
Chapter 19
Complex Number

19.1 IntroductIon

While working with real numbers (ℝ) we would not find relations to equations, such as x2 + 9 = 0 (??).  
So, to look forward we have to difine another set of number systems.

19.1.1 Imaginary Numbers (Non-real Numbers)

A number whose square is non-positive, is termed as an imaginary number, e.g., 2 or (1 2)− + − .

Iota: Euler introduced the symbol i for the number 1− . It is known as iota (a Greek word for  

‘imaginary’). Thus, 2 2i− =  and + − = +1 2 1 2i are imaginary numbers.

Remark: 
 (i) Imaginary numbers do not follow the property of order, i.e., for z1 and z2 imaginary numbers we 

cannot say which one is greater. Since i is neither positive nor negative, nor zero.

 (ii) Here non-possible does not imply negative, e.g., 1 2+ −  is also non-positive.

19.1.2 Purely Imaginary Numbers (I)

The number z whose square is non positive real number (negative or zero) is termed as purely imaginary 

number. For example, 5− , i.e., I = {z : z = ai; where a ∈ ℝ and i = }.

19.1.2.1  Geometrical representation of purely 
imaginary numbers

Single multiplication by i is equivalent to geometrical rotation of number 
by p/2 radians anti-clockwise.

Therefore, purely imaginary numbers are represented as points 
lying on y axis of argand plane. For example: z = ai is represented by point  
(0, a) on y axis as shown here:
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Remarks:
 1. The plane formed by real and imaginary axes is called Argand/Gaussian/Complex Plane.

 2. It should be kept in mind that any equation not having real roots does not necessarily posses  
imaginary roots. For example, the equation x + 5 = x + 7 is neither satisfied by real numbers nor  
is satisfied by imaginary numbers.

19.1.3 Properties of Iota

 1. i0 = 1, i2 = –1, i3 = –i, i4 = 1
 2. Periodic properties of i ; i4n = 1, i4n + 1 = i, i4n + 2 = – 1, i4n + 3 = –i ∀ n ∈ ℤ 
 3. i – 1 = – i
 4. Sum of four consecutive power terms of i is zero, that is, in + in + 1 + in + 2 + in + 3 = 0 ∀ n ∈ ℤ.
 5. For any two real numbers a and b; × =a b ab is true only when atleast one of a and b is  

non-negative real number, i.e., both a and b are non-negative. 

19.2 complex number

A number z resulting as a sum of a purely real number x and a purely imaginary number iy is called a  

complex number, i.e., a number of the form z = x + iy where x, y ∈ ℝ and = −i 1  is called a complex  
number. Here x is called real part and y is called imaginary part of the complex number and they are  
expressed as Re(z) = x, Im (z) = y. A complex z = x + iy number may also be defined as an ordered pair  
of real numbers and may be denoted by the symbol (x, y). 

The set of complex numbers is denoted by ℂ and is given by = {z : z = x + iy; where x, y ∈ ℝ  
and = −i 1 }.

19.3 ArgAnd plAne

Any complex number, z = a + ib, can be written as an ordered pair (a, b) which 
can be represented on a plane by the point P(a, b) (known as affix of point  P) 
as shown in the figure. This plane is called Argand plane, complex plane or 
the Gaussian plane. 

19.3.1 Representation of Complex Numbers

Complex numbers can be represented by following forms:
 1. Cartesian form (rectangular form): A complex number, z = x + iy, can be represented by the  

point P having coordinate (x, y).  
 2. Vector form (Algebraic form): Every complex number z is regarded as a position vec-

tor 


(OP) which is sum of two position vectors: Purely real vector x 


(OA)  and purely imaginary  

vector iy 


(OB) .

   = + = +
    

OP OA AP OA OB   ⇒ z = x + iy 

  Modulus of z: Distance of point P from the origin is called modulus of complex number z and is 
denoted by |z|. It is length of vector 



(OP) . It is distance of P(z) from origin.
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    ( )( ) ( )( )∴ = = + = +
 2 22 2z OP x y Re z Im z

  Argument of z: Argument of z is the angle made 
by 



OP  with the positive direction of real axis. Also 
known as amplitude z and is denoted by amp (z).

  Arg(z) = q;  where θ =
ytan
x

, q lies in the quadrant in 

which complex number z lies.

Note:
The principal arguments q ∈ (–p, p].

 3. Polar form (amplitude modulus form): In DOAP : OP = |z| = r
  ⇒ OA = x = r cosq and AP = y = r sinq   ⇒ z = x + iy = r (cosq + i sinq) = r cisq 

Remark
cis q is unimodular complex number and acts as unit vector in the direction of q where q  is arg z.

 4. Euler form (Exponential form): Euler represented complex number z as an exponential function 
of its argument q (radians) and described here. As we know that using Taylor’s series expansion  
cos q and sinq can be expanded in terms of polynomial in q as given below:

  
θ θ θ

θ = − + − +
2 4 6

cos 1 ........
2! 4! 6!

  and θ θ θ
θ = θ− + − +

3 5 7

sin ........
3! 5! 7!

 \ (cosq + isinq) = 
( ) ( ) ( ) θθ θ θ

+ θ+ + + + ∞ =
2 3 4

ii i i
1 i ...... to e

2! 3! 4!
 ⇒ z = x + iy = r (cosq + i sinq) = reiq

Advantages of using Euler form:
  Convenient for division and multiplication of complex numbers.
  Suitable for exponential, logarithmic and irrational functions involving complex numbers.

19.3.1.1 Inter-conversion from polar/trigonometric to algebraic form

 (i) Algebraic form to polar form: Given z = x + iy, then 

= +2 2r x y ; θ = θ =
x ycos ; sin
r r

 gives q = f (say)

In polar form = + φ+ φ2 2z x y (cos isin )

 (ii) Polar form to algebraic form: Given z = r(cosq + isinq) = 
rcosq + i(rsinq)

 ⇒ z = x + iy; where x = rcosq and y = rsinq

19.3.2 Properties of Complex Numbers

 (i) Equality: Two complex numbers z1 and z2 are equal only when their real and imaginary parts are 
respectively equal, i.e., Re(z1) = Re(z2) and I(z1) = I(z2) or |z1| = |z2| and arg (z1) = arg (z2).
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Remarks:
Students must note that x, y ∈ ℝ and x, y ≠ 0. If x + y = 0 ⇒ x = – y is correct, but x + iy = 0   
⇒ x = – iy is incorrect (unless both x and y are zero)

Hence, a real number cannot be equal to the imaginary number, unless both are zero.

 (ii) Inequality: Inequality in complex number is not defined because ‘i’ is neither positive, zero nor 
negative. So 4 + 3i > 1 + 2i or i < 0 or i > 0 is meaningless.

 (iii) If Re(z) = 0 then z is purely imaginary and if Im (z) = 0, then z is purely real.
 (iv) z = 0 ⇒ Re(z) = Im (z) = 0, therefore the complex number 0 is purely real and purely imaginary or both.
 (v) If z = x + iy, then iz = –y + ix ⇒ Re(iz) = – Im(z) and Im(iz) = Re(z).
  (vi) Conjugate of complex number: z = x + i y is denoted 

as z  = (x – iy), i.e., a complex number with same real 
part as of z and negative imaginary part as that of z.

 (vii) If z is purely real positive ⇒ Arg(z) = 0.
 (viii) If z is purely real negative ⇒ Arg(z) = p.
 (ix) If z is purely imaginary with positive imaginary part  

⇒ Arg(z) = p/2.
 (x) If z is purely imaginary with negative imaginary part 

⇒ Arg(z) = –p/2.
 (xi) Arg(0) is not defined.

19.3.2.1 Binary operations defined on set of complex numbers

Binary operation on set of complex number is a function from set of complex numbers to itself.  
That is, if z1, z2 ∈ C and * is a binary operation on the set of complex numbers then z1 * z2 ∈ C. Following  
binary operations are defined on set of complex numbers. 

Addition of two complex numbers: Let z1 = x1 + iy1 and z2 = x2 + iy2  ⇒ z1 + z2 = (x1 + iy1) + (x2 + iy2)
= (x1 + x2) + i (y1 + y2);  i.e., z1 + z2 = [R(z1) + R(z2)] + i[I(z1) + I(z2)] ∈ C.

19.3.2.2 Geometric representation

Consider two complex numbers z1 = (x1 + iy1) and z2 = (x2 + iy2) represented by 

vector =


1z OA ; 


z OB  as shown in figure. 

Then by parallelogram law of vector addition + = + =
  

1 2z z OA OB OC .
Hence C represents the affix of z1 + z2.

Notes:
In DOAC [Since sum of two sides of a D is always greater than the third side] \ OA + AC ≥ OC 

⇒ |OA| |OB| |OC|+ ≥
  

⇒ | z1 | + | z2 | ≥ | z1 + z2| This is called triangle inequality. Also considering OAB; OA + OB ≥ AB 

⇒ + ≥ ⇒ + ≥ −
  

1 2 1 2|OA| |OB| |BA| |z | |z | |z z |

Subtraction of two complex numbers: Let z1 = x1 + iy1 and z2 = x2 + iy2 ; then z1– z2 =(x1 + iy1) – (x2 + iy2) 
= (x1 – x2) + i (y1 – y2) i.e., z1 – z2 = [R(z1) – R(z2)] + i[I(z1) – I(z2)] ∈ C.
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19.3.2.3 Geometric representation

Using vector representation again, we have = − = − =
   

1 2BA OA OB z z OC .
Hence, the other diagonal of the parallelogram represents the difference  

vector of z1 and z2.

Notes:

 1. While BA


 represents the free vector corresponding to z1 – z2, OC


 represents the position vector  
of z1 – z2.

 ⇒ C is affix of complex number z1 – z2.

 2. In a triangle, the difference of two sides is always less than the third side.

 ⇒ OB OA AB− ≤
  

 ⇒ ||z2| – |z1|| ≤ |z2 + z1|

 3. Triangle Inequality: ||z1| – |z2|| ≤ |z1 ± z2| ≤ |z1| + |z2 |

Multiplication of two complex numbers: Let z1 = x1 + iy1 and z2 = x2 + iy2, then z1.z2 = (x1 + iy1).  
(x2 + iy2) = [R(z1).R(z2) – I(z1).I(z2)] + i[R(z2).I(z1) + R(z1). I(z2)] ∈ C.

Geometric representation: Let A and B are two points in the complex plane respectively, affixes of  
z1 and z2; where z1 = r1(cos q1 + i sinq1) and z2 = r2(cos q2 + i sinq2); z1.z2 = r1r2(cosq1 + isin q1)  
(cosq2 + i sinq2).

19.3.3 Result
The product rule can be generalized to n complex numbers. Let zn = rn(cosqn + i sinqn), where  
n = 1, 2,....

Now, |z1. z2...zn| = r1r2...rn = |z1| | z2 |.....|zn| and arg (z1 z2...zn) = q1 + q2 + .... + qn = arg z1 +  
arg z2 + ..... + arg zn.

As special case arg zn = n arg z.

Division of two complex numbers: Let z1 = x1 + iy1 and z2 = x2 + iy2  ⇒ z1/z2 = (x1 + iy1)/(x2 + iy2)

=  + −
+ ∈

+ +
1 2 1 2 2 1 1 2

2 2 2 2
2 2 2 2

(x .x   y .y ) i(x .y   x .y )  C
(x y ) (x y )

.

Geometric representation: Let A and B are two points in the complex 
plane which are affixes of z1 and z2 respectively, where z1 = r1(cos q1 + i 
sinq1) and z2 = r2(cos q2 + i sinq2).

Then, we get =2 2

1 1

z r
z r

[cos(q2 – q1) + i sin(q2 – q1)].

Notes:

 1. If q1 and q2 are principal values of argument of z1 and z2, then q1 + q2 may not necessarily be the 
principal value of argument of z1. z2 and q1 – q2 may not necessarily be principal value of argument  
of z1/z2. To make this argument as principal value, add or subtract 2np where n is such an integer, 
which makes the argument as principal value.

 2. Note that angle a between two vectors OA


 and OB


 is a = q2 – q1, a = arg z2 – arg z1.
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19.4 AlgebrAIc Structure of Set of complex numberS

 (i) Complex numbers obey closure law (for addition subtraction and multiplication), commutative 
law  (for addition and multiplication) associative law (for addition and multiplication), existence of 
additive and multiplicative identitiy and inverse.

 (ii) Existence of conjugate element: Every complex number z = x + iy has unique conjugate denoted  
as x – iy.

19.4.1 Conjugate of a Complex Number
Conjugate of a complex number z = x + iy is defined as = −z x iy. It is mirror  
image of z in real axis as mirror shown in the figure given here:

Let z = r (cosq + isinq) ⇒ = θ− θz r(cos isin )  = r [cos(–q) + isin(–q)]
⇒ z  has its affix point having magnitude r and argument (–q).

19.4.2 Properties of Conjugate of a Complex Number 
 1. = = −R(z) R(z), I(z) I(z)

 2. = = = +2 2 2 2z.z | z | | z | (R(z)) (I(z))

 3. = =(z) z, (z) z  and so on.

 4. = − =|z| |z|and Agr z Arg z

 5. If =z z , i.e., arg z = arg z   ⇒ z is purely real.
 6. If  z  = – z, i.e., arg (–z) = arg( z ) ⇒ z is purely imaginary 

 7. +
= = =

z zR(z) x R(z)
2

;  
−

= = = −
z zIm(z) y Im(z)

2i

 8. 
θ − θ +

θ = 
 

i ie ecos
2

; 
θ − θ −

θ = 
 

i ie esin
2i

 9. ± ± ± ± = ± ± ± ±1 2 3 n 1 2 3 n(z z z ... z ) z z z ... z

 10. =1 2 3 n 1 2 3 n(z .z .z ...z ) (z ).(z ).(z ).....(z )

 11. = 1
1 2

2

(z )(z /z )
(z )

 12. =n n(z ) (z)
 13. If w = f(z), then ω= f(z) , where f(z) is algebraic polynomial.

 14. + =1 2 2 1 2 1z z z z 2R(z z )

 15. + = + +2 2
1 2 1 2 1 2| z z | | z | | z | 2Re(z z )

 16. |z1 + z2|
2 + |z1 – z2|

2 = 2(|z1|
2 + |z2|

2)

19.4.3 Modulus of a Complex Number
Modulus of a complex number, z = x + iy, is denoted by |z|. If point p(x, y) represents the complex number 

z on Argand’s plane, then = = +2 2z OP x y  = distance between origin and point = +2 2P [R(z)] [I(z)] .
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19.4.3.1 Properties of modulus of complex numbers

 1. Modulus of a complex numbers is distance of complex number from the origin and hence, is  
non-negative and |z| ≥ 0 ⇒ | z | = 0 iff z = 0 and | z | > 0 iff z ≠ 0.

 2. –| z | ≤ Re(z) ≤ | z |and – | z | ≤ Im(z) ≤ | z |
 3. = = − = −| z | | z | | z | | z |

 4. = 2zz | z |
 5. | z1z2 | = | z1 || z2 |. In general |z1z2z3 ......zn| = |z1||z2|| z3 |......|zn|.
 6. (z2 ≠ 0)
 7. Triangle inequality: | z1 ± z2 | ≤ | z1 | + | z2 |. In general | z1 ± z2 ± z3......± zn| ≤ | z1 |±| z2 |  

± | z3 | ±......± | zn |
 8. Similarly | z1 ± z2 | ≥ | z1 | – | z2 |.
 9. | zn | = | z |n

 10. || z1 | – | z2 || ≤ | z1 ± z2| ≤ | z1 | + | z2 |. Thus, | z1 | + | z2 | is the greatest possible value of | z1 ± z2 | and  
|| z1 | – | z2 || is the least possible value of | z1 ± z2|.

 11. ± = + ± +2 2 2
1 2 1 2 1 2 1 2| z z | | z | | z | (z z z z )  or + ±2 2

1 2 1 2| z | | z | 2Re(z z )  or | z1 |
2 + | z2 |

2 ± 2 | z1 || z2 |  

cos (q1 – q2)

 12. + = θ −θ2
1 2 1 2 1 2 1 2| z z z z | 2 |z | | z | cos( ); where q1 = arg (z1) and q 2 = arg (z2).

 13. | z1 + z2 |
2 = | z1 |

2 + | z2 |
2 ⇔ 1

2

z
z

 is purely imaginary

 14. | z1 + z2 |
2 + | z1 – z2 |

2 = 2{| z1 |
2 + | z2 |

2}
 15. | az1 + bz2 |

2 + | bz1 – az2 |
2 = (a2 + b2)(| z1 |

2 + | z2 |
2) where a, b ∈ R.

 16. Unimodular: If z is unimodular, then | z | = 1. Now, if f (z) is a unimodular, then it can always be  
expressed as f (z) = cosq + isinq, q∈ℝ.

19.4.3.2 Argument and principal argument of complex number

Argument of z (arg z) is also known as amp(z) is angle which the radius vector 


OP makes with positive 
direction of real axis. 

Principle Argument: In general, argument of a complex number is not unique, if q is the  
argument, then 2nπ + q is also the argument of the complex number where n = 0, ± 1, ± 2,..... Hence, we 
define principle value of argument q, which satisfies the condition –p < q ≤ p. Hence, Principle value of 
arg(z) is taken as an angle lying in (–p, p]. It is denoted by Arg(z). Thus, arg(z) = Arg(z) ± 2kp; k ∈ ℤ.

A complex number z, given as (x + iy), lies in different quadrant depending upon the sign of x and 
y. Based on the quadrantal location of the complex number its principle argument are given as follows.
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Sign of x and y Location of z Principal Argument

x > 0, y > 0 Ist quadrant −θ = α = 1 ytan
x

x < 0, y > 0 IInd quadrant −θ = π−α = π− 1 y( ) tan
x

x < 0, y < 0 IIIrd quadrant 1 ytan
x

−θ = −π+

x > 0, y < 0 IVth quadrant −θ = −α = − 1 ytan
x

19.4.3.3 Caution

An a usual mistake is to take the argument of z = x + iy as tan–1 (y/x) is irrespective of the value of x and y.

  Remember that tan–1 (y/x) lies in the interval π π − 
 

,
2 2

.

Whereas the principal value of argument of z (Arg(z)) lies in the interval (–π, π].

Thus, if z = x + iy, then

1

1

1

tan (y/x) if x 0, y 0
tan (y/x) if x 0, y 0
tan (y/x) if x 0, y 0Arg(z)

/2 if x 0, y 0
/2 if x 0, y 0

Not defined for x  0,  y 0

−

−

−

 > ≥


+ π < ≥
 −π < <= 
π = >
−π = <

= =

 

19.4.3.4 Properties of argument of complex number

 1. arg (z1.z2) = arg z1 + arg z2 

 2. arg(zn) = n (argz)

 3. 
 

= − 
 

1
1 2

2

zarg arg z arg z
z  

 4. arg(z) = 0 ⇔ complex number z is purely real and positive.
 5. arg(z) = p ⇔ complex number z is purely real and negative.
 6. arg(z) = p/2 ⇔ complex number z is purely imaginary with positive Im(z).
 7. arg(z) = – p/2 ⇔ complex number z is purely imaginary with negative Im(z).
 8. arg(z) = not defined ⇔ z = 0.
 9. arg(z) = p/4 ⇔ z = (1 + i) or (x + xi), etc. for (x > 0).

Properties of Principal Arguments: (Principal argument of complex number is denoted by arg (z))

 1. If θ= θ + θ = ki
k k k k kz r (cos isin ) r e  are number of complex numbers then 

==

 
= ± π 

 
∑∏

n n

k k
k 1k 1

Arg z Arg z 2k , 

where k ∈ ℤ choose k suitably such that principal Arg of the resultant number lies in principal range. 
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 2.   = 
 

zArg 2Arg (z)
z

 3. Arg (zn) = n Arg z ± 2kp
 4. Arg (–z) = –p + Arg z or p + Arg z respectively, when Arg z > 0 or < 0
  5. Arg (1/z) = –Arg z

Method of Solving Complecs Equations
Let the given equation be f(z) = g(z). To solve this equation, we have the following four methods.

Method 1: Put z = x + iy in the given equation and equate the real and imaginary parts of both sides and 
solve to find x and y; hence z = x + iy.

Method 2: Put z = r(cosq + isinq) and equate the real and imaginary parts of both sides; solve to get  
r and q; hence z.

Method 3: Take conjugate of both sides of given equations. Thus, we get two equations.  
f(z) = g(z) ...... (1)  and =f(z) g(z)  ...........(2)

Adding and Subtracting the above two equations, we get two new equations, solving then we get z.

Method 4: Geometrical Solution: From the given equation, we follow the geometry of complex number 
z and find its locus.

19.4.4 Square Roots of a Complex Number

Square roots of z = a + ib are given by 
 + −

± + 
  

| z | a | z | a
i

2 2
; b > 0 and  

 + −
± − 
  

| z | a | z | a
i

2 2
;  b < 0

19.4.4.1 Shortcut method

Step 1: Consider =0Im(z ) b
2 2

.

Step 2: Factorize b/2 into factors x; y:x2 – y2 = Re(z0) = a.

Step 3: Therefore, a + ib = (x + iy)2.

⇒ + = ± +a ib (x iy) , e.g., −8 15i ; a = 8, b = –15 < 0

⇒ = −
b 15
2 2

 = x.y such that x2 – y2 = 8 ⇒ = = −
5 3x ; y
2 2

⇒ 
 

− = ± − = ± − 
 

5 3i 18 15i (5 3i)
2 2 2

19.4.4.2 Cube root of unity

Let 3 1  = cube root of unity 

⇒ x3 = 1; where − +
ω=

1 3i
2

 and − −
ω =2 1 3i

2
\  Cube roots of unity are 1, w, w2 and w, w2 are called the 

imaginary cube roots of unity.
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19.4.4.3 Properties of cube root of unity

P(1): |w| = |w2| = 1   P(2): ω=ω2

P(3): w3 = 1    P(4): w3n = 1; w3n + 1 = w and w3n + 2 = w2 ∀n∈ℤ
P(5): Sum of cube roots of unity is 0. That is, 1 + w + w2 = 0.

Remarks:

	 ∵ 2ω ω=     ∵ 1 0ω ω+ + =

	 ∵ 2ω ω=  and 3 4 2 2 2.1 . ( ) ( )ω ω ωω ω ω ω= = = = =

	 ∵ 2 21 1 ( )ω ω ω ω+ + = + +  ∵ 21 ( ) 0ω ω+ + =

P(6): 
+ω +ω = 


n 2n 3; when n is multiple of 3
1

0; when n is not a multiple of 3

P(7): 1, w, w2 are the vertices of an equilateral D having each  
side = √3.

P(8): Circumcentre of D ABC with vertices as cube roots of 
unity lies at origin and the radius of circumcircle is 1 unit Clearly,  
OA = OB = OC = 1.

Remark:
From the above properties, clearly cube roots of unity are the vertices of an equilateral D having each  
side = √3, and circumscribed by circle of unit radius and having its centre at origin.

P(9): 
  π

ω = − + =  
 

1 3iarg( ) arg
2 2 3

; 
  π

ω = − − =  
 

2 1 3 4arg( ) i
2 2 3

.

P(10): Any complex number a + ib for which =
1(a : b)
3

 or 3 :1  can always be expressed in  

terms of i, w, w2.

e.g., + = − ω21 i 3 2 ,     + − + ω
+ = + = = =      

   

i 1 i 3 2 1 i 3 23 i (1 i 3) 2i
2 2i i 2 i

19.4.4.4 Important relation involving complex cubic roots of unity

 (a) x2 + x + 1 = (x – w) (x – w2)   (b)  x2 – x + 1 = (x + w) (x + w2)
 (c) x2 + xy + y2 = (x – yw) (x – yw2)   (d)  x2 – xy + y2 = (x + yw) (x + yw2)
 (e) x2 + y2 = (x + iy) (x – iy)    (f)  x3 + y3 = (x + y) (x + yw) (x + yw2)
 (g) x3 – y3 = (x – y) (x – yw) (x – yw2)
 (h) x2 + y2 + z2 – xy – yz – zx = (x + yw + zw2) (x + yw2 + zw)
 (i) x3 + y3 + z3 – 3xyz = (x + y + z)(x + yw + zw2)(x + w2y + wz)
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19.5 de moIVer’S tHeorem

This theorem states that: 
 (i) (cosq + isinq)n = cosnq + isinnq, if n is an rational number. 
 (ii) (cosq + isinq)1/n  = [cos(q + 2kp) + isin (q + 2kp)]1/n 

  (∵ period of sinq and cosq is 2p) = π θ π θ
+

(2k  + ) (2k  + )cos i sin ,
n n

 k = 0, 1, 2,..., n – 1.

19.5.1 nth Root of Unity

Let x be an nth root of unity, then ( ) ( )= = +
1 1
n nx 1 cos0 isin0 = π+ π+   + =   

   

2r 0 2r 0cos isin , r 0,
n n

  

1, 2,....., n – 1.

= 
ππ+ π+   + = =   

   

i2r
n2r 0 2r 0cos isin , r 0, e ; r 0

n n
, 1,2,...........n – 1= 

π π − π2 4 2(n 1)i i i
n n n1, e e , .....e = 1, a, a2,......  

an – 1; where 
π

α =
2i
ne .

19.5.2 Properties of nth Root of Unity

P(1): nth roots of unity form a G.P

P(2): 1 + a + a2 + .... + an – 1 = 0

P(3): 1. a.a2..an – 1 = (–1)n – 1 

P(4): nth roots of unity are vertices of n-sided regular polygon circumscribed by a unit circle having its 
centre at the origin. 

Case (i): When n is odd
Let n = 2m + 1, m is some positive integers, then only one root is real,  
that is 1 and remaining 2m roots are non real complex conjugates. 

The 2m non-real roots are (a, a2m), (a2, a2m–1), (a3, a2m–2) . . . . .(am, 
am+1), where the ordered pairs are (z, z), i.e., non-real roots and their 

conjugates and 
π

α =
2i
ne .

Note:
The nth roots given as ordered pairs are conjugate and reciprocal of each other.

m2m 1 2m 1
1 2m 2m 1 m m 1

m m

1 1 1
1;

α αα α α α α
α α α α α

+ +
− + +

   = = = = = = = = =  
   



Case (ii): When n is even:

Let n = 2m, π π α = =  
 

2cis cis
n m

; except 1 and –1, other roots are non-real 

complex conjugate pairs.
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Note:
The nth roots arranged vertically below are conjugate and reciprocal of each other and diagonally (passing 
through origin) are negative of each other.

19.5.2.1 nth root of a complex number n z

Let, z = r cis q, z1/n = (r1/n) (cis(2kπ + q))1/n = (r1/n) π θ + 
 

2kcis
n n

, where r1/n is positive nth root of r.

= π θ 
 
 

1/n 2k(r ) cis .cis
n n

; where π2kcis
n

, is the nth root of unity, k = 0, 1, 2,......, n – 1.

19.5.2.2 To find logarithm of a complex number

Consider z = x + iy, {converting ‘x + iy’ into Euler’s form, such that q = principal value of argument of z}, 
then we get loge (x + iy) = loge (|z|eiq)

⇒ loge(x + iy) = loge |z| + logee
iq ⇒ loge (x + iy) = loge |z| + iq

 In general, loge(x + iy) = loge|z| + i(q + 2np); n∈ℤ
 To find (x + iy)(a+ib), i.e., 2z

1(z )

 Let u + iv = (x + iy)(a+ib) 

⇒  ln (u + iv) = (a + ib) ln (x + iy) ⇒ (u + iv) = e (a + ib) ln (x + iy) ; now solve for u and v by expressing 
(x + iy) in polar form.

 For example, x = (i)i ⇒ lnx = ilni = ππ π π + = = 
 

  

i /2 2i n cos isin i n(e ) i ne
2 2 2

⇒ π
= −nx

2
 ⇒ 

π
−

= 2x e . Thus, (i)i = e–p/2.

 Alternatively, 
ππ π  π π+ − 

 = = = = = =


  

i
i 2

i n cos isin i.ii n(i) i ni i n(e )2 2 2 2(i) e e e e e e

19.6 geometry of complex number

19.6.1 Line Segment in Argand’s Plane

Any line segment joining the complex numbers z1 and z2 (directed 
towards z2) represents a complex number given by z2 – z1. Since 
every complex number has magnitude and direction, therefore  
z2 – z1 also.

|z2 – z1| represents the length of line segment BA, i.e., the 
distance between z1 and z2 and arg(z2 – z1) represents the angle 
which line segment AB (on producing) makes with positive 
direction of real axis.

19.6.1.1 Angle between to lines segments (Roation theorm or coni’s theorem)

Consider three complex numbers z1, z2 and z3, such that the angle between line segments joining z1 to z2  
and z3 to z1 is equal to q.
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Then q = a – b = Arg(z3 – z1) – Arg(z2 – z1) = 3 1

2 1

z z Post-rotation vectorArg Arg
z z Pre-rotation vector

 −  =   −   

⇒ i3 1

2 1

z z
Arg Arg( e )

z z
θ −

= θ = ρ 
− 

 

⇒ (z3 – z1) = (z2 – z1) r eiq, where 
−

ρ =
−

3 1

2 1

z z
z z

. If z1 = 0.

⇒  z3 = rz2 e
iq, arg(z3/z2) is an angle through which z2 is to be rotated to 

coincide it with z3.
If a complex number (z2 – z1) is multiplied by another complex number reiq, then the complex  

number (z2 – z1) gets rotated by the argument (q) of multiplying complex number in anti-clockwise direc-
tion (It is called Rotation Theorem or Coni’s Theorem).

19.6.2 Application of the Rotation Theorem  
 (i) Section Formula: Let us rotate the line BC about the point C, so that it becomes parallel to  

the line CA. The corresponding equation of rotation will be ( )π− −
= = −

− −
i1 1

2 2

z z | z z | m. e 1
z z |z z | n

⇒ nz1 – nz = – mz2 + mz ⇒ +
=

+
1 2nz mzz
m n

Similarly, if C(z) divides the segment AB, externally in the ratio of m : n,  

then −
=

−
1 2nz mzz
m n

.

In the specific case, if C(z) is the mid point of AB then +
= 1 2z zz

2
.

 (ii) Condition for Collinearity: If there are three real numbers (other than 0) l, m and n, such that  
lz1 + mz2 + nz3 = 0  and  l + m + n = 0, then complex numbers z1, z2 and z3 will  
be collinear.

 (iii) To find the conditions for perpendicularity of two straight lines: Condition that ∠A of DABC 
where A(z1) B(z2) C(z3) is right angle, and can be obtained by applying Rotation  
Theorem at A.

 − π π
= − 

− 
3 1

2 1

z z
Arg ,

z z 2 2  .....(i)

⇒ 
π

± − −
= ρ = ±ρ ρ = − − 

i
3 1 3 12

2 1 2 1

z z z ze i;
z z z z

  ⇒ 
 −

= 
− 

3 1

2 1

z z
R 0

z z

⇒ 
− −

+ =
− −

3 1 3 1

2 1 2 1

z z z z
0

z z z z
 ⇒ |z2 – z3|

2 = |z3 – z1|
2 + |z2 – z1|

2

 If ABC is right-angled isosceles triangle with AB = AC. 

⇒ r = 1 ⇒ 
−

= ±
−

3 1

2 1

z z
i

z z
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 (iv) Conditions for ∆ABC to be an equilateral triangle: Let the DABC where A(z1) B(z2) C(z3) be an 
equilateral triangle.

The following conditions hold:

 (i) |z1 – z2| = |z2 – z3| = |z3 – z1|.

  (ii)  − π
= ± − = − 

− 
3 1

3 1 2 1
2 1

z z
Arg and |z z | |z z |

z z 3
.  

(Applying the rotation theorem at A and knowing CA = BA.)

 (iii) 
  − − π

= =  
− −   

3 1 1 2

2 1 3 2

z z z zArg Arg
z z z z 3 . (Applying rotation theorem at A and B.)

 (iv) + + = + +2 2 2
1 2 3 1 2 2 3 3 1z z z z z z z z z

 (v) 
π−

= = +
−

i1 2 3

3 2

z z 1 3e i
z z 2 2

 (vi) + + =
− − +2 3 3 1 1 2

1 1 1 0
z z z z z z

 (vii) Conditions for four points to be concyclic or condition for points z1, z2, z3, z4 to represent a cyclic 
quadrilateral:
If points A(z1), B(z2), C(z3), D(z4) are con-cyclic, then the following two cases may occur:

Case I: If z3 and z4 lies on same segment with respect to the chord joining z1 and z2.

   −−
− =  

− −   
2 32 4

1 4 1 3

z zz zArg Arg 0
z z z z

 ⇒  
 −−

= 
− − 



1 32 4

1 4 2 3

w

z zz zArg . 0
z z z z

 

⇒ w is real and positive or Im(w) = 0 and Re(w) > 0.

Case II: If z3 and z4 lie on opposite segment of circle with respect to  
chord joining z1 and z2

 
   − −

+ = π   
− −  

2 3 1 4

1 3 2 4

z z z zArg Arg
z z z z

⇒ Arg (1/w) = π  ⇒  Arg (w) = –π 
 So the principal argument of w = π
⇒ w is negative real number, or Im(w) = 0 and Re(w) < 0

Conclusion! Four complex numbers z1, z2, z3, z4 to be concyclic.

 
 − −

= π 
− −  

 


1 3 2 4

2 3 1 4

w

(z z )(z z )
Arg 0 or

(z z )(z z )
 ⇒ w is purely real I(w) = 0 ⇒ =w w.

19.6.3 Loci in Argand Plane

A(1): Straight line in Argand plane: A line through z0 making angle a with the positive real axis.
Arg(z – z0) = α or – π + α.
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  The given equation excludes the point z0.
  Arg (z – z0) = a represents the right-ward ray.
  Arg (z – z0) = –p + a represents the left-ward ray.

A(2): Line through points A(z1) and B(z2): Consider a straight line passing 
through A(z1) and B(z2) taking a variable point P(z) on it.

∵ for each position of P, 


AP  is collinear with 


AB. 
⇒ = λ

 

AP AB  ⇒ = λ −


2 1AP (z z )

∵ = +
  

OP OA AP ; z = z1 + l(z2 – z1); z = z1(1 – l) + lz2

19.6.3.1 Conclusion

 1. if z = xz1 + yz2; x + y = 1 and x and y∈ℝ, then z, z1, z2  
are collinear.

 2. Equation represents line segment AB if l ∈ [0, 1].
 3. Right-ward ray through B, if l∈ (1, ∞).
 4. Left-ward ray through A, if l∈ (–∞, 0).

 (i) Equation of straight line with the help of coordinate geometry:

Writing + −
= =

z z z zx , y
2 2i

, etc., in 
− −

=
− −

1 1

2 1 2 1

y y x x
y y x x

 and re-arranging the terms, we find that the  

equation of the line through z1 and z2 is given by 
− −

=
− −

1 1

2 1 2 1

z z z z
z z z z

 or =1 1

2 2

z z 1
z z 1 0
z z 1

.

 (ii)	Equation of a straight line with the help of rotation formula:
Let A(z1) and B(z2) be any two points lying on any line and we have to obtain 
the equation of this line. For this purpose, let us take any point C(z) lying on 

this line. Since Arg 
 −

= 
− 

1

2 1

z z 0
z z

 or p.

− −
=

− −
1 1

2 1 2 1

z z z z
z z z z

 … (i)

This is the equation of the line that passes through A(z1) and B(z2). After rearranging the terms,  

it can also be put in the following form =1 1

2 2

z z 1
z z 1 0
z z 1

.

 (iii) Line segment AB: The equation of the line segment AB is given as
 −

= π 
− 

1

2

z zArg
z z

.

  (iv) Equation of two rays excluding the line segment AB: 
 −

= π 
− 

1

2

z zArg
z z

.
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 (v) Complete line except z1 and z2: (general equation of line):

The equation is given as 1 1

2 2

z z z zArg 0, , i.e., I 0
z z z z

   − −
= π =   

− −   

⇒ 
− −

=
− −

1 1

2 2

z z z z
z z z z

    ⇒ − − +2 1 1 2zz z z z z z z  =  − − +1 2 2 1zz z z z z z z

⇒ − + − + − =1 2 2 1 1 2 2 1(z z )z (z z )z z z z z 0  ⇒ 
− −

+ + =1 2 2 1
1 2

(z z ) (z z )z z I(z z ) 0
2i 2i

⇒ + + =az az b 0; where    ⇒ where  −
= 2 1z za

2i
 and − −

= =
−
2 1 1 2z z z za

2i 2i

Remark:
Two points P(z1) and Q(z2) lie on the same side or opposite side of the line + +az az b  accordingly, as 

+ +1 1az az b  and + +2 2az az b  have the same sign or opposite sign.

19.7 tHeorem

Perpendicular distance of P(c) (where c = c1 + ic2) from the straight line is 

given by
+ +

=
|ac ac b |p .

2 |a |
	 Slope of a given line: Let the given line be + + =za za b 0.  

Replacing z by x + iy, we get ( ) ( )+ + − + =x iy a x iy a b 0  

⇒ ( ) ( )+ + − + =a a x iy a a b 0

 It’s slope is = ( ) ( )
+

= = −
− 2

a a 2Re(a) Re(a)
i a a 2i lm a lm(a)

	 Equation of a line parallel to a given line: Equation of a line, parallel to the line + + =za za b 0,  
is + +λ =za za 0  (where l is a real number).

	 Equation of a line perpendicular to a given line: Equation of a line perpendicular to the line 
+ + =za za b 0  is − + λ =za za i 0  (where l is a real number).

	 Equation of perpendicular bisector:
Consider a line segment joining A(z1) and B(z2). 
Let the line ‘L’ be it’s perpendicular bisector.
If P(z) be any point on the ‘L’, then we have:
PA = PB ⇒  | z – z1 | = | z – z2 |
⇒ ( ) ( )− + − + − =2 1 2 1 1 1 2 2z z z z z z z z z z 0
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19.8 complex Slope of tHe lIne

If z1 and z2 are two unequal complex numbers represented by points P and Q, then 
−
−

1 2

1 2

z z
z z

 is called the 

complex slope of the line joining z1 and z2 (i.e., line PQ). It is denoted by w. Thus, 
−

=
−

1 2

1 2

z zw
z z

.

Notes:

 1. The equation of line PQ is 1 1z z w( z z )− = − . Clearly, 1 2 1 2

1 2 1 2

z z z z
w 1

z z z z

− −
= = =

− −
.

 2. The two lines having complex slopes w1 and w2 are parallel, if and only if, w1 = w2.

 3. Two lines with complex slopes w1 and w2 are perpendicular if w1 + w2 = 0.

19.8.1 Circle in Argand Plane
A(1): Centre radius form:

The equation of circule with z0 as centre and a positive real number 
k as radius as given as |z – z0| = k

⇒ |z – z0|
2 = k2

⇒ − − = 2
0 0(z z )(z z ) k  ⇒ − − + − =2 2

0 0 0zz z z z z |z | k 0  ......(1)

 If z0 = 0, then |z| = K

A(2): General Equation of Circle:
Referring to equation (1), thus we can say:

+ + + =zz az az b 0  .......(2)
where a is a complex constant and b∈ℝ represents a general circle.

Comparing (2) with (1), we note that centre = –a and radius = −
2a b

A(3): Diametric Form of Circle:
As we know that diameter of any circle subtends right angle at any point on the circumference. Equation 
of circle with A(z1) and B(z2) as end points of diameter. 

π
 − =   π−  −


2

1

Case Iz z 2Arg
z z Case II

2

 ⇒ 
− −

= ± =
− −

2 2

1 1

z z z zki; where k
z z z z  ⇒ 

− −
= −

− −
2 2

1 1

z z z z
z z z z

 

⇒ − − + − − =1 2 2 1(z z )(z z ) (z z )(z z ) 0; further 
− −

+ =
− −

2 2

1 1

z z z z 0
z z z z

 is diametric form.

⇒ |z – z1|
2 + |z – z2|

2 = |z1 – z2|
2
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19.9 AppoloneouS cIrcle

If −
=

−
1

2

z z k
z z

, i.e., |z – z1| = k |z – z2|. Then equation  represents apploloneous 

circle of A (z1) B(z2) with respect to ratio k, when k = 1, this gives |z – z1| = |z – z2| 
which is straight line, i.e., perpendicular bisector of line segment joining z1 to z2.

19.10 eQuAtIon of cIrculAr Arc

As per the figure; equation of circular arc at which chord AB, (where A(z1) and B(z2)) subtends angle a is 

given as 
 −

= α 
− 

2

1

z zArg
z z

.

Case I: If 0 < a < p/2 or – p/2 < a < 0 (Major arc of circle)

Case II: π
α = ±

2
 (Semicircular arc)

Case III: π π   α∈ −π ∪ π   
   

, ,
2 2

 (Minor arc of circle)

Case IV: a = 0 (Major arc of ∞ radius)

Case V: a = p (Minor arc of ∞ radius)

19.10.1 Equation of Tangent to a Given Circle

Let | z – z0 | = r be the given circle and we have to obtain the tangent at A(z1). Let us take any point P(z) on 
the tangent line at A(z1).

Clearly ∠PAB = p/2; arg 
 − π

= ± 
− 

1

0 1

z z
z z 2

⇒ −
−

1

0 1

z z
z z

 is purely imaginary

⇒ ( ) ( )− + − + − − =2
0 1 0 1 1 1 0 1 0z z z z z z 2 |z | z z z z 0

In particular if given circle is | z | = r, equation of the tangent at z = z1 would be + = =2 2
1 1 1zz zz 2 |z | 2r .

If −
= λ

−
1

2

z z
z z

(l ∈ R+,  l ≠ 1); where z1 and z2 are given complex numbers and z is a arbitrary  

complex number, then z would lie on a circle.

19.10.2 Explanation
Let A(z1) and B(z2) be two given complex numbers and P(z) be any 
arbitrary complex number. Let PA1 and PA2 be internal and external 
bisectors of angle ∠APB respectively. Clearly, ∠A2PA1 = p/2.

Now, − −
= = = λ

− −
1 1

2 2

| z z | z zAP
BP |z z | z z

 (say)
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Thus, points A1 and A2 would divide AB in the ratio of l : 1 internally and externally respectively. 
Hence P(z) would be lying on a circle with A1A2 being it’s diameter. Note: If we take ‘C’ to be the mid-point 
of A2A1, it can be easily prove that CA . CB = (CA1)

2, i.e., | z1 – z0 || z2 – z0 | = r2, where the point C is denoted 
by z0 and r is the radius of the circle.

Notes:
 (i) If we take ‘C’ to be the mid-point of A2A1, it can be easily proved that CA . CB = (CA1)

2, i.e., | z1 – z0 || 
z2 – z0 | = r2, where the point C is denoted by z0 and r is the radius of the circle.

 (ii) If l = 1  ⇒  | z – z1 | = | z – z2 | hence P(z) would lie on the right bisector of the line A(z1) and B(z2). 
Note that in this case z1 and z2 are the mirror images of each other with respect to the right bisector.

19.10.3 Equation of Parabola

Equation of parabola with directrix + + =az az b 0 and focus z0 is given as SP = PM

+ +
− =0

|az az b || z z |
2 |a |

⇒ − = + +2 2 2
04 | z z | |a | |az az b |  ⇒ − − = + + 2

0 04aa(z z )(z z ) (az az b)

⇒ − − + = + + 2
0 0 0 04aa(zz zz z z z z ) (az az b)

19.10.4 Equation of Ellipse
Ellipse is locus of point P(z), such that sum of its distances from two fixed points A(z1) and B(z2) (i.e., foci 
of ellipse) remains constant (2a).

⇒ PA + PB = 2a ⇒ |z – z1| + |z – z2| = 2a; where 2a is length of major axis.

Case I: If 2a > |z1 – z2| = AB  (Locus is ellipse)

Case II: 2a = |z1 – z2| (Locus is segment AB)

Case III: 2a < |z1 – z2|  (No locus)

Case IV: If |z – z1| + |z – z2| > 2a : 2a > |z1 – z2| 
(Exterior of ellipse)

Case V: If |z – z1| + |z – z2| < 2a : 2a > |z1 – z2| 
(Interior of ellipse)

19.11 eQuAtIon of HyperbolA

Hyperbola is locus of point P(z), such that difference of its 
distances from two fixed point A(z1) and B(z2) (foci of hyperbola) 
remains constant (2a). 

⇒ PA – PB = 2a 
⇒ ||z – z1| – |z – z2|| = 2a; where 2a is length of major axis.

Case I: If 2a < |z1 – z2| = AB (locus is branch of hyperbola).
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Case II: 2a = |z1 – z2| (Locus is union of two rays)

Case III: 2a > |z1 – z2| (No locus)

Case IV: If ||z – z1| – |z – z2|| > 2a : 2a < |z1 – z2| (Exterior of hyperbola)

Case V: If |z – z1| – |z – z2| < 2a : 2a < |z1 – z2| (Interior of hyperbola)

19.12 Some ImpotAnt fActS

A (1): If A, B, C are the vertices of a triangle represented by complex numbers z1, z2, 

z3, respectively, in anti-clockwise sense and DBAC = a, then 
α− −

=
− −

i3 1 2 1

3 1 2 1

z z z z .e
z z z z .

A(2): If z1 and z2 are two complex numbers representing the points A and B, then 

the point on AB which divides line segment AB in ratio m : n is given by +
+

1 2nz mz
m n

.

A(3): If a, b, c are three real numbers not all simultaneously zero, such that az1 + bz2 + cz3 = 0 and  
a + b + c = 0 then z1, z2, z3 will be collinear.

A(4): If z1, z2, z3 represent the vertices A,B,C of DABC, then:

 (i) Centroid of + +
∆ = 1 2 3z z z

ABC
3

 (ii) In centre of + +
∆ =

+ +
1 2 3az bz cz

ABC
a b c

 (iii) Orthocentre of 
+ +

∆ =
+ +

1 2 3(a secA)z (bsecB)z (csecC)z
ABC

(a secA) (bsecB) (csecC)
= + +

+ +
1 2 3(z tan A z tanB z tanC)

tan A tanB tanC

 (iv) Circumcentre of 
+ +

∆ =
+ +

1 2 3z sin2A z sin2B z sin2C
ABC

sin2A sin2B sinC
 (v) If z1,z2,z3 are the vertices of  an  equilateral triangle, then the circumcentre z0 may be given  

as z2
1 + z2

2 + z2
3 = 3z0

2.
 (vi) If z1,z2,z3 are the vertices of an isosceles triangle, right angled at z2, then z2

1 + z2
2 + z2

3 = 2z2( z1 + z3).
 (vii) If z1,z2,z3 are the vertices of right-angled isosceles triangle  then (z1 – z2)

2 = 2 (z1 – z3)(z3 – z2).

 (viii) Area of triangle formed by the points z1, z2 and z3 is 
1 1

2 2

3 3

z z 1
1 z z 1
4i

z z 1
.

19.12.1 Dot and Cross Product
Let z1 = x1+ iy1 and z2 = x2 + iy2 be two complex numbers i.e., (vectors). The dot product (also called the 

scalar product) of z1 and z2 is defined by z1 . z2 = |z1| |z2| cosq = x1x2 + y1y2 = Re = +1 2 1 2 1 2
1{z z } {z z z z }
2

.
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Where q is the angle between  z1 and z2 which lies between 0 and p.

If vectors z1, z2 are perpendicular then z1.z2 = 0 ⇒ + =1 2

1 2

z z 0
z z

, i.e., Sum of complex slopes = 0.

The cross product of z1 and z2 is defined by z1.z2 = |z1| |z2| sinq = x1y2–y1x2 = = −1 2 1 2 1 2Im{z z } {z z z z }
2i

.

If vectors z1, z2 are parallel then z1. z2 = 0 ⇒ =1 2

1 2

z z
z z

, i.e., complex slopes are equal.

A(5): amp(z) = q represents a ray emanating from the origin and inclined at an angle q with the  
positive direction of x-axis.

Also arg(z – z1) = q represents the ray originating from A(z1) inclined at an angle q 
with positive direction of x-axis as shown in the above diagram.

A(6): |z – z1| = |z – z2| represents perpendicular bisector of line segment joining 
the points A(z1) and B(z2) as shown here:

A(7): The equation of a line passing through the points A(z1) and B(z2) can be expressed in determinant 

form as =1 1

2 2

z z 1
z z 1 0
z z 1

; it is also the condition for three points z1, z2, z3 (when z is replaced by z3) to be 

collinear.

A(8): Reflection Points for a Straight Lines:
Two given points, P and Q are the reflection points of a given straight line if the given line is the right 
bisector of the segment PQ. Note that the two points denoted by the complex number z1 and z2 will be the 
reflection points for the straight line α +α + =z z r 0 if and only if, α +α + =1 2z z r 0, where r is real and a 
is non-zero constant.

19.12.2 Inverse Points w.r.t. a Circle
Two points, P and Q are said to be inverse w.r.t. a circle with centre O and radius r, if 

 (i) The point O, P, Q are collinear and P, Q are on the same side of O.
 (ii) OP, OQ = r2.

Note:
That the two points z1 and z2 will be the inverse point w.r.t. the circle zz z z r 0α α+ + + = , if and only if  

1 2 1 2z z z z r 0α α+ + + = .

19.12.3 Ptolemys Theorem’s 
It states that the product of the length of the diagonal of a convex quadrilateral in scribed in a circle is 
equal to the sum of the products of lengths of the two pairs of its opposite sides, i.e., |z1–z3||z2–z4| = |z1–z2| 
|z3–z4| + |z1–z4| |z2–z3|.
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A(8): |z – z1| = a represents circle of radius a and having centre at z1.
  |z – z1| < a represents interior of the given circle.
  |z – z1 |> a represents exterior of the given circle.

A(9): The equation |z – z1|2 + |z – z2|
2  =  k, will represent a circle if  k ≥ 1/2 |z1 – z2|

2.

A(10): a < |z| < b represents points lying inside the circular annulus bounded by circles having radii a 
and b and having their centres at origin as shown below:

A(11): |z + z1| = |z| + |z1| represents the ray originating from origin and passing through the point A(z1) 
as shown below: |z + z1| = PP′ = PO + OP′ = |z| + OA = |z| + |z1| (∵ OP′ = OA)

A(12): |z – z1| = |z| – |z1| represents a ray originating from A(z1), but not passing through the origin as 
shown below: |z – z1| = OP – OA = |z| – |z1|.

A(13): Re(z) ≥ a represents the half-plane to the right of straight line, x = a, including the line itself as 
shown below:

Re(z) ≤ a represents the half-plane to the left of straight line, x = a, including the line itself as  
shown here:
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Im(z) ≤ a represents the half-plane below the straight line, y = a, including the line itself as shown below:

Im(z) ≥ a represents the half-plane above the straight line, y = a, including the line itself as shown below:

A(13): Inverse points w.r.t. a circle
Two points A and B are said to be inverse w.r.t. a circle with its centre ‘O’ and radius a, if:

 (i) The points O, A, B are collinear and on the same side of O, and 
 (ii) OA.OB = a2.

Remark
Two points, z1 and z2, will be the inverse points w.r.t. the circle zz z z r 0β β+ + + = , if and only  

if, 1 2 1 2z z z z r 0β β+ + + = .

A(14): If l is a positive real constant, and z satisfies −
= λ

−
1

2

z z
z z

, then the point z describes a circle of 

which A, B are inverse points; unless l = 1, in which case z describes the perpendicular bisector of AB.

A(15): To convert an equation in cartesian to complex form put +
=

z zx
2

 and −
=

z zy
2i

 and to convert 

an equation complex form to Cartesian form put z = x + iy and = −z x iy .


