Speed Test-17

1. **(b)**
$$V = IR = (neAv_d)\rho \frac{\ell}{A}$$

$$\therefore \quad \rho = \frac{V}{V_d lne}$$

Here V=potential difference

I = length of wire

n = no. of electrons per unit volume of conductor.

e = no. of electrons

Placing the value of above parameters we get resistivity

$$\rho = \frac{5}{8 \times 10^{28} \times 1.6 \times 10^{-19} \times 2.5 \times 10^{-4} \times 0.1}$$
= 1.6 × 10⁻⁵ Om

 (d) From the curve it is clear that slopes at points A, B, C, D have following order A > B > C > D.
 And also resistance at any point equals to slope of the

V-i curve.

So order of resistance at three points will be

So order of resistance at three points will be R > R > R > R

$$R_A > R_B > R_C > R_D$$

3. (d) From the principle of potentiometer, $V \propto I$

$$\Rightarrow \frac{V}{E} = \frac{I}{L}$$
; where

V = emf of battery, E = emf of standard cell. L = length of potentiometer wire

$$V = \frac{El}{L} = \frac{30E}{100}$$

NOTE In this arrangement, the internal resistance of the battery E does not play any role as current is not passing through the battery.

4. (d)
$$R = \frac{\rho l}{\pi r^2}$$
. But $m = \pi r^2 ld$: $\pi r^2 = \frac{m}{ld}$

$$\therefore R = \frac{\rho l^2 d}{m}, R_1 = \frac{\rho l_1^2 d}{m_1}, R_2 = \frac{\rho l_2^2 d}{m_2}$$

$$R_3 = \frac{\rho l_3^2 d}{m_3}$$

$$R_1:R_2:R_3=\frac{{l_1}^2}{m_1}:\frac{{l_2}^2}{m_2}:\frac{{l_3}^2}{m_3}$$

$$R_1: R_2: R_3 = \frac{25}{1}: \frac{9}{3}: \frac{1}{5} = 125: 15: 1$$

5. (c) In series, $R_c = nR$

In parallel,
$$\frac{1}{R_p} = \frac{1}{R} + \frac{1}{R} + \dots n \text{ terms}$$

$$R_s/R_p = n^2/1 = n^2$$

6. (a) Efficiency is given by $\eta = \frac{\text{output}}{\text{input}}$

$$= \frac{5 \times 15 \times 14}{10 \times 8 \times 15} = 0.875 \text{ or } 87.5 \%$$

(b) According to the condition of balancing

$$\frac{55}{20} = \frac{R}{80} \Rightarrow R = 220\Omega$$

(a) $J = \sigma E \Rightarrow J\rho = E$

J is current density, E is electric field so $B = \rho = resistivity$.

so $B = \rho = resistivity$.

(d) Kirchhoff's first law is based on conservation of charge and Kirchhoff's second law is based on conservation of energy.

10. (c) $R = \frac{\rho \ell}{4}$

When wire is cut into 4 pieces and connected in parallel.

$$R_{eff.} = \frac{R}{16} \Rightarrow P_C = 16P$$

$$P_A:P_B:P_C:P_D=\frac{V^2}{R}:\frac{V^2}{R/4}:\frac{V^2}{R/16}:\frac{V^2}{R/2}$$

11. **(b)**
$$S = \frac{I_g R}{nI_g - I_g} \Rightarrow S = \frac{I_g}{(n-1)I_g} R$$

12. (d) Resistance of a conductor, $R = \frac{m}{ne^2\tau} \frac{I}{A}$

As the temperature increases, the relaxation time τ decreases because the number of collisions of electrons per second increases due to increase in thermal energy of electrons.

13. (b)
$$R_1 i_1 R_2 i_2$$

 $i_1R_1 = i_2R_2$ (same potential difference)

$$\therefore \frac{\dot{i}_1}{i_2} = \frac{R_2}{R_1} = \frac{\ell_2}{\ell_1} \times \frac{\eta^2}{r_2^2} = \frac{3}{4} \times \frac{4}{9} = \frac{1}{3}$$

14. (c)
$$\frac{R_1}{R_2} = \frac{\ell_1}{\ell_2}$$
 where $\ell_2 = 100 - \ell_1$

In the first case $\frac{X}{Y} = \frac{20}{80}$

$$\frac{4X}{Y} = \frac{\ell}{100 - \ell} \Rightarrow \ell = 50$$

15. (c) Before connecting E, the circuit diagram is

Then,
$$R_{eq} = 6 \Omega + 8 \Omega + 10 \Omega = 24 \Omega$$

Current in the 8 Ω resistance, $I = \frac{12V}{24\Omega} = \frac{1}{2}A$

After connecting E, the current through 8Ω is

$$I = \frac{1}{2}A$$

$$\therefore \quad E = \frac{1}{2}A \times 8\Omega = 4V$$

(d) By junction rule at point B -I + 1A + 2A = 0So, I = 3ABy Loop rule, $-3 \times 2 - 1 \times 1 - E + 12 = 0$

17. (d) Resistance of bulb
$$R_b = \frac{(1.5)^2}{4.5} = 0.5\Omega$$

Current drawn from battery = $\frac{E}{2.67 + 0.33} = \frac{E}{3}$

Share of bulb = $\frac{2}{3} \times \frac{E}{2} = \frac{2E}{\Omega}$

$$\therefore \left(\frac{2 \text{ E}}{9}\right)^2 \times 0.5 = 4.5 \text{ or E} = 13.5 \text{ V}.$$

18. (d) The equivalent circuit is given below:

The equivalent resistance is given by

$$\frac{1}{R} = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6} = \frac{1}{2}$$

$$\Rightarrow R = 20$$

19. (a) Since average drift velocity = $\frac{1}{2} \frac{eE}{m} \times (\tau)$ Now I = NeA × (avg. drift velocity)

$$= \frac{Ne^2AE}{2m\ell} \times \tau = \frac{Ne^2AV}{2m\ell} \times \tau$$

 $R = \frac{V}{I} = \frac{2m \ell}{N_{I} a^2 \pi^A}$, where N is electron density.

20. (c) The current through the resistance R

$$I = \left(\frac{\varepsilon}{R+r}\right)$$

The potential difference across R

$$V = IR = \left(\frac{\varepsilon}{R+r}\right)R$$

$$I = V$$

$$V$$

$$R$$

Thus V increases as R increases upto certain limit, but

it does not increase further. 21. (c) Resistance of bulb is constant

$$P = \frac{V^2}{R} \implies \frac{\Delta p}{p} = \frac{2\Delta V}{V} + \frac{\Delta R}{R}$$

$$\frac{\Delta p}{2} = 2 \times 2.5 + 0 = 5\%$$

22. (a) Potential gradient = Potential fall per unit length. In this case resistance of unit length.

$$R = \frac{\rho l}{A} = \frac{10^{-7} \times 1}{10^{-6}} = 10^{-1} \Omega$$

Potential fall across R is

 $V = I, R = 0.1 \times 10^{-1} = 0.01 \text{ volt/m}.$

$$=10^{-2} \text{ volt/m}$$

23. (d) $R_1 + R_2 = \text{Constant}, R_1 \text{ will increase}, R_2 \text{ will decrease}.$ $R_1 \alpha \Delta T - R \beta \Delta T = 0 \implies R_1 \alpha \Delta T = R_2 \beta \Delta T$

$$\therefore \frac{R_1}{R_2} = \frac{\beta}{\alpha}$$

- 24. (d) Given: Number of cells, n = 5, emf of each cell = E Internal resistance of each cell = r
 - In series, current through resistance R

$$I = \frac{nE}{nr + R} = \frac{5E}{5r + R}$$

In parallel, current through resistance
$$R$$

$$I' = \frac{E}{\frac{r}{r} + R} = \frac{nE}{r + nR} = \frac{5E}{r + 5R}$$

According to question, I = I'

$$\therefore \frac{5E}{5r+5R} = \frac{5E}{r+5R} \Rightarrow 5r+R = r+5R$$
or $R = r$ $\therefore \frac{R}{r} = 1$

25. (d) The total volume remains the same before and after stretching.

Therefore $A \times \ell = A' \times \ell'$

Here $\ell' = 2\ell$

$$\therefore A' = \frac{A \times \ell}{\ell'} = \frac{A \times \ell}{2\ell} = \frac{A}{2}$$

Percentage change in resistance

$$= \frac{R_f - R_i}{R_i} \times 100 = \frac{\rho \left(\frac{\ell'}{A'} - \frac{\ell}{A}\right)}{\rho \frac{\ell}{A}} \times 100$$

$$= \left[\left(\frac{\ell'}{A'} \times \frac{A}{\ell} \right) - 1 \right] \times 100 = \left[\left(\frac{2\ell}{\frac{4}{2}} \times \frac{A}{\ell} \right) - 1 \right] \times 100$$

26. (a) Pot. gradient = 0.2mV/cm

$$= \frac{0.2 \times 10^{-3}}{10^{-2}} = 2 \times 10^{-2} \, \text{V/m}$$

Emf of cell = $2 \times 10^{-2} \times 1 \,\text{m} = 2 \times 10^{-2} \,\text{V} = 0.02 \,\text{V}$ As per the condition of potentiometer

0.02 (R + 490) = 2 (R) or 1.98 R = 9.8

$$\Rightarrow R = \frac{9.8}{1.98} = 4.9 \Omega$$

Applying Kirchhoff's rule in loop abcfa $\varepsilon_1 - (i_1 + i_2) R - i_1 r_1 = 0$

28. (c) Total power consumed by electrical appliances in the building, Ptotal = 2500W

 $Watt = Volt \times ampere$

⇒ 2500 = V × I ⇒ 2500 = 220 I

$$\Rightarrow I = \frac{2500}{220} = 11.36 \approx 12A$$

(Minimum capacity of main fuse)

29. (a)

$$I = \frac{2\varepsilon}{R + R_1 + R_2}$$

Potential difference across second cell

$$= V = \varepsilon - iR_2 = 0$$

$$\epsilon - \frac{2\epsilon}{R + R_1 + R_2}, R_2 = 0$$

$$R + R_1 + R_2 - 2R_2 = 0$$

$$R + R_1 + R_2 - 2R_2 = 0$$

 $R + R_1 - R_2 = 0$

$$\therefore R = R_2 - R_1$$

30. (c) R₁ R₂

Resistance of the series combination. $S = R_1 + R_2$

Resistance of the parallel combination.

$$P = \frac{R_1 R_2}{R_1 + R_2}$$

$$S = nP \Rightarrow R_1 + R_2 = \frac{n(R_1R_2)}{(R_1 + R_2)}$$

$$\Rightarrow (R_1 + R_2)^2 = nR_1R_2$$

Minimum value of n is 4 for that

$$(R_1 + R_2)^2 = 4R_1R_2 \implies (R_1 - R_2)^2 = 0$$

- 31. (c) To convert a galvanometer into a voltmeter we connect a high resistance in series with the galvanometer. The same procedure needs to be done if ammeter is to be used as a voltmeter.
- 32. (c) Given, emf of cell E = 200 V

Internal resistance of cells = 1Ω D. C. main supply voltage V = 220 V

External resistance R = ?

$$r = \left(\frac{E - V}{V}\right) R$$

$$1 = \left(\frac{20}{220}\right) \times R$$

 $R = 11 \Omega$.

33. (a) In steady state, flow fo current through capacitor will

Potential difference through capacitor

$$V_{c} = \frac{Q}{C} = E - ir = E - \left(\frac{E}{r + r_{2}}\right)r$$

$$\therefore Q = CE \frac{r_2}{r + r_2}$$

34. (c)
$$i = neAV_d$$
 and $V_d \propto \sqrt{E}$ (Given)

or,
$$i \propto \sqrt{E}$$

 $i^2 \propto E$

$$i^2 \propto V$$

Hence graph (c) correctly dipicts the V-I graph for a wire made of such type of material.

35. (b) Current,
$$1 = (2.9 \times 10^{18} + 1.2 \times 10^{18}) \times 1.6 \times 10^{-19}$$

= 0.66 A towards right.

36. (a) Copper rod and iron rod are joined in series.

$$\begin{split} \therefore R &= R_{\text{Cu}} + R_{\text{Fe}} = (\rho_1 + \rho_2) \frac{\ell}{A} \\ \left(\because R &= \rho \frac{\ell}{A} \right) \\ \text{From ohm's law } V &= RI \\ &= (1.7 \times 10^{-6} \times 10^{-2} + 10^{-5} \times 10^{-2}) \div \\ \hline 0.01 \times 10^{-4} \text{ yolt} \end{split}$$

$$= 0.117 \text{ volt} (\because I = 1A)$$

37. (d)
$$I = \frac{E}{R+r}$$
, Internal resistance (r) is zero, $I = \frac{E}{R} = \text{constant}$.

38. **(b)**
$$R_1 = R_0 (1 + \alpha t)$$

Initially, $R_0 (1 + 30\alpha) = 10\Omega$
Finally, $R_0 (1 + \alpha t) = 11\Omega$

$$\therefore \frac{11}{10} = \frac{1 + \alpha t}{1 + 30\alpha}$$

or, $10 + (10 \times 0.002 \times t) = 11 + 330 \times 0.002$

or,
$$0.02t = 1 + 0.66 = 1.066$$
 or $t = \frac{1.66}{0.02} = 83$ °C.

39. (b) As $P = I^2 R$, so $P_1 = (1.01 I)^2 R = 1.02 I^2 R = 1.02 P$. It means % increase in power

$$=\left(\frac{P_1}{P_1}-1\right)\times 100=2\%.$$

40. (b) Let I_1 be the current throug 5Ω resistance, I_2 through (6+9) Ω resistance. Then as per question,

$$I_1^2 \times 5 = 20$$
 or, $I_1 = 2A$.

Potential difference across C and $D = 2 \times 5 = 10V$

Current
$$I_2 = \frac{10}{6+9} = \frac{2}{3} A$$
.

Heat produced per second in 2 Ω

$$= I^2 R \left(\frac{8}{3}\right)^2 \times 2 = 14.2 \text{ cal/s}.$$

41. **(b)**
$$\frac{P}{Q} = \frac{R}{S}$$
 where $S = \frac{S_1 S_2}{S_1 + S_2}$

42. (c)
$$R = \frac{\rho \ell_1}{A_1}$$
, now $\ell_2 = 2\ell_1$
 $A_2 = \pi (r_2)^2 = \pi (2r_1)^2 = 4\pi r_1^2 = 4A_1$
 $\therefore R_2 = \frac{\rho (2\ell_1)}{2A_1} = \frac{\rho \ell_1}{2A_1} = \frac{R}{2}$

... Resistance is halved, but specific resistance remains the same.

43. (d)
$$E=V+Ir$$

 $V=12-3=9 \text{ volt}$

44. (c)
$$1 = \text{neAV}_d$$

$$V_{d} = \frac{I}{\text{neA}} = 5 \times 10^{-3} \text{ m/sec}$$