohol (2-methyl-1-propanol), $(CH_3)_2CHCH_2OH$, can be transformed to each of the compounds (a through l) listed in the left-hand column. In each case the number of steps needed to accomplish the change is noted, and an answer box is provided for your reagent selections. Fourteen reagents (designated A through N) are listed in the right-hand column.

Write letters designating the reagent or reagents you believe will achieve the desired transformation in the box to the right of the product formula. In the case of a multi-step sequence write the reagents in the order they are to be used. In some cases you may wish to use a previously prepared compound as a reactant. If so, write the number (a to l) corresponding to the desired compound.

	Desired product	No. of Steps	Write Options		Reagent List
a.	(CH ₃) ₂ CHCH ₂ Br	one		А.	$Hg(OAc)_2$ in H_2O
b.	$(CH_3)_2 C = CH_2$	one		В.	PBr ₃ & heat
c.	$(CH_3)_2$ CHCH = O	one		C.	NaBH ₄ in alcohol
d.	(CH ₃) ₂ CHCO ₂ H	one		D.	LiAlH ₄ in THF (aqueous workup)
e.	(CH ₃) ₃ CBr	two		E.	NaCN in alcohol
f.	(CH ₃) ₂ CHCH ₂ C N	two		F.	PCC in CH_2Cl_2
g.	(CH ₃) ₂ CHCH ₂ OCOCH ₃	one		G.	Jones' reagent (CrO $_3$ in H $_3$ O)
h.	$(CH_3)_2 CHCO_2 C_2 H_5$	two		н.	HBr in CH ₂ Cl ₂
i.	$(CH_3)_2 CHCH_2 OCH_2 (CH_3)$	two		I.	H_3PO_4 and heat
j.	(CH ₃) ₃ COH	three		J.	$(CH_3CO)_2O + pyridine$
k.	$(CH_3)_2 CHCH_2 NH_2$	three		K.	NaN $_{\rm 3}$ in aqueous alcohol
1.	$(CH_3)_2 CHCH_2 CH_2 NH_2$	two		L.	C ₆ H ₅ CO ₃ H in CH ₂ Cl ₂ (peracid)
				м.	NaH in ether and heat
				N.	$C_2H_5OH + acid catalyst & heat$

X Total number of substitution and elimination product(s). Find the value of *X*.

ANSWERS — LEVEL 2												
1.		A	В	С	D	E	F	G	Н	Ι	J	
	(i)	2	2	2	1	1	1	6	2	2	6	
	(ii)	2	2	2	1	1	5	6	2	2	6	
	(iii)	2	2	2	1	1	1	3	3	2	3	
	(iv)	4	2	2	1	1	5	3	3	4	3	
2.	a – 3 >	> 1 > 2;	b – 2	> 3 >	1; c-	3 > 1 >	> 2; d	-1 > 2	> 3			

^{3.} a – B; b – I; c – F; d – G; e – I, H or 2 H; f – B, E or 1, E; g – J; h – G, N or 4N

i – N, j – I, A, C or 2AC or ILD or 2LD; k – B, K, D or 1KD; l – B, E, D or 1ED or 6D

Subjective Problems

1. 4