Chapter 7 – Mensuration

Practice Set 7.1

1. Find the volume of a cone if the radius of its base is 1.5 cm and its perpendicular height is 5 cm.

Solution:

Given radius of cone ,r = 1.5cm Height of cone ,h = 5cm \therefore Volume of the cone , V = (1/3) π r²h \therefore V = (1/3)×(22/7) ×1.52×5 \therefore V = 11.785 cm³ = 11.79 cm³ Hence, the volume of the cone is 11.79 cm³.

2. Find the volume of a sphere of diameter 6 cm.

Solution:

Given diameter of sphere , d = 6 cm \therefore Radius r = d/2 = 3Volume of a sphere, $V = (4/3)\pi r^3$ $\therefore V = (4/3) \times (22/7) \times 3^3$ $\therefore V = 113.14 \text{cm}^3$ Hence, the volume of the sphere is 113.14 cm³.

3. Find the total surface area of a cylinder if the radius of its base is 5 cm and height is 40 cm.

Solution:

Given radius of cylinder, r = 5cmHeight of cylinder, h = 40cmTotal surface area of cylinder $= 2\pi r(r+h)$ $= 2 \times (22/7) \times 5 \times (5+40)$ $= 2 \times (22/7) \times 5 \times 45$ $= 1414.28cm^2$ Hence, Total surface area of cylinder is 1414.28cm².

4. Find the surface area of a sphere of radius 7 cm.

Solution:

Given radius of sphere , r = 7 cmSurface area, $A = 4\pi r^2$ $\therefore A = 4 \times (22/7) \times 7^2$ $= 616 \text{ cm}^2$ Hence, surface area of sphere is 616 cm^2 . 5. The dimensions of a cuboid are 44 cm, 21 cm, 12 cm. It is melted and a cone of height 24 cm is made. Find the radius of its base.

Solution:

Given length of cuboid , l = 44 cm Breadth of cuboid , b = 21 cm Height of cuboid , h = 12cm Volume of the cuboid , V = lbh $\therefore V = 44 \times 21 \times 12 = 11088$ cm³ Given Height of cone , h = 24cm Since cuboid is melted and a cone is made, the volume will be same. \therefore Volume of cone = Volume of cuboid. $(1/3)\pi r^2 h = 11088$ $(1/3) \times (22/7) \times r^2 \times 24 =$ $11088 r^2 =$ $11088/8 \times (22/7) r^2 = 441$ Taking square root r = 21Hence, radius of the cone is 21 cm.

6. Observe the measures of pots in figure 7.8 and 7.9. How many jugs of water can the cylindrical pot hold?

7. A cylinder and a cone have equal bases. The height of the cylinder is 3 cm and the area of its base is 100 cm². The cone is placed upon the cylinder. Volume of the solid figure so formed is 500 cm³. Find the total height of the figure.

Solution:

Given height of cylinder , h = 3cmBase area of cylinder , $\pi r^2 = 100cm^2$ (i) Volume of solid = 500cm³ Given cylinder and cone have equal bases. \therefore the radii will be equal. \therefore Radius of cone = radius of cylinder = r

Let height of cone be H Volume of solid = volume of cylinder + volume of cone $\therefore 500 = \pi r^2 h + (1/3) \pi r^2 H$ $\therefore 500 = 100 \times 3 + (1/3) \times 100 \times H$ [$\because \pi r^2 = 100$, base area of cylinder and cone are equal] $\therefore 500 = 300 + (100/3) H$ $\Rightarrow (100/3) H = 200$ $\Rightarrow H = 3 \times 200/100$ = 6Hence, height of cone is 6cm. Total height of figure = h+H = 3 + 6 = 9 cmHence, the total height of the figure is 9cm. 8. In figure 7.11, a toy made from a hemisphere, a cylinder and a cone is shown. Find the total area of the toy.

Solution:

Given: For the conical Part, height h = 4 cm, radius r =3 cm For the cylindrical part, height H = 40 cm, radius r =3 cm For the hemispherical part, radius ,r = 3 cmSlant height of cone $(l) = \sqrt{(h^2 + r^2)}$ $=\sqrt{(4^2+3^2)}=\sqrt{(16+9)}$ $=\sqrt{25} = 5 \text{ cm}$ Curved surface area of hemisphere = $2\pi r^2$ $= 2 \times \pi \times 3^2$ $= 18\pi$ cm² Curved surface area of cylinder = $2\pi rH$ $= 2 \times \pi \times 3 \times 40$ $= 240\pi \text{ cm}^2$ Curved surface area of cone = $\pi r l$ $= \pi \times 3 \times 5$ $=15\pi$ cm² Total area of the toy = Curved surface area of cone + Curved surface area of cylinder + Curved surface area of hemisphere $= 15\pi + 240\pi + 18\pi = 273 \pi \text{ cm}^2$ Hence, total area of the toy is 273π cm².

9. In the figure 7.12, a cylindrical wrapper of flat tablets is shown. The radius of a tablet is 7 mm and its thickness is 5 mm. How many such tablets are wrapped in the wrapper?

Solution:

Given radius of tablet, r = 7mmThickness of tablet , h = 5mm \therefore Volume of tablet = Radius of cylindrical wrapper , R = 14/2 = 7mmHeight of cylindrical wrapper , $H = 10cm = 10 \times 0 = 100mm$ Let n be the number of tablets that can be wrapped. $\therefore n =$ volume of cylindrical wrapper/volume of tablet $= \pi R^2 H/\pi r^2 h$ $= \pi \times 7^2 \times 100/\pi \times 7^2 \times 5$ = 20

Hence,, number of tablets that can be wrapped in wrapper is 20.

10. Figure 7.13 shows a toy. Its lower part is a hemisphere and the upper part is a cone. Find the volume and the surface area of the toy from the measures shown in the figure.(π =3.14)

Fig. 7.13

Solution:

Given radius of cone ,r = 3 cm Height of cone, h = 4 cm Radius of hemisphere, r = 3cm Slant height of cone , $l = \sqrt{(h^2+r^2)}$ $\therefore l = \sqrt{(4^2+3^2)} = \sqrt{(16+9)} = \sqrt{25} = 5$ Curved surface area of cone = $\pi r l$ = $\pi \times 3 \times 5 = 15\pi \text{cm}^2$ Curved surface area of hemisphere = $(2/3)\pi r^3$ = $(2/3)\pi \times 3^3 = 18\pi \text{cm}^2$ \therefore Surface area of toy = Curved surface area of cone+ Curved surface area of hemisphere = $15\pi + 18\pi = 33\pi = 33 \times 3.14 = 103.62 \text{cm}^2$ Volume of cone = $(1/3)\pi r^2h$ = $(1/3)\pi \times 3^2 \times 4 = 12\pi \text{cm}^3$ Volume of hemisphere = $(2/3)\pi r^3$ $= (2/3)\pi \times 3^3 = 18\pi \text{cm}^3$

 \therefore Volume of toy = Volume of cone+ Volume of hemisphere

 $= 12\pi + 18\pi = 30\pi = 30 \times 3.14 = 94.2$ cm³

Hence, the surface area and volume of the toy are 103.62cm² and 94.2cm³ respectively.

11. Find the surface area and the volume of a beach ball shown in the figure.

Fig. 7.14

Solution:

Given diameter of ball, d = 42 cm \therefore radius of ball, r = 42/2 = 21 cm Surface area of sphere = $4\pi r^2$ = $4 \times \pi \times 21^2 = 4 \times 3.14 \times 441 = 5538.96 \text{ cm}^2$ Volume of sphere = $(4/3)\pi r^3$ = $(4/3) \times \pi \times 21^3 = (4/3) \times 3.14 \times 9261 = 38772.72 \text{ cm}^3$ Hence, the surface area and volume of ball are 5538.96 cm² and 38772.72 cm³ respectively.

12. As shown in the figure, a cylindrical glass contains water. A metal sphere of diameter 2 cm is immersed in it. Find the volume of the water.

Fig. 7.15

Solution:

Given diameter of cylindrical glass, d = 14cm \therefore Radius, R = 14/2 = 7cmHeight of glass in cylindrical glass, H = 30cmGiven diameter of metal sphere = 2cm \therefore radius of metal sphere, r = 2/2 = 1cm Volume of sphere = $(4/3)\pi r^3$ = $(4/3)\pi r^3$ = $(4/3)\pi$ = $(4/3)\pi r^3$ = $(4/3)\times(22/7)$ = $4.19cm^3$ Volume of water with sphere in it = $\pi R^2 H$ = $\pi \times 7^2 \times 30$ = 1470π = $4620cm^3$ Volume of water in glass = Volume of water with sphere in it - Volume of sphere = $4620-4.19 = 4615.81cm^3$ Hence, the volume of water in glass is $4615.81cm^3$.

Practice Set 7.2

1. The radii of two circular ends of frustum shape bucket are 14 cm and 7 cm. Height of the bucket is 30 cm. How many liters of water it can hold? (1 litre = 1000 cm^3)

Solution:

Given height of bucket, h = 30cm $r_1 = 14cm r_2 = 7cm$ Volume of a frustum = $(1/3)\pi h(r_1^2 + r_2^2 + r_1 \times r_2)$ \therefore Volume of bucket = $(1/3)\pi \times 30(14^2 + 7^2 + 14 \times 7)$ = $10\pi \times (196 + 49 + 98)$ = 3430π = $10780cm^3$ = 10.78 litres [$\because 1$ litre = 1000 cm^3]

Hence, the bucket can hold 10.78 litres of water.

2. The radii of ends of a frustum are 14 cm and 6 cm respectively and its height is 6 cm. Find its

i) curved surface area ii) total surface area. iii) volume ($\pi = 3.14$)

```
Solution: Given r_1 = 14cm

r_2 = 6cm

Height, h = 6cm

Slant height of frustum l = \sqrt{[h^2+(r_1-r_2)^2]}

= \sqrt{[6^2+(14-6)^2]}

= \sqrt{[36+(8)^2]}

= \sqrt{[36+64]}

= \sqrt{100}

= 10

(i) Curved surface area of frustum = \pi l(r_1)
```

(i) Curved surface area of frustum = $\pi l(r_1+r_2)$ = $\pi \times 10(14+6)$ = $\pi \times 10 \times 20$ = 3.14×200 = 628cm^2 Hence, curved surface area of frustum is 628cm^2 .

(ii) Total surface area of frustum = $\pi l (r_1 + r_2) + \pi r_1^2 + \pi r_2^2$ = $\pi \times 10(14+6) + \pi \times 14^2 + \pi \times 6^2$ = $\pi \times 10 \times 20 + \pi \times 196 + \pi \times 36$ = $200\pi + 196\pi + 36\pi$ = 432π = 432×3.14 = 1356.48 cm^2 Hence, Total surface area of frustum is 1356.48 cm^2 .

(iii)Volume of frustum = $(1/3)\pi h(r_1^2 + r_2^2 + r_1 \times r_2)$ = $(1/3)\pi \times 6(14^2 + 6^2 + 14 \times 6)$ = $2\pi \times (196 + 36 + 84)$ = $2\times 3.14 \times 316$ = 1984.48 cm^3 Hence, volume of frustum is 1984.48 cm^3

3. The circumferences of circular faces of a frustum are 132 cm and 88 cm and its height is 24 cm. To find the curved surface area of the frustum complete the following activity. ($\pi = 22/7$).

Circumference₁ = $2\pi r_1 = 132$ $r_1 = 132/2\pi = _$ Circumference₂ = $2\pi r_2 = 88$ $r_2 = 88/2\pi = _$ Slant height of frustum $l = \sqrt{[h^2+(r_1-r_2)^2]}$ $= \sqrt{[_^2+(__)^2]}$ $= _$ cm Curved surface area of frustum = $\pi(r_1+r_2)l$ $= \pi \times _ \times _$ $= _$ sq.cm.

Solution:

Circumference₁ = $2\pi r_1 = 132$ $r_1 = 132/2\pi = 21cm$ [π =22/7] Circumference₂ = $2\pi r_2 = 88$ $r_2 = 88/2\pi = 14cm$ Slant height of frustum $l = \sqrt{[h^2 + (r_1 - r_2)^2]}$ $= \sqrt{[24^2 + (21 - 14)^2]}$ [given h =24] $= \sqrt{[576 + (7)^2]}$ $= \sqrt{[576 + 49]}$ $= \sqrt{625}$ = 25cmCurved surface area of frustum = $\pi(r_1 + r_2)l$ $= \pi \times (21 + 14) \times 25$ $= \pi \times (35) \times 25$ = 2750sq.cm

Practice set 7.3

1. Radius of a circle is 10 cm. Measure of an arc of the circle is 54°. Find the area of the sector associated with the arc. (π = 3.14)

Solution:

Given radius of circle , r = 10cm Measure of an arc of the circle , $\theta = 54^{\circ}$ $\pi = 3.14$ Area of sector , $A = (\theta/360)\pi r^2$ $\therefore A = (54/360) \times 3.14 \times 10^2$ $= (9/60) \times 3.14 \times 100$ = 47.1 cm² Hence, area of the sector is 47.1 cm²

2. Measure of an arc of a circle is 80° and its radius is 18 cm. Find the length of the arc. (π = 3.14)

Solution:

Given measure of arc, $\theta = 80^{\circ}$ Radius, r = 18cm $\pi = 3.14$ Length of arc, l = $(\theta/360)2\pi r l =$ $(80/360) \times 2 \times 3.14 \times 18$ = 25.12cm Hence, the length of the arc is 25.12cm.

3. Radius of a sector of a circle is 3.5 cm and length of its arc is 2.2 cm. Find the area of the sector.

Solution:

Given radius of sector of a circle , r = 3.5cm Length of the arc, l = 2.2cm Area of sector ,A = lr/2 $\therefore A = 2.2 \times 3.5/2 = 3.85$ cm² Hence, the area of the sector is 3.85cm² 4. Radius of a circle is 10 cm. Area of a sector of the sector is 100 cm². Find the area of its corresponding major sector. ($\pi = 3.14$)

Solution:

Given radius of circle, r = 10cm Area of minor sector , $A = 100 \text{ cm}^2$ Area of circle = πr^2 = 3.14×10² = 3.14×100 = 314cm² Area of major sector = Area of circle - Area of minor sector = 314 - 100 $= 214 \text{cm}^2$ Hence, the area of the major sector is 214cm²

5. Area of a sector of a circle of radius 15 cm is 30 cm². Find the length of the arc of the sector.

Solution:

Given radius of circle, r = 15cm Area of the sector of circle , $A = 30 \text{cm}^2$ Area of sector = length of arc \times radius/2 = lr/2 \therefore Length of arc, $l = 2A/r = 2 \times 30/15 =$ 4cm Hence, the length of the arc is 4cm.

6. In the figure 7.31, radius of the circle is 7 cm and m(arc MBN) = 60° , find (1) Area of the circle.

- (2) A(O MBN).
- (3) A(O MCN).

Fig. 7.31

Solution:

Given radius of circle, r = 7cm (1) Area of the circle , $A = \pi r^2$ $=(22/7)\times7^{2}$ =(22/7)×49 $= 154 \text{cm}^2$ Hence, the area of the circle is 154cm² (2)Given m(arc MBN), $\theta = 60^{\circ}$ Area of sector = $(\theta/360)\pi r^2$ $\therefore A(O-MBN) = (60/360) \times (22/7) \times 7^2$ = $(1/6) \times 22 \times 7$ = 25.67 cm^2 Hence, area of sector O-MBN is 25.67 cm^2

 (3) Area of major sector = Area of circle -Area of minor sector
 ∴A(O-MCN) = 154-25.67 = 128.33 cm²
 Hence, area of sector O-MCN is 128.33 cm²

7. In figure 7.32, radius of circle is 3.4 cm and perimeter of sector P-ABC is 12.8 cm. Find A(P-ABC).

Solution: Given radius , r = 3.4cm Perimeter of sector P-ABC = PA+arc ABC +PC 12.8 = 3.4+ length of arc ABC +3.4 \therefore length of arc ABC , l = 12.8 - 3.4 - 3.4 = 6cm Area of sector P-ABC = lr/2 $= 6 \times 3.4/2$ $= 3 \times 3.4$ = 10.2cm² Hence, A(P-ABC) is 10.2cm².

8. In figure 7.33 O is the centre of the sector. \angle ROQ = \angle MON = 60°. OR = 7 cm, and OM = 21 cm. Find the lengths of arc RXQ and arc MYN. (π = 22/7)

Solution:

Given $\angle \text{ROQ} = \angle \text{MON}$, $\theta = 60^{\circ}$. Radius OR, r = 7 cm Radius OM, R = 21 cm Length of arc RXQ = $(\theta/360)2\pi r$ = $(60/360) \times 2 \times (22/7) \times 7$ = $(1/6) \times 2 \times 22$ = 22/3= 7.33cm Hence, Length of arc RXQ is 7.33cm. Length of arc MYN = $(\theta/360)2\pi R$ = $(60/360) \times 2 \times (22/7) \times 21$ = $(1/6) \times 2 \times 22 \times 3$ = 22cmHence, Length of arc MYN is 22cm.

9. In figure 7.34, if A(P-ABC) = 154 cm² radius of the circle is 14 cm, find (1) ∠ APC.

(2) l(arc ABC) .

Solution:

Given radius of circle, r = 14cmArea, A(P-ABC) = $154cm^2$ (1) Let $\angle APC = \theta$ A(P-ABC) = $(\theta/360)\pi r^2$ $\therefore 154 = (\theta/360) \times (22/7) \times 14^2$ $\therefore \theta = (154 \times 360 \times 7)/(22 \times 14 \times 14)$ $\therefore \theta = 90^{\circ}$ Hence, $\angle APC$ is 90°. (2) length of arc, $l(arc ABC) = (\theta/360)2\pi r$ $\therefore l(arc ABC) =$ $(90/360) \times 2 \times (22/7) \times 14 =$ $(1/4) \times 2 \times 22 \times 2 = 22 cm.$ Hence, l(arc ABC) is 22cm.

10. Radius of a sector of a circle is 7 cm. If measure of arc of the sector is (1) 30°
(2) 210°
(3) three right angles;
find the area of the sector in each case.

Solution:

Given radius of sector, r = 7 cm(1)Measure of arc, $\theta = 30^{\circ}$ \therefore Area of sector = $(\theta/360)\pi r^2$ $= (30/360) \times (22/7) \times 7^2$ $= (1/12) \times (22/7) \times 49$ $= (1/12) \times 22 \times 7$ $= 12.83 \text{ cm}^2$ Hence, the area of sector is 12.83 cm^2

(2)Measure of arc, $\theta = 210^{\circ}$ \therefore Area of sector = $(\theta/360)\pi r^2$ = $(210/360) \times (22/7) \times 7^2$ = $(7/12) \times (22/7) \times 49$ = $(7/12) \times 22 \times 7$ = 89.83cm² Hence, the area of sector is 89.83cm²

(3)Measure of arc, $\theta = 3$ right angles = $3 \times 90 = 270^{\circ}$ \therefore Area of sector = ($\theta/360$) πr^2 = (270/360) \times (22/7) $\times 7^2$ = (3/4) \times (22/7) $\times 49$ = (3/4) \times 22 $\times 7$ = 115.5 cm² Hence, the area of sector is 115.5 cm² 11. The area of a minor sector of a circle is 3.85 cm² and the measure of its central angle is 36°. Find the radius of the circle.

Solution:

Given area of minor sector = 3.85 cm^2 Measure of central angle, $\theta = 36^\circ$ Area of sector = $(\theta/360)\pi r^2 \therefore 3.85 =$ $(36/360) \times (22/7) \times r^2 r^2 =$ $(3.85 \times 360 \times 7)/(36 \times 22)$ $r^2 = (3.85 \times 10 \times 7)/22$ $r^2 = 12.25$ \Rightarrow r = 3.5cm Hence, the radius of the circle is 3.5cm

12. In figure 7.35, □ PQRS is a rectangle. If PQ = 14 cm, QR = 21 cm, find the areas of the parts x, y and z .

Solution:

Given PQ = 14cm QR = 21cm $\angle Q = \theta$ = 90° Area of part x = (θ /360) π r² Area of part x = (90/360)×(22/7)×14² = 11×14 = 154cm² Consider sector (R-BYA) QR = QB+BR \therefore BR = 21-14 = 7cm \therefore AR = 7cm [radius of same circle] Area of part y = (θ /360) π r² Area of part y = (90/360)×(22/7)×7²


```
= 11 \times 7/2
= 38.5cm<sup>2</sup>
Area of rectangle PQRS = length ×breadth
= QR \times PQ
= 21×14
= 294cm<sup>2</sup>
∴Area of part z = Area of rectangle PQRS - [Area of part x+ Area of part y]
∴Area of part z = 294-(154+38.5)
= 294-192.5
= 101.5cm<sup>2</sup>
```

Hence, area of part x is 154cm², area of part y is 38.5cm² and area of part z is 101.5cm²

13. \triangle LMN is an equilateral triangle. LM = 14 cm. As shown in figure, three sectors are drawn with vertices as centres and radius7 cm. Find, (1) A (\triangle LMN)

- (2) Area of any one of the sectors.
- (3) Total area of all the three sectors.
- (4) Area of the shaded region.

Solution:

(1) Given \triangle LMN is an equilateral triangle . LM = 14 cm \therefore Area of \triangle LMN = $(\sqrt{3}/4)a^2$ Here a represents the side of equilateral triangle. a = 14

 $\therefore \text{Area of } \triangle \text{LMN} = (\sqrt{3}/4) \times 14^2$ $= 49\sqrt{3}$ $= 84.87 \text{cm}^2$ Hence, area of $\triangle \text{LMN}$ is 84.87cm^2

(2) Since \triangle LMN is equilateral, $\angle L = \angle M = \angle N = 60^{\circ}$ Given r = 7 Area of sector = $(\theta/360)\pi r^2$ \therefore Area of sector = $(60/360) \times 22/7 \times 7^2$ $= 11 \times 7/3$ $= 25.67 \text{ cm}^2$ Hence, area of one sector = 25.67 cm^2 (3)Total area of 3 sectors = $3 \times \text{area}$ of one sector $= 3 \times 25.67$ $= 77.01 \text{ cm}^2$ Hence, total area of 3 sectors is 77.01 cm^2 . (4)Area of shaded region = Area of \triangle LMN - Area of 3 sectors = 84.87 - 77.01 $= 7.86 \text{ cm}^2$

Hence, area of shaded region is 7.86cm².

1. In figure 7.43, A is the centre of the circle. \angle ABC = 45° and AC = $7\sqrt{2}$ cm. Find the area of segment BXC.

Solution:

Given radius of circle, $r = 7\sqrt{2}$ cm AB = AC [radii of same circle] $\therefore \angle ABC = \angle ACB = 45^{\circ}$ [isosceles triangle theorem] In $\triangle ABC$, $\angle A = \theta = 90^{\circ}$ [Angle sum property of triangle] Area of segment BXC = $r^{2}[(\pi\theta/360) - (\sin\theta/2)]$ $= (7\sqrt{2})^{2}[3.14 \times 90/360 - (\sin90^{\circ})/2]$ $= 98 \times [(3.14/4) - (1/2)]$ $= 98 \times [0.785 - 0.5]$ Hence, area of segment BXC is 27.93cm².

2. In the figure 7.44, O is the centre of the circle. $m(arc PQR) = 60^{\circ} OP = 10 \text{ cm}$. Find the area of the shaded region. ($\pi = 3.14, \sqrt{3} = 1.73$)

Fig. 7.44

Solution:

Given radius OP, r = 10cm m(arc PQR), $\theta = 60^{\circ}$ Area of segment PQR = r²[($\pi\theta/360$) - (sin $\theta/2$)] = 10²[3.14×(60/360)- sin60°/2] $= 100[3.14 \times (1/6) - \sqrt{3/4}]$ = 100[(3.14/6) - 1.73/4] = (314/6) - (173/4) = 52.33 - 43.25 = 9.08 cm²

Hence, area of shaded region is 9.08cm².

3. In the figure 7.45, if A is the centre of the circle. \angle PAR = 30°, AP = 7.5, find the area of the segment PQR (π = 3.14)

Fig. 7.45

Solution:

Given radius AP, r = 7.5 Central angle $\angle PAR = \theta = 30^{\circ}$ Area of segment PQR = r²[($\pi\theta/360$) - (sin $\theta/2$)] = 7.5²[3.14×(30/360)- sin30°/2] = 56.25[3.14×(1/12)- 1/4] = 56.25[(3.14/12)- (3/12)] = 56.25×0.14/12 = 0.65625cm²

Hence, area of segment PQR is 0.65625cm².

4. In the figure 7.46, if O is the centre of the circle, PQ is a chord. $\angle POQ = 90^{\circ}$, area of shaded region is 114 cm², find the radius of the circle. ($\pi = 3.14$)

Solution:

Given $\angle POQ = \theta = 90^{\circ}$, area of shaded region PRQ = 114cm² Area of segment PRQ = r²[($\pi\theta/360$) - (sin $\theta/2$)] $\therefore 114 = r^{2}[3.14 \times 90/360 - sin90^{\circ}/2]$ $\therefore 114 = r^{2}[3.14 \times (1/4) - 1/2]$ $\therefore 114 = r^{2}[0.785 - 0.5]$ $\therefore 114 = r^{2} \times 0.285$ $\Rightarrow r^{2} = 114/0.285 = 400$ Taking square root on both sides r = 20cm Hence, the radius of the circle is 20cm.

5. A chord PQ of a circle with radius 15 cm subtends an angle of 60° with the centre of the circle. Find the area of the minor as well as the major segment. ($\pi = 3.14, \sqrt{3} = 1.73$)

Solution:

Given central angle $\theta = 60^{\circ}$ Radius ,r = 15cm Let chord PQ subtend $\angle POQ = 60^{\circ}$ at centre. $\therefore \theta = 60^{\circ}$ Area of minor segment = r²[($\pi\theta$ /360) - (sin θ /2)] = 15²[3.14×(60/360) - sin60°/2] = 225[3.14×(1/6) - $\sqrt{3}/4$] = 225[(3.14/6) - 1.73/4] = 225[(6.28-5.19)/12] = 20.44

Hence, area of minor segment is 20.44cm².

Area of circle = πr^2 = 3.14×15² = 3.14×225 = 706.5cm² Area of major segment = Area of circle - area of minor segment = 706.5 - 20.44 = 686.06cm²

Hence, area of major segment is 686.06cm².

1. Choose the correct alternative answer for each of the following questions.

(1) The ratio of circumference and area of a circle is 2:7. Find its circumference.

(A) 14 π (B) 7/ π (C) 7 π (D) 14/ π

Solution:

Circumference of circle = $2\pi r$ Area of circle = πr^2 Given ratio of circumference and area = 2:7 $\therefore 2\pi r/\pi r^2 = 2/7$ $\Rightarrow 2/r = 2/7$ $\Rightarrow r = 7cm$ \therefore Circumference = $2\pi r = 2\pi \times 7 = 14\pi$. Hence, option A is the answer.

(2) If measure of an arc of a circle is 160° and its length is 44 cm, find the circumference of the circle. (A) 66 cm (B) 44 cm (C) 160 cm (D) 99 cm

Solution:

Given measure of arc $\theta = 160^{\circ}$ Length of arc = 44cm \therefore Length of arc = (θ /360)2 π r 44 = (160/360)×2 π r \Rightarrow 2 π r = 44×360/160 = 99 Circumference = 2 π r Hence, circumference is 99cm So option D is the answer.

(3) Find the perimeter of a sector of a circle if its measure is 90 ° and radius is 7 cm. (A) 44 cm (B) 25 cm (C) 36 cm (D) 56 cm

Solution:

Given radius , r = 7cm θ = 90° Perimeter of a sector = 2r + length of arc = 2r + (θ /360)2 π r = 2×7 + (90/360)×2×(22/7)×7 = 14+11 = 25cm Hence, option B is the answer

Hence, option B is the answer.

(4) Find the curved surface area of a cone of radius 7 cm and height 24 cm. (A) 440 cm² (B) 550 cm² (C) 330 cm² (D) 110 cm²

Solution:

Given height, h = 24cm Radius, r = 7 cm Slant height $l = \sqrt{(h^2 + r^2)}$ $=\sqrt{(24^2+7^2)}$ $=\sqrt{(576+49)}$ $=\sqrt{625}$ = 25 cmCurved surface area of a cone = $\pi r l$ $= 22/7) \times 7 \times 25$ $= 22 \times 25$ $=550 \text{cm}^2$

Hence, option B is the answer.

(5) The curved surface area of a cylinder is 440 cm² and its radius is 5 cm. Find its height. (A) 44 / π cm (B) 22 π cm (C) 44 π cm (D) 22/ π cm

Solution:

Given radius, r = 5 cm Curved surface area = 440 cm² Curved surface area = 2π rh $\therefore 440 = 2\pi rh$ \Rightarrow h = 440/2 π r $= 440/(2\pi \times 5)$ $= 440/10\pi$ $= 44\pi$ Hence, option C is the answer.

(6) A cone was melted and cast into a cylinder of the same radius as that of the base of the cone. If the height of the cylinder is 5 cm, find the height of the cone. (A) 15 cm (B) 10 cm (C) 18 cm (D) 5 cm

Solution:

Given radius of both cone and cylinder are equal. Height of cylinder, H = 5 cm Let height of cone be h. Since cone is melted and cast into a cylinder, volume of cone is equal to volume of cylinder. $\therefore (1/3)\pi r^2 h = \pi r^2 H$ \Rightarrow h = 5×3 = 15cm Hence, option A is the answer.

(7) Find the volume of a cube of side 0.01 cm.
(A) 1 cm³ (B) 0.001 cm³ (C) 0.0001 cm³ (D) 0.000001 cm³

Solution:

Volume of a cube $V = a^3$ Given side , $a = 0.01 \therefore V$ $= 0.01^3 = 0.000001 \text{ cm}^3$ Hence, option D is the answer.

(8) Find the side of a cube of volume 1 m³. (A) 1 cm (B) 10 cm (C) 100 cm (D)1000 cm Solution: Given volume, $V = 1m^3$ Volume of cube of side $a = a^3$ $\therefore a^3 = 1m^3$ $\Rightarrow a = 1m = 100$ cm Hence, option C is the answer.

2. A washing tub in the shape of a frustum of a cone has height 21 cm. The radii of the circular top and bottom are 20 cm and 15 cm respectively. What is the capacity of the tub $?(\pi = 22/7)$

Solution:

Given $r_1 =$ 20cm $r_2 =$ 15cm Height , h = 21cm Volume of frustum , $V = (1/3)\pi h(r_1^2 + r_2^2 + r_1 \times r_2)$ $\therefore V = (1/3) \times (22/7) \times 21 \times (20^2 + 15^2 + 20 \times 15)$ $\therefore V = 22 \times (400 + 225 + 300)$ $\therefore V = 22 \times 925$ $\therefore V = 22 \times 925 = 20350$ cm³ = 20.34 litres [$\because 1$ litre = 1000 cm³]

Hence, the capacity of the tub is 20.34 litres.

3*. Some plastic balls of radius 1 cm were melted and cast into a tube. The thickness, length and outer radius of the tube were 2 cm, 90 cm and 30 cm respectively. How many balls were melted to make the tube?

Solution:


```
Height of tube, h = 90cm
Outer radius, R = 30cm
Inner radius of tube r_1 = outer radius - thickness
= 30-2 = 28cm
Volume of plastic needed for tube = volume of outer tube - volume of inner tube
=\pi R^2 h -\pi r_1^2 h
=\pi h(R^2-r_1^2)
= \pi \times 90(30^2 - 28^2)
= \pi \times 90(900-784)
=\pi \times 90 \times 116 = 10440 \pi \text{cm}^3
Volume of a plastic ball = (4/3)\pi r^3
= (4/3)\pi \times 1^3
= (4/3)\pi cm^3
Number of balls melted to make tube = Volume of plastic needed for tube/ Volume of a plastic
ball
= 10440\pi \div (4/3)\pi
= 10440\pi \times 3/4\pi
= 7830
```

Hence, the number of balls needed to make tube is 7830.

4. A metal parallelopiped of measures 16 cm × 11 cm × 10 cm was melted to make coins. How many coins were made if the thickness and diameter of each coin was 2 mm and 2 cm respectively?

Solution:

Given: For the parallelopiped., length (l) = 16 cm, breadth (b) = 11 cm, height (h) = 10 cm For the cylindrical coin, thickness (H) = 2 mm,diameter (D) 2 cm To find: Number of coins made. Volume of parallelopiped = $l \times b \times h$ $= 16 \times 11 \times 10$ $= 1760 \text{ cm}^3$ Thickness of coin(H) = 2 mm $= 0.2 \text{ cm} \dots [: 1 \text{ cm} = 10 \text{ mm}]$ Diameter of coin (D) = 2 cmRadius of coin (R) = $\frac{D}{2} = \frac{2}{2} = 1$ cm Volume of one coin = $\pi R^2 H$ $=\frac{22}{7} \times 1^2 \times 0.2$ $=\frac{4.4}{7}$ cm³ Number of coins that were made

 $=\frac{\text{Volume of parallelopiped}}{\text{Volume of one coin}}=\frac{1760}{\frac{4.4}{7}}$ $=\frac{1760\times7}{44}=\frac{1760\times7\times10}{44}=2800$

 \therefore 2800 coins were made by melting the parallelopiped.

5. The diameter and length of a roller is 120 cm and 84 cm respectively. To level the ground, 200 rotations of the roller are required. Find the expenditure to level the ground at the rate of ₹ 10 per sq.m.

Solution:

Given: For the cylindrical roller, diameter (d) =120 cm, length = height (h) = 84 cmTo find: Expenditure of levelling the ground. Diameter of roller (d) = 120 cmRadius of roller (R) = $\frac{D}{2} = \frac{120}{2} = 60$ cm Curved surface area of roller = $2\pi h$ $=2\times\frac{22}{7}\times60\times84$

$$= 2 \times 22 \times 60 \times 12$$

= 31680 cm²
= $\frac{31680}{100 \times 100}$ m² [: 1 m = 100 cm]
= 3.168 m²

Now, area of ground levelled in one rotation = curved surface area of roller = 3.168 m^2

: Area of ground levelled in 200 rotations

 $= 3.168 \times 200 = 633.6 \text{ m}^2$

Rate of levelling = $\gtrless 10 \text{ per m}^2$

- ∴ Expenditure of levelling the ground
- = 633.6 × 10 = ₹ 6336
- : The expenditure of levelling the ground is ₹ 6336.

6. The diameter and thickness of a hollow metal sphere are 12 cm and 0.01 m respectively. The density of the metal is 8.88 gm per cm3. Find the outer surface area and mass of the sphere, $[\pi = 3.14]$

Solution:

Given: For the hollow sphere, diameter (D) =12 cm, thickness = 0.01 m density of the metal = 8.88 gm per cm³ To find: i. Outer surface area of the sphere ii. Mass of the sphere.

Diameter of the sphere (D)= 12 cm \therefore Radius of sphere (R) = d2 = 122 = 6 cm

 \therefore Surface area of sphere = $4\pi R^2$

 $= 4 \times 3.14 \times 6^2$

 $= 452.16 \text{ cm}^2$

Thickness of sphere = 0.01 m

 $= 0.01 \times 100 \text{ cm} \dots$ [: 1 m = 100 cm]

= 1 cm

 \therefore Inner radius of the sphere (r)

= Outer radius – thickness of sphere

$$= 6 - 1 = 5 \text{ cm}$$

 \therefore Volume of hollow sphere

= Volume of outer sphere – Volume of inner sphere

$$= \frac{4}{3}\pi R^{3} - \frac{4}{3}\pi r^{3}$$
$$= \frac{4}{3}\pi (R^{3} - r^{3})$$
$$= \frac{4}{3} \times 3.14 \times (6^{3} - 5^{3})$$

 $=\frac{4}{3} \times 3.14 \times (216 - 125)$ $=\frac{4}{3} \times 3.14 \times 91$ $=\frac{1142.96}{3} = 380.99 \text{ cm}^{3}$ Now, density of metal = $\frac{\text{Mass of sphere}}{\text{Volume of sphere}}$ $\therefore 8.88 = \frac{\text{Mass of sphere}}{380.99}$ $\therefore \text{ Mass of sphere} = 8.88 \times 380.99$ = 3383.19 gm

 \therefore The outer surface area and the mass of the sphere are 452.16 cm² and 3383.19 gm respectively.

7. A cylindrical bucket of diameter 28 cm and height 20 cm was full of sand. When the sand in the bucket was poured on the ground, the sand got converted into a shape of a cone. If the height of the cone was 14 cm, what was the base area of the cone?

Solution:

Given: For the cylindrical bucket, diameter (d) = 28 cm, height (h) = 20 cm For the conical heap of sand, height (H) = 14 cm To find: Base area of the cone (π R²). Diameter of the bucket (d) = 28 cm Radius of bucket (r) = $\frac{d}{2} = \frac{28}{2} = 14$ cm Volume of bucket = π^2 h = $\frac{22}{7} \times 14^2 \times 20$ = $22 \times 14 \times 2 \times 20$ = 12320 cm³ Volume of conical heap = $\frac{1}{3}\pi$ R²H = $\frac{1}{3} \times \pi$ R² × 14 = $\frac{14}{3}\pi$ R² cm²

But, volume of bucket = volume of conical heap

:.
$$12320 = \frac{14}{3} \pi R^2$$

:. $\pi R^2 = \frac{12320 \times 3}{14}$
= 2640 cm²

The base area of the cone is 2640 cm^2 .

8. The radius of a metallic sphere is 9 cm. It was melted to make a wire of diameter 4 mm. Find the length of the wire.

Solution:

Given: For metallic sphere, radius (R) = 9 cmFor the cylindrical wire, diameter (d) = 4 mmTo find: Length of wire (h). Volume of sphere = $\frac{4}{3}\pi R^3$ $=\frac{4}{3} \times \pi \times 9^3$ $=972\pi \text{ cm}^{3}$ Diameter of wire (d) = 4 mm $=\frac{4}{10}$ cm [: 1 cm = 10 mm] = 0.4 cmRadius of wire (r) $=\frac{d}{2} = \frac{0.4}{2} = 0.2$ cm Volume of wire = $\pi r^2 h$ $=\pi(0.2)^{2}h=0.04\pi h \text{ cm}^{3}$ But, volume of wire = volume of sphere $0.04 \ \pi h = 972 \ \pi$ $h = \frac{972}{0.04}$ $=\frac{97200}{4}$ = 24300 cm $=\frac{24300}{100}$ m [1 m = 100 cm]h = 243 m \therefore The length of the wire is 243 m.

9. The area of a sector of a circle of 6 cm radius is 157t sq.cm. Find the measure of the arc and length of the arc corresponding to the sector.

Solution:

Given: Radius (r) = 6 cm, area of sector = 15 π cm² To find: i. Measure of the arc (θ), ii. Length of the arc (1) Area of sector = $\frac{\theta}{360} \times \pi r^2$ $15\pi = \frac{\theta}{360} \times \pi \times 6^2$

$$15\pi = \frac{\theta}{360} \times \pi \times 36$$

$$15 = \frac{\theta}{10} \qquad \therefore \ \theta = 150^{\circ}$$

Also, area of sector = $\frac{\text{length of the arc } \times \text{radius}}{2}$

$$15\pi = \frac{\text{lenth of the arc } \times 6}{2}$$

length of the arc = $\frac{15\pi \times 2}{6} = 5\pi \text{ cm}$

: The measure of the arc and the length of the arc are 150° and 5π cm respectively.

10. In the adjoining figure, seg AB is a chord of a circle with centre P. If PA = 8 cm and distance of chord AB from the centre P is 4 cm, find the area of the shaded portion.

 $(\pi = 3.14, 3 - \sqrt{=1.73})$

Solution:

Given: Radius (r) = PA = 8 cm, PC = 4 cmTo find: Area of shaded region. Let $\angle APC = \theta_1$ In $\triangle ACP = 90^{\circ}$ $\cos \theta_1 = \frac{PC}{AP} = \frac{4}{8} = \frac{1}{2}$ But, $\cos 60^\circ = \frac{1}{2}$ $\theta_1 = 60^\circ$ Similarly, we can show that, $\angle BPC = 60^{\circ}$ $\angle APB = \angle APC + \angle BPC \dots$ [Angle sum property] $\therefore \theta = 60^\circ + 60^\circ = 120^\circ$ $\sin 60^\circ = \frac{AC}{8}$ $\therefore \frac{\sqrt{3}}{2} = \frac{AC}{8}$ *.*.. \therefore AC = $4\sqrt{3}$ cm Now, AB = 2 ACPerpendicular drawn from ... the centre of the circle to the chord bisects the chord

$$= 2 \times 4\sqrt{3}$$

$$= 8\sqrt{3} \text{ cm}$$

$$\therefore \quad A(\Delta APB) = \frac{1}{2} \times AB \times PC$$

$$= \frac{1}{2} \times 8\sqrt{3} \times 4$$

$$= 16\sqrt{3}.$$

$$= 16 \times 1.73$$

$$= 27.68 \text{ cm}^{2}$$

Area of shaded region = A(P-ADB) - A(\Delta APB)

$$= 00.98 - 27.08 = 39.30$$
 CIII

 \therefore The area of the shaded region is 39.30 cm².

11. In the adjoining figure, square ABCD is inscribed in the sector A-PCQ. The radius of sector C-BXD is 20 cm. Complete the following activity to find the area of shaded region.

Solution : Side of square ABCD = radius of sector C-BXD = 20 cm

Area of square =
$$(side)^2 = 20^2 = 400$$
 (I)

Area of shaded region inside the square

= Area of square ABCD - Area of sector C-BXD

$$= 400 - \frac{\theta}{360} \times \pi r^{2}$$

= 400 - $\frac{90}{360} \times \frac{3.14}{1} \times \frac{400}{1}$
= 400 - 314
= 86

Radius of bigger sector = Length of diagonal of square ABCD = $20\sqrt{2}$

Area of the shaded regions outside the square

= Area of sector A - PCQ - Area of square ABCD
= A(A - PCQ) - A(
$$\square$$
ABCD)
= $\left(\frac{\theta}{360} \times \pi \times r^2\right) - \left[AB\right]^2$
= $\frac{90}{360} \times 3.14 (20\sqrt{2})^2 - (20)^2$
= $628 - 400$
= 228 cm^2

 \therefore total area of the shaded region = 86 + 228 = 314 sq.cm.

12. In the adjoining figure, two circles with centres O and P are touching internally at point A. If BQ = 9, DE = 5, complete the following activity to find the radii of the circles.

Solution : Let the radius of the bigger circle be R and that of smaller circle be r.

OA, OB, OC and OD are the radii of the bigger circle

$$\therefore OA = OB = OC = OD = R$$

$$PQ = PA = r$$

$$OQ = OB - BQ = R-9$$

$$OE = OD - DE = R-5$$

As the chords QA and EF of the circle with centre P intersect in the interior of the circle, so by the property of internal division of two chords of a circle,

$$OQ \times OA = OE \times OF$$

R-9 × R = **R-5** × **R-5** (:: OE = OF)
R² - 9R = R² - 10R + 25
R = **25**
AQ = 2r = AB - BQ
2r = 50 - 9 = 41
r = **41**/2 = **20.5**