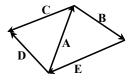

VECTORS

8.

9.

- 1. A vector may change if -
 - (1) frame of reference is translated
 - (2) vector is rotated
 - (3) frame of reference is rotated
 - (4) vector is translated parallel to itself
- 2. Let $\vec{A} = \frac{1}{\sqrt{2}} \cos \theta \hat{i} + \frac{1}{\sqrt{2}} \sin \theta \hat{j}$ be any vector. What will be the unit vector \hat{n} in the direction of \vec{A} ?
 - (1) $\cos\theta \hat{i} + \sin\theta \hat{j}$
 - (2) $-\cos\theta \hat{i} \sin\theta \hat{j}$
 - $(3)1/\sqrt{2}(\cos\theta\hat{i}+\sin\theta\hat{j})$
 - $(4)1/\sqrt{2}(\cos\theta\hat{i}-\sin\theta\hat{j})$
- **3.** Which of the following statement(s) is correct?
 - (1) The unit vector of velocity and force may be same.
 - (2) The angle between two unit vectors is always 90°.
 - (3) The unit vector of velocity is always perpendicular to acceleration.
 - (4) The difference between magnitudes of two unit vector is equal to magnitude of difference of two unit vectors.
- 4. Two forces act on a particle simultaneously as shown in the figure. Find net force in milli newton on the particle. [Dyne is the CGS unit of force]

(1) $\sqrt{3}$ (2) $\sqrt{2}$ (3) 1 (4) 2

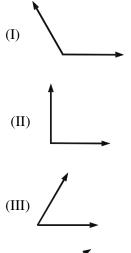

5. The ratio of maximum and minimum magnitudes of the resultant of two vector \vec{a} and \vec{b} is 3 : 1. Now $|\vec{a}|$ is equal to :

(1) $|\vec{b}|$ (2) $2|\vec{b}|$ (3) $3|\vec{b}|$ (4) $4|\vec{b}|$

6. Consider three vector \vec{A}, \vec{B} and \vec{C} as shown in figure. Choose the incorrect statement ?

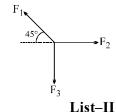
- (1) $\vec{A} + \vec{B}$ can be in the direction
- (2) $\vec{A} + \vec{B} + \vec{C}$ can be in the direction $\sqrt{}$
- (3) $\vec{A} \vec{B}$ can be in the direction \longrightarrow
- (4) $\vec{A} + \vec{B} \vec{C}$ can be in the direction
- 7. For figure the correct relation is :-

(1) $\vec{A} + \vec{B} + \vec{E} = \vec{0}$ (2) $\vec{C} - \vec{D} = \vec{A}$ (3) $\vec{B} + \vec{E} - \vec{C} = \vec{D}$ (4) all of the above Vector \vec{R} is the resultant of the vectors \vec{A} and \vec{B} . Ratio of minimum value of $|\vec{R}|$ and


maximum value of $\left| \vec{R} \right|$ is $\frac{1}{4}$. Then $\frac{\left| \vec{A} \right|}{\left| \vec{B} \right|}$ may be:-

(1)
$$\frac{4}{1}$$
 (2) $\frac{2}{1}$ (3) $\frac{3}{5}$ (4) $\frac{1}{4}$

A particle is given successive displacements. Which of the following sets of displacements could be capable of returning the particle to its initial position?

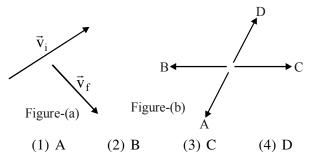

- (1) 10 m, 8m, 6 m, 30 m
- (2) 20 m, 10 m, 6m, 50 m
- (3) 65m, 15 m, 45 m, 30 m
- (4) 100 m, 18m, 22 m, 32 m

 Refer the following arrangements consisting of two vectors of same magnitude. Arrange them in ascending order of resultant magnitudes.

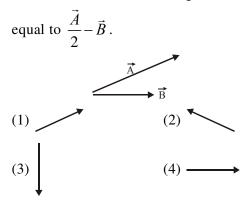
- (1) I, II, III, and IV \qquad (2) IV, III, II and I \qquad
- (3) II, IV, III and I (4) II, I, III and IV
- 11. Three forces \vec{F}_1 , \vec{F}_2 and \vec{F}_3 are represented as shown. Each of them is of equal magnitude.

(Approximate Direction)

(Combination)


List-I

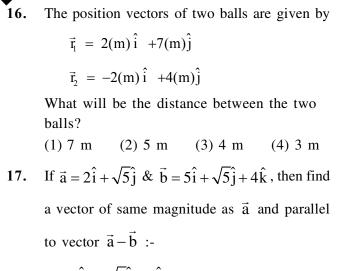
- (P) $\vec{F}_1 + \vec{F}_2 + \vec{F}_3$ (1)
- (Q) $\vec{F}_1 \vec{F}_2 + \vec{F}_3$ (2)
- (R) $\vec{F}_1 \vec{F}_2 \vec{F}_3$
- (S) $\vec{F}_2 \vec{F}_1 \vec{F}_3$ (4)


Code :

(1) P-1, Q-2, R-3, S-4
(2) P-2, Q-1, R-4, S-3
(3) P-2, Q-3, R-1, S-4
(4) P-4, Q-1, R-2, S-3

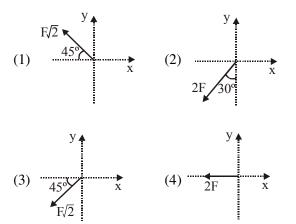
12. The initial and final velocities of an object are as shown in figure (a). Which arrows shown in figure (b) can represent change in velocity vector?

13. Two vectors $\vec{A} \& \vec{B}$ have magnitudes 2 & 1 respectively. If the angle between $\vec{A} \& \vec{B}$ is 60°, which of the following vectors may be



- 14. A particle moves on a circular path of radius R. Find magnitude of its displacement during an interval in which it covers angular displacement θ.
 - (1) $R\theta$ (2) $R \sin\theta$ (3) $2R\cos\frac{\theta}{2}$ (4) $2R\sin\frac{\theta}{2}$
- **15.** Newton approximated motion in a circle as a series of linear motions, as in the polygon below.

If we assume the particle moves at constant speed v_A from A to B, and at constant speed v_B from B to C, the direction of the change in velocity, $\Delta \vec{v}$, at point B, is shown by the arrow:-



(1)
$$\frac{7i+2\sqrt{5j+4k}}{3}$$
 (2) $-3\hat{i}-4\hat{k}$
(3) $\frac{-9\hat{i}-12\hat{k}}{5}$ (4) $9\hat{i}+12\hat{k}$

Two forces are simultaneously applied on an object.

What third force would make the net force to point downwards?

19. Two vector $\vec{a} = 3\hat{i} + 8\hat{j} - 2\hat{k}$ and

 $\vec{b} = 6\hat{i} + 16\hat{j} + x\hat{k}$ are such that the component of \vec{b} perpendicular to \vec{a} is zero. Then the value of x will be :-

(1) 8 (2) -4 (3) +4 (4) -8

20. Two forces each of magnitude 5N is applied on block. One force is acting towards East and the other acting along 74° North of East. The resultant of the two forces is of magnitude :-

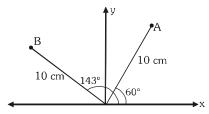
(1) 6 N	(2) 10 N
(3) 8 N	(4) 12 N

21. Position of a particle at t = 0 is (2, 3, 0). It starts moving with a speed of 10 m/s in direction 37° north of west. Its position after t = 1 sec is (Take North as positive y-axis and East as positive x-axis) :-

(1) (6, 11) (2) (-4, 11) (3) (-8, 6) (4) (-6, 9)

22. Two forces (shown in figure) act on a body simultaneously. Among the given options which force when added will give resultant in North-East direction ?

West
$$4 \text{ N}$$
 3 N 4 South


- (1) 1 N in North direction
- (2) 1 N in East direction
- (3) 3 N in West direction
- (4) 1 N in North-East direction
- 23. For the given vector $\vec{A} = 3\hat{i} 4\hat{j} + 10\hat{k}$, the ratio of magnitude of its component on the x-y plane and the component on z-axis is

(1) 2 (2)
$$\frac{1}{2}$$

- (3) 1 (4) None of these
- 24. If \vec{A} vector makes angle 90° & 30° with the x and y axis respectively then angle it makes with the z axis can be :

(1) 120° (2) 30° (3) 45° (4) 90°

25.	What is the length of projection of	31.
	$\vec{A} = 3\hat{i} + 4\hat{j} + 5\hat{k}$ on xy plane?	
	(1) 5 (2) 3 (3) $5\sqrt{2}$ (4) 4	
26.	_	
	magnitude of new vector is -	
	(1) 2A (2) A	
	(3) A/2 (4) Zero	
27.	If a vector \vec{A} makes angles α , β and γ	
	respectively with the X, Y and Z axes	32.
	respectively then $\sin^2\alpha + \sin^2\beta + \sin^2\gamma =$	
	(1) 0 (2) 1 (3) 2 (4) 3	
28.	Three concurrent forces of the same magnitude	
	are in equilibrium. What is the angle between	
	the forces and the name of triangle formed by	
	the forces as sides :-	
	(1) 60°, 60°, 60° & an equilateral triangle	
	(2) 120°, 120°, 120° & an equilateral triangle	33.
	(3) 120°, 30°, 30° & an isosceles triangle	
	(4) 90°, 60°, 30° & a right angled triangle	
29.	θ_{x} and θ_{y} are the angles made by a vector \vec{A}	
	with positive x and positive y-axis	
	respectively. Which set of θ_x and θ_y is not	
	possible?	
	(1) 60° , 60° (2) 45° , 60°	
	(3) 30°, 45° (4) 30°, 65°	34.
30.	Refer the given figure and identify incorrect statement	

- (1) Distance of A from x-axis is $5\sqrt{3}$ cm.
- (2) Distance of B from x-axis is 6 cm.
- (3) Distance of A from y-axis is 5 cm.
- (4) Distance of B from y-axis is 6 cm.

 $\vec{a} = 5 \text{ units due South-West}$ $\vec{b} = 5 \text{ units due 53° North of East}$ $\vec{c} = 10 \text{ units due 37° South of East}$ Then which of the following is incorrect : $(1) \vec{a} + \vec{b} = -2\hat{i} - \hat{j} \qquad (2) \vec{a} \cdot \vec{b} = -\frac{35}{\sqrt{2}}$ $(3) \vec{b} \cdot \vec{c} = 0 \qquad (4) \vec{b} + \vec{c} = 11\hat{i} - 2\hat{j}$ The angle between two vectors $\vec{R} = -\hat{i} + \frac{1}{3}\hat{j} + \hat{k} \text{ and } \vec{S} = x\hat{i} + 3\hat{j} + (x - 1)\hat{k}$ (1) Is obtuse angle

- (2) Is acute angle
- (3) Is right angle
- (4) Depends on x
- **33.** If the angle between $\hat{a} \& \hat{b}$ is 60°, then which of the following vector(s) have magnitude one :-

(A)
$$\frac{\hat{a}+\hat{b}}{\sqrt{3}}$$
 (B) $\hat{a}-\hat{b}$

(C)
$$\hat{a}$$
 (D) \hat{b}

(1) Only C,D (2) Only B,C,D

- (3) Only A,C,D (4) All
- 34. The dot product of two vectors of magnitudes3 units and 5 units cannot be
 - (1) 2 (2) -2 (3) 20 (4) zero
- **35.** If \vec{a} and \vec{b} are two unit vectors such that $\vec{a} + 2\vec{b}$ and $5\vec{a} - 4\vec{b}$ are perpendicular to each other then the angle between \vec{a} and \vec{b} is (1) 45° (2) 60°
 - (3) $\cos^{-1}\left(\frac{1}{3}\right)$ (4) $\cos^{-1}\left(\frac{2}{7}\right)$

36.	If \vec{A}, \vec{B} and \vec{C} are vectors having a unit	39.	For a right handed coordinate system, positive
	magnitude. If $\vec{A} + \vec{B} + \vec{C} = \vec{0}$ then		x-axis is towards right of you and positive z-axis is upward then positive y-axis will be :
	$\vec{A}.\vec{B} + \vec{B}.\vec{C} + \vec{C}.\vec{A}$ will be :-		
	(1) 1 (2) $-\frac{3}{2}$ (3) $-\frac{1}{2}$ (4) zero		(1) In front of you
			(2) At back of you
37.	If $\vec{A} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{B} = \hat{i} + 2\hat{j} + 2\hat{k}$, find the magnitude of component of $(\vec{A} + \vec{B})$		(3) Towards left
	along \vec{B} :		(4) Downwards
	(1) 4 unit (2) 5 unit	40.	If a =2, b =5 and $ \vec{a} \times \vec{b} = 8$ then $\vec{a} \cdot \vec{b}$ is
29	(3) 6 unit (4) 7 unit		(1) 6 (2) 12 (3) 9 (4) 4
38.	(3) 6 unit (4) 7 unit The adjacent sides of a parallelogram are represented by co-initial vectors $2\hat{i}+3\hat{j}$ and	41.	(1) 6 (2) 12 (3) 9 (4) 4 The sum of magnitudes of two forces acting at a point is 16N. If their resultant is normal to the
38.	The adjacent sides of a parallelogram are	41.	The sum of magnitudes of two forces acting at
38.	The adjacent sides of a parallelogram are represented by co-initial vectors $2\hat{i} + 3\hat{j}$ and	41.	The sum of magnitudes of two forces acting at a point is 16N. If their resultant is normal to the
38.	The adjacent sides of a parallelogram are represented by co-initial vectors $2\hat{i}+3\hat{j}$ and $\hat{i}+4\hat{j}$. The area of the parallelogram is- (1) 5 units along z-axis (2) 5 units in x-y plane	41.	The sum of magnitudes of two forces acting at a point is 16N. If their resultant is normal to the smaller force and has a magnitude of 8N. Then
38.	The adjacent sides of a parallelogram are represented by co-initial vectors $2\hat{i}+3\hat{j}$ and $\hat{i}+4\hat{j}$. The area of the parallelogram is- (1) 5 units along z-axis	41.	The sum of magnitudes of two forces acting at a point is 16N. If their resultant is normal to the smaller force and has a magnitude of 8N. Then the forces are-

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	1	1	3	2	4	1	3	3	1	3	1	2	4	2	2	3	2	2	3
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	4	2	2	1	1	2	3	2	3	4	1	3	4	3	2	2	2	1	1	1
Que.	41																			
Ans.	1																			

ANSWER KEY