7.1 Laplace Transform

The Laplace transform method solve differential equations and corresponding initial and boundary value
roblems. The process of solution consists of three main steps:

Tststep: The given "hard” problem is transformed into a “simple” equation (subsidiary equation).

2nd step: The subsidiary equation is solved by purely algebraic manipulations.

3rd step: The solution of the subsidiary equation is transformed back to obtain the solution of the given
roblem.
In this way Laplace transforms reduce the problem of solvin

his process is made easier by tables of functions and their tra
ibles in calculus.

g a differential equation to an algebraic problem,
nsforms, whose role is similar to that of integral

This switching from operations of calculus to algebraic operations on transforms is called operational
alculus, avery important area of applied mathematics, and for the engineer, the Laplace transform method is
ractically the most important operation method. it is particularly useful in problems where the mechanical or
lectrical driving method. It is particularly useful in problems where the mechanical or electrical driving force has
iscontinuities, is impulsive or is a complicated periodic function, not merely a sine or cosine. Another operational
1ethod is the Fourier transform.

The Laplace transform also has the advantage that it solve initial value problems directly, without first
etermining a general solution. It also solves nonhomogeneous differential e

quations directly without first solving
I€ corresponding homogeneous equation.

System of ODES and partial differential equations can also be treated by Laplace transforms.
-2 Definition

Let f(f) be a function of ¢ defined for all positive values of t. Then the Laplace transforms of 1), denoted by
1)} is defined by

Loy = [ e Ht)et - (D)

provided that the integral exists, s is a parameter which may be a real or complex number,
L{R 1)} being clearly a function of sis briefly written as f(s) or as Hs)
ie. LYY = 7(s),

which canalso be writtenas 1) = [~1(7(s))

Then ff) is called the inverse Laplace transform of f(s). The symbol L. Which transforms 1) into F(s), is
dled the Laplace transformation operator.

Example:

If ity = 1

e Aar = F'ST Sl i
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Similarly Laplace transforms of other common functions can also be evaluated and is shown below:



73 Transforms of Elementary Functions
The direct application of the definition gives the following formulae:

A= BT (s> 0)
s
| : - . Tn+1
2 Lt =" whenn=0,1,2,3,.. {otherwwe ““(‘,;g'—)}
Sn+1 S
3. L= — s
()= - (s>a)
. ‘a
4. L(sinat)= - (s<0)
s +a°
5. L{cosal)= S (s> 0)
s +a°
, a
6. L(sinhal)= ——— (s>1al)
s°-a
s
7. L(coshal) = - (s>]al)
¢ —-a

7.4 Propertiesoflaplace Transforms

7.4.1 Linearity Property
If a, b, ¢ be any constants and f, g, h any functions of ¢, then
L{af(t) + bg(t) - ch(t)] = aL(ft)}+ bL{g(f] - cL{h(H)}

74.2 First Shifting Property

If L{RH) = 7(s), then
LieFf) = f(s-a)

Application of this property leads us to the following useful results:

1. L(e?)=
s—-a
n!
2 Letr) = e
3. Letsinbh= O
(s — a)° + b
4. L(e*cosbh= —2— 2
(s~ a)? + b
5. [(e#sinhbt) = ”’"DT‘?
(s—a) -b
6. L(evcoshbt)= —>_2
(s —a)® - b

where in each case s> a.

(nis positive integer)

i . b
cL(sin bty = -
) ( ) 82+b2:|

- s
o L{cos bt) =
( ) 32+b2}

i . b
- L{sinh bt) =
( ) 7 _bg}

i s
- L{cosh bt) =



4.3 Change of Scale Property

If LIRD) = 7(s), then L{faD) = —;—f(g—j

Proof: Lifat} = | ; e fat)at

Putat=uy
= dt=du/a

i

J';e‘s"/ #f(u).du/ a

1 ~sufa 17

- = —1{5/48).
afO e f(nadu p (s/a)
1.4 Existence Conditions

f ; e M(t)at exists if fge”Sff(z‘)dt can actually be evaluated and its limit as A — o exists. Otherwise we

ty use the following theorem:

If K1) is continuous and lim{e™?#(t)} is finite: then the Laplace transform of (1), i.e. f;e‘Stf(t)dt exists for

t—>e0

It should however, be noted that the above conditions are sufficient rather than necessary.

For example, L(1/\t) exists, though Y+ is infinite at ¢ = 0. Similarly a function A1) for which tlim{e""”f(t)}
oo
inite and having a finite discontinuity will have a Laplace transform for s> a.

L5 Transforms of Derivatives :
1. If F(¢) be continuous and LA} = f(s), then
L{F(t)} = sf(s)-#(0)
2. I f(f) and its first (n ~ 1) derivatives be continuous, then
L) = s"F(s) = s™1(0) - s™2F(0) - ... - Q)

-5.1Differential Equations, Initial Value Problems
We shall now discuss how the Laplace transform method solved differential equations,
We begin with an initial value problem.
'+ ay + by = (), ()
AO) = K, y(0) = K,
with constant aand b. Here (1) is the input (driving force) applied to the mechanical system and (1) is the
put (response of the system). In Laplace’s method we do three steps.
1st Step: Taking Laplace transform of LHS and RHS of 1 we get
L")+ al(y’) + bL(y) = L(n). .
Now substituting L(y) = sL(y) - (0) and L(y") =s° I( y)~-sf0)-f(0), we get
[s*L(y) = s(0) ~ y(0)] + a[sL(y) - ®O)] + by = L(1).
Now writing Y = L(y) and R = L(r). This gives
[s2Y(s) = 5Y(0) - Y(0)] + als¥(s) - 1(0)] + by = R(s)
This is called the subsidiary equation. Collecting Y-terms, we have
(+as+bHYs) = (s+a) NO) + ¥ (0) + R(s).



2nd Step: We solve the subsidiary equation algebraically for Y. Division by $? + as + band use of the so-
called transfer function

S N
o) = s“+as+b
gives the solution
Y(s) = [(s+a)y(0)+ y'(0)]Cs) + Als) As) --(if)

If Y(0) = y/(0) = 0, this is simply Y = RQ; thus Q is the quotient
Y _ Lloutput)
R L(input)
and this explains the name of Q. Note that Q depends only on a and b, but does not depend on either (1)
or on the initial conditions.

Q =

3rd Step. We reduce (i) (usually by partial fractions, as in calculus) to a sum of terms whose inverse can be
found from the table, so that the solution W) = L(Y) of (i) is obtained.

Example 1.
Initial problem: Explanation of the basic steps

Solve Vi-y=t W0) = 1. y(0) = 1.
Solution:
1st Step.

By taking Laplace transform of LHS and RHS of y" -y = {, we get the following subsidiary equation

v 2L(y) - sy0) - V(0) - L(y) = 1/s, thus (82 - 1)Y= s+ 1+ 1/8°

where Y= L(y)

2nd Step.

The transfer function is Q = 1/(?~ 1), and

4

—

g1 1 "
Q= + = +
$? -1 S#(sf-1) s-1 L

4
I I
2

Y =(+NQ+
(s+7) &% -1 SJ

52

3rd Step.
From this expression for Y, we obtain the solution by inverse Laplace transform as follows

W =LY = [ {_1_} e { 1 }_ﬁ {iz} - ol 4 sinhi—t
. S

s—1 s? -1

_et+e’—e"‘ e 3¢ el -2t
2 2

The diagram in Fig. below summarizes our approach.

t-space s-space

Subsidiary equation

(P~ 1)Y =5+ 1/s?

Laplace transform method



7.4.6

7.4.7

7.4.8

7.5

Comparison with the usual method
The problem can also be solved by the usual method without using Laplace transforms as shown

below:
yi-y=1 N0 =1,y(0) =1
(DP-1y=0 '
Auxiliary equation
’~1=0
(D+1)(D-1)=0

my = 1and m, =1
So complementary function is y = cet+c,e!

Now particular integral

Pl.= — @

D? -1
=-(1+02-D" Ji==t+0-0--=—¢

So complete solution is
y = cel+c,et
y' = cel-cet
Putting initial conditions y(0) = 1 and y/(0) = 1, we get
ci+C,=tlandc,~¢c,=2

1
= ¢, = and C, = ~§

1 1 ~
el ——el ot = —(Be' -t -2t
5 2( )

Which is exactly the same solution as obtained by Laplace transform method.

Note: Laplace transform method has obtained the solution directly without any evaluation of constants
c,, C,etc.
12

SoC.S.is y =

Niw o w

Transforms of Integrals

If L{KH) = F(s), then /_{ f;f(u)du} :gf(s)

Multiplication By ¢t

If LIAD) = f(s), then L{E"F(H)) = (~1)”-58’—n[7(s)], where n=1,2, 3...
Division By t
If LIRO) = F(s), then L{;f@} = [ Tls)ds

provided the integral exists.

Evaluation of Integrals by Laplace Transforms

Example:
Evaluate

“©, of . - sin mt j tesint
() [ te®sintat (o) [ at (C)Lljo dit



Solution:

(a) [ tePsintat = [, e (tsint)at where s =2
= L(tsin #), by definition.
B _1_@( 1 )_ 25 _ 2x2 4
ds\s?+1)  (2+1)% (2P+9? 25
(b) Since, ‘ L(sinmt) = ml(s? + m?) = Ks), say
L(Sm mt) = fwf(s)ds: ” 2md52 = tan"f— = E—‘can”’-s—
t s S g° 4+ m mig 2 m
Now since, L(Sm mt) = fe’S[Mdf
t 0 t
fe*S[ SN = Tt S
0 t 2
Now, Ltotan”1(s/m) =0ifm>0ornitm<0
S
Thus taking limits as s— 0, we get
. [Tt = T it ms0or -2 it m< 0
7 2 2
(c) Since, L[ﬂn-—{) = [ zds =tan's= Z—tan"'s = cot- s,
t S g +1 2

L{et(_____)} = cot!(s~ 1), by shifting property

Thus, l_[ J“;{ef (S—';ﬁ)} dt} = %cot‘[(s -9

Example:

sindnt
it

Evaluate f 12cos2nt: at

—~o0

Solution:
Since function is even function so,

sin4rnt
mt

:gf[sm&m sm2ntJdt
o

I = Zf 12cos2nt- dt

t
[Note: 2 cos CsinD = sin(C + D) + sin(C ~ D)]

_M_S__FsinmthTsinZnide B §[§+E}-3
t g’ -

Tlo 1 0



76 Inverse Transforms - Method of Partial Fractions

Having found the Laplace Transforms of a few functions, let us now determine the inverse transforms of
given functions of s. We have seen that L{({{)} in each case, is a rational algebraic function. Hence to find the
inverse transforms, we first express the given function of s into partial fractions which will, then, be recognizable as
one of the following standard forms:

o - e

4 1 a 1 atlm1
3. LM—i=  n=1,2 3,.. 4. L
s (n=1) (n-!
- 1 1, 1 S
5 [ = —gin at 6. L~ ( ]:cosat
(32+a2) a s® +a°
7. [ ! :lsinhat 8. L( Jmcoshat
?-a°) a s? -
9. [ N =iea’sin bt 10, L7 .__ﬁ.? = e® cos bt
(s—af+b*| b (s—af +b
19, [ 5 :ifsinaf 12. L‘1~ 5 122 = L(sinat—atcosaz‘)
(s 222 | 2a (s°-a) 2a”

All these results need to be memorised. The results (1) to (10) follow at once from their corresponding
results in transforms of elementary functions and properties of Laplace transforms. Results (11) and (12) can be
proved.

Note on Partial Fractions: To resolve a given fraction into partial fractions, we first factorise the denominator
into real factors. These will be either linear or quadratic, and some factors repeated. We know from a!gebra that
a proper fraction can be resolved into a sum of partial fractions such that

1. to a non-repeated linear factor s — a in the denominator corresponds a partial fraction of the
form A/(s — a).

2. toarepeated linear factor (s — a)"in the denominator corresponds the sum of r partial fractions of the
A A, As A,

form + 5+ Tt -
s—a (s-a° (s-a) (s-a)

8. toanon-repeated quadratic factor (s? + as + b) in the denominator, corresponds a partial fraction of the

As+ B

2

form ,
sc+as+b

4. to a repeated quadratic factor (s° + as + b) in the denominator, corresponds the sum of r partial

As+ B, N AyS+ B, . As+B,

fractions of the form 5 5t 5 .
s*+as+b (s°+as+b) (s* +as+b)

Then we have to determine the unknown constants A, Aw 81 etc.

In all other cases, equate the given fraction to a sum of suitable partial fractions in accordance with 1 to 4
above, having found the partial fractions corresponding to the non-repeated linear factors by the above rule. Then
multiply both sides by the denominator of the given fraction and equate the coefficients of like powers of s or
substitute convenient numerical values of s on both sides. Finally solve the simplest of the resulting equations to
find the unknown constants.



7.7 UnitStep Function

At times, we come across such fractions of which the inverse transform
cannot be determined from the formulae so far derived. In order to cover such
cases, we introduce the unit step function (or Heaviside’s unit function®),

Def. The unit step function w(t- a) is defined as follows
{O fort<a

ut-a) 1fort 2z a

where a is always positive.

7.7.1 Transform of Unit Function

u(t— a)

Lut-al = [ e u(t-aat
oo -st]”
= fae"sszdH_[ e Adt = 0+/%—
0 a -8
a
Thus, L{u(t-a)) = e3ss,
The product ) u(t-a) = 0 fort<0
fitYyfort=za
The function it - a) . u(t — a) represents the graph (¢ shifted through a distance a to the right and is of
special importance.
78 Second Shifting Property
If LD} = f(s),then
Lift-a)x u(t-a)} = e*f(s)
Proof: Lit-ayx dt-ay = [ "™t - aju(t - a)ct
= joa e~f(t — a)(0) ot + j:e“S’f(t~ a)at [Put t— a = (]
= j;e‘s(“”)f(u)du = e‘saf;e"suf(u)du = 7% (s)
7.9 Unitimpulse Function
The idea of a very large force acting for a very short time is of frequent Jé ..........
occurrence in mechanics. To deal with such and similar ideas, we introduce the
unitimpulse function (also called Dirac delta function).
Thus unit impulse function is considered as the limiting form of the function (Figure) -
aate

d(t-a) astsa+e

/e,

0, otherwise

as g -» 0. It is clear from figure that as € — 0, the height of the strip increases indsfinitely and the width

decreases in such a way that its area is always unity.
Thus the unit impulse function §(f- a) is defined as follows:
&(t-a)

o

0

St—aldt = 1
ol — a)ai !

fort=a

o
(=}

for t#

—~
O]
v

=



As an illustration, a load W, acting at the point x = a of a beam may be considered as the limiting case of
uniform loading Wyle per unit length over the portion of the beam between x = a andx = a+ ¢ Thus

Mx) = wyfe a<x<a-+e,
=0 : otherwise
je. Wx) = wd(x + a)

7.9.1 Transform of Unit Impulse Function

If A1) be a function of tcontinuous at t = 1, then
1

f:f(r)so(t—a)-dt = f:+8f(t)-—g-dt = (a+e-a)f(n)- o= fm) wherea<n<a+e

by Mean value theorem for integrals.
As € — 0, we get f:f(r)é(t ~ajdt = fa)

In particular, putting f#) = e'in above integral

we have f:e"Sf 3t -ajdt = eas
Now LHS is nothing but L{d(t- a)}
: L{d(t-a)} = egas

7.10 Periodicfunctions
If 1) is a periodic function with period T, i.e. At + T) = f($), then

[ Ore-sf f(t)at

LD} = T

Example:

int t , o . '
A= {sr(r; 0 <[ <2TC , (1) is periodic function with time period 2n. Determine the Laplace transform
n<t<2m

of ft).
Solution:

Laplace transform of periodic function

T n
1 i 1 ot
L) = — [ ftyat = —. [ sintet
0 0
1 {e“s“ . i
= —— —~,——~(~S‘smz‘~1c:osz‘)J
1—e " | % 19 -
1 Je 1] (1+67™) I
1-e % | P41 41| (52 T)(-e7) (1+e7) (T +1)(1-e7)

.11 FourierTransform
Fourier series is an approximation process where any general (periodic or aperiodic) signalis expressed as
- um of harmonically related sinusoids. It gives us frequency domain representation.

If the signal is periodic Fourier series represents the signal in the entire interval (oo, @), i.e. Fourier series
an be generalized for periodic signals only.



Definition: Suppose fis a piecewise continuous periodic function of period 2L, then fhas a Fourier series
representation

fx) = aO+ ap cos X + b, sin X
2" & L [

Where the coefficients a's and b’s are given by the Euler-Fourier formulas:

a = —ff cos-—wc/\c n=01213, ..

n

L
b, = %J'f sm~——dx n=1273 ..

7.12 Drichilet’s Conditions
The sufficient condition for the convergence of a Fourier series are called Drichilet’'s conditions.

1. flx)is periodic, single valued and finite.

2. f(x) has a finite number of finite discontinuities in any one period.

3. f(x) has a finite number of maxima and minima.
7.12.1 Fourier Cosine and Sine Series

If fis an even periodic function of period 2L, then its Fourier series contains only cosine (include, possibly,
the constant term) termg. It will not have any sine term. That is, its Fourier series is of the form

oo

fx) = 24 ‘8, cos "X
2~ L
its Fourier coefficients are determined by
a, = jf (x)oos T gy, n=0123, .
L
b =0, n=123, ..

n
If fis an odd periodic function of period 2L, then its Fourier series contains only sine terms. It will not have

any cosine term. That is, its Mourier series is of the form

f) = 3 b, sin=E
n=1 L
lts Fourier coefficients are determined by
a, = 0, n=0,1,2,3, ..
ok o Mmx
b, = —ng(x)sm—/;dx, n=0123, ..

Example:
Find a Fourier seriesfor f(x) = x, -2 <x < 2, flx + 4) = f(x)

—1(2/8—-/-4-2 2/1é()/&3 10
. - . 4+ -2 ¢ s




Solution:
Firstnote that T= 2L = 4, hence [ = 2
The constant term is one half of ao,

L .
a, 1]“ oosm”xdx=1jxdx=lf— ~looo=0
L M 2 ¢ 2 2 - 2
The rest of the cosine coefficients, for n = 1,2,3,...., are
2
a, = 1f cospﬂd»c—1 fxcosmdx
L 2 % 2
_ 1 in nnx .._2_ sin rmxd
2 o hm 2

1[2_ D 4 maf
2

H

4 1.
5[[O+n2n cos(nn)J (O+nn cos(-n )JJ—O

Hence, there is no non-zero cosine coefficient for this function. That is, its Fourier series contains no
cosine terms at all. (We shall see the significance of this fact a little later).

The sine coefficients, for n = 1,23, .., are
L 2
b, = 1 ff(x) smﬂﬂdx = f xsin @ﬁd
L % b 2
= .1 _—Q_xc B.E _ifcosﬁ_nnxd
2| nm 2 |5 2
2
1) —2x nm x I x
= — cos + sin—=
21 nm 2 ne 2 _QJ

_ [(j cos(nm) -0 ] - (—4~ cos(—nm) — OH
21 ne , nm

= —[(cos(nm) + cos(rm)] = :{1—008(/77‘?)
s nm

4
—, n=odd ne
_ er _ 4
1»4 nm
~ . N =even
nm
4 & 0" oy
Therefore, flx) = = sin——
() T Z n 2

Example:
Find a Fourier series for flx) =x, 0 < x < 4, f(x + 4) = f(x). How will it be different from the series in the
previous example?



Sofution:

1 1x2 1
@r—ggxdx:—3~:zﬂ8w®:4
6]
t nmx 1 mx 4 rm:xl4
Forn=1,23, .. 8,,=~fxcos—d = | &g + 008
5 nm 2  nm 2 'o
1 4 4
= —{1 0+ cos(2nm) |—| O + —=—=c0s(0) || =0
[0 Femem -0 e
h 19 . Nmx 11 ~2x N x 4 nnxr
L= = | xsin—=dx=— cos +—5—sin
6 21 nm 2 nm 2 !o
= l[(_—SCOS(Znn~O)—(O—O)ﬂ=ﬂ
2 nm nm

oo

= B Z{ancosm+bn sinnnxj:2+j S lsin—mnm
2 &~ L L 2

~—

Consequently, flx

_ TN
Comment: Just because a Fourier series could have infinitely many (non-zero) terms does not mean that
it will always have that many terms. If a periodic function f can be expressed by finitely many terms
normally found in«a Fourier series, then the expression must be the Fourier series of f. (This is analogous
to the fact that the Maclaurin’s series of any polynomial function is just the polynomial itself, which is a
sum of finitely many powers of x.)

Example: The Fourier series (period 2r) representing
f(x) = 5 + cos(4x) — sin(5x) is just f(x) = 5 + cos(4x) - sin(5x).

Example: The Fourier series (period 2r) representing f(x) = 6cos(x) sin(x) is not exactly itself as given,
since the product cos(x) is not a term in a Fourier series representation. However, we can use the double-
angle formula of sine to obtain the result: 6¢cos(x)sin(x) = 3sin(2x).

Consequently, the Fourier series is f(x) = 3sin(2x).

7.12.2 The Cosine and Sine Series Extensions

If fand " are piecewise continuous functions defined on the interval 0 < t< L, then fcan be extended into
in even periodic function, £, of period 2L, such that f(x) = F(x) on the interval [0, L], and whose Fourier series is,
herefore, a cosine series. Similarly, f can be extended into an odd periodic function of period 2L, such that
(x) = F{x) on the interval (0, L), and whose Fourier series is, therefore, a sine series. The process that such
:xtensions are obtained is often called cosine.sine half-range expansions.

Even (cosine’series) extension of f(x)

Given f(x) defined on [0, L]. Its even extension of period 2L is

( flx) 0O0<x<L
|f(=x) -L<x<0

~ Where, Fx) = L anoosn—tf. such that
n=1
ok mmx
a = mff(x)COSW%dx, n=0,13,..
n =T [

| 3



0dd (sine series) extension of f(x)
Given f(x) defined on [0, L]. Its odd extension of period 2L is

flx) O<x<L
F(x) = 0, x=0,L F(x+20) = F(x)
' ~f(~x), ~-L<x<0O
Where, Fix) = i cos-m such that
a =0, n=0123 .
2k . fmx
b, = ng(x)sdex’ n=013,..

Example:
Let f(x) = x, 0 <x < 2. Find its cosine and sine series extensions of period 4.

Solution:
. . 8 & (2n -~V nx
Cosine series: = 1--=
e E; 2n—1 2
o f7+1
Sine series: X -4 Z sin X
YA 2



Q.2

Q.3

Q.4

Q.5

If L defines the Laplace Transform of a function,

L [sin (at)] will be equal to

a a
@ §% - a° ) s®+a

s s
© s +a @) s - a2

[CE, GATE-2003, 2 marks]

Laplace transform of the function sin wtis

s w
@) S5+ (0) 5+

s )
) &2 _ w2 (d) &2 - @2

[ME, GATE-2003, 2 marks]

A delayetd unit step function is defined as

u(t-a)y= {O’ fort<a . Its Laplace transform is

1,fort 2a
N —
e

() a.e™@8 (b) —
s

eas eas
Bl d I

© = (d) =

[ME, GATE-2004, 2 marks]

A solution for the differential equation
x(f) + 2x(t) = 8(1) with initial condition x(07) = 0'is
(@) e u(h) (o) e*u(t)
(c) et u(t) (d) &' u(t)

[EC, GATE-2006, 1 mark]

If F(s)is the Laplace transform of function (1),

t
then Laplace transform of ff(r)dr is

0
1
(@ <F(s) (b) <F(9)=f(0)

(@ IF(S) ds
[ME, GATE-2007, 2 marks]

Q.6 Evaluate f ——-dl‘
7
(@) (0) 5
n T
© 3 G
[CE, GATE-2007, 2 marks
Q.7 Laplace transform for the function f(x) = cosh(a
is
a s
(a) R (b) .
a s
d JU—
©) s’ +a () s% +a°
[CE, GATE-2009, 2 marks
Q‘.8 The inverse Laplace transform of 1 s
. (s? +5)
(@ 1+ ¢ (b) 1- &
(c) 1-¢t (d)y 1+ et

[ME, GATE-2008, 1 markl

]

Q.9 The laplace-transform—of-afunctionf{1)-ig
1

1 i

. The function f(t) is

s2(s+1)

(@ t-1+¢ ) t+1+¢

) -1+ ¢ (d) 2t + e

[ME, GATE-2010, 2 marks
Q.10 Given [ ?;S” I lim £(t) =1
$°+45° +(K - 3)s t—oo

then the value of Kis

(a) 1 (b) 2

() 3 (d) 4

[EC, GATE-2010, 2 marks

Common Data Questions 11 and 12
Given f(t) and g(t) as shown below:

f(t)

1

oD
XY



g(t)

0 3 5

Q.11 g() can be expressed as

@ o(t) = 2-3) (o) g(t) = f(—é—s)

3 t 3
= [ l' o f —_———
©) g(t) f(Zt 2) () g(t) (2 2)
[EE, GATE-2010, 2 marks]
Q.12 The Laplace transform of g(t) is

(@) 1(635 _ eSs) (b) _;_(9—58 _ 6*35)

S

-3s
e 25 T ss  _3s
0 S-(1-e%) o gl )
[EE, GATE-2010, 2 marks]

Q.13 The inverse Laplace transform of the function

1
Fle) = s(s+7)

(@ f(t) =sint
(c) f(t) = et

is given by

(b) (t)y = etsint
(@) ) =1 - et
[ME, GATE-2012, 2 marks]

Q.14 Consider the differential equation

2
GO L0 =50 with

at? at
ay

Dljup= -2 and —= -
V()0 ot =
The numerical value of Q/X is

dtl-o

(@) ~2 (b) -1
()0 (d) 1

[EC, IN GATE-2012, 2 marks]
Q.15 The function f(1) satisfies the differential equation

2
ig +f = 0 and the auxiliary conditions, {0) =0,

—g’;(O) = 4. The Laplace transior of f(f)is given
by
2 4
@) S+1 (b) s+1
& d
© 2 @ &

[ME, GATE-2013, 2 Marks]

s
Q.16 Laplace transform of cos(wt) is il The

laplace transform of e 2 cos(4t) is

§—2 - N S+2
@ (s—22116 (B) (6 =2 +16
&§~2 $+2

9 (s+2° +16
[ME, GATE-2014 : 1 Mark]

© Grepeie

35+ 5
8% +10s+ 21
of a signal x(t). Then, x(0*) is
(@ 0 (b) 3
() 5 (d) 21
[EE, GATE-2014 : 1 Mark]

€17 LetX(s) = be the Laplace Transform

Q.18 With initial values y(0) = y’(0) = 1, the solution

2
g__}2/+4g_}./.
d

+4y =0
dx X Y

of the differential equation

atx=1is____.
[EC, GATE-2014 : 2 Marks]

Q.19 The Laplace transforrti of e/5t where i = /-1, is

§-=56i b S+ 5i
® 225 ©) 728
s+ bi q §=5i
© s? -25 ()sg+25

[ME, GATE-2015 : 1 Mark]
Q.20 Laplace transform of the function f(1)is given by
F(s)= L{f(t)} = f; fit)e 't . Laplace transform of

the function shown below is given by

(1)
2
1 {
1@ 1-e8
(a) S (b) 59
2-2e°° 1-2e7°
(c) s (d) S

[ME, GATE-2015 : 2 Marks]



Q.21 If f(t) is a function defined for all t2 0, its Laplace
transform F(s) is defined as

(@ | ; e%f(t) ot b) j;" e () ot

(0 [, e*fiyat d) [ e ft)ct

[ME, GATE-2016 : 1 Mark]

Q.22 Consider the function f(x) = 2x3 — 3x? in the domain
[~1, 2]. The global minimum of f(x) is
[ME, GATE-2016 : 2 Marks]

Q.23 Laplace transform of cos (wf) is

s [0
(@ 2 42 (b) 2 + w2

s ®
(©) &2 — 2 (d) 2 — 2

[ME, GATE-2016 : 1 Mark]

Q.24 Solutions of Laplace equation having continuous
second-order partial derivatives are called
(a) biharmonic functions
(b) harmonic functions
(c) conjugate harmonic functions
(d) error functions
[ME, GATE-2016 : 1 Mark]

inthe interval [, n]is
n Z{COSx cos3x+ ]

fx) = —+—| ——+
R R
sinx sin2x sin3x
+ + + + ...
v 1 2 3
The convergence of the above Fourier series at
x =0 gives

n+1 2

1 7l o (— _T
(a) Z1E§~“5 g 2

[CE, GATE-2016 : 1 Mark]

Q.28 The Laplace transform of te! is

_ ) 1
@ (541 ©) (51
1
) 5 [y
(s +1) ‘YT

[ME, GATE-2017 : 1 Mark]
Q.29 For the function

flx) = {'2’

2, O<x<m
The value of a_ in the Fourier series expansion of

-t<x<0

Q.25 The Laplace Transform of ft) = ?'sin(5t) u(t) is

5 5
@ g O3
8%~ 48+ 29 s°+5
s-2 5
c) —— d
© s? —45+29 @ 5vs

[EE, GATE-2016 : 1 Mark]

0).26 Consider a causal LTI system characterized by

differential equation %(?ter%y(t):Bx(t). The

response of the system to the input x(f) = 3e71°
u(t), where u(t) denotes the unit step function, is
(@) 9 &8 u(t)
(b) 9 &6 u(t)
(c) 9 e u(t) - 66" u(1)
(d) 54 e u(f) - 54 18 ()

[EE, GATE-2016 : 1 Mark]

1.27 The Fourier series of the function,
f(x) =0, -n<x<0

=7 - X, O<x<m

f(x)is
@ 2 (o) 4
) O (d) -2

[ESE Prelims-2017]

Q.30 Giventhe Fourier series in (-x, n) for f{x) = x cosx,
the value of &, will be

@ -2

(c) 2 (d)

[EE, ESE-2017]

Q.31 The Fourier series expansion of the saw-toothed
waveform f(x) = x in (-n, ©) of period 2n gives the

. 1 1
seres, 1-— 4 — —~ —+
3 7

The sum is equal to

nNo

) = (d)

S8 _b“:l



32 The Laplace transform Hs) of the exponential
function. f{f) = e¥when >0, where ais a constant
and (s—a)> 0, is

(d) o
[CE, GATE-2018 : 2 Marks]

.33 H(s) is the Laplace transform of the function
) = 2t2et
F(1)is

(correct to two decimal places).
[ME, GATE-2018 : 2 Marks]

.34 The Fourier cosine series for an even function f{x)
is given by

fix) = ay + i a, cos(nx)
n=1

The value of the coefficient a, for the function
f(x) = cos?(x) in [0, ] is
(a) ~0.5 (b) 0.0
(c) 0.5 () 1.0
[ME, GATE-2018 : 1 Mark]

Q.35 The position of a particle y(t) is described by the
differential equation:

dy__dy 5
at? d 4
o . dy
The initial conditions are y(0) = 1 and E =0,
t=0

The position (accurate to two decimal places) of
the particle at t = 1t is .
[EC, GATE-2018 : 2 Marks]

~m,if ~-nm<x<0

. be a periodic
m, if O<x<n
function of period 2r. The coefficient of sin5x in
the Fourier series expansion of f(x) in the interval

[-m, n)is

(@)

Q.36 Letf(x):{

(c)

[ESE Prelims-2018]




®
L{si =
[sinwf] 7o
(d)
Liu(t-a)] = [e N U(t-a)t
0
a o
= [0+ [ 1ot
0 0
oo -st |7
= 0+ et = [e }
a - a
(a)

x(t) + 2x(t) = 8(t)
Taking L.T. on both sides
8X(s) - x(0) + 2X(s) = 1

X(s)[s+2] =1 .

M=
x(f) = e?u(t)

(a)

tE ot 1
L[”...ff(t) dt”} = —F(s)
00 0 s

In this problem n = 1

t
So, LL[ f(r)dt:] = —;4/-‘(8)
(b)
Since,
m
L(sinmt) = P = f(s),. say
sinmt - wf ads = t mds
5] = [oras = [0
= tan‘tiw
Mig

| or by Definition,

% i i s
forst SN _ T gt £
f 2 m

Now Lt tan"(;%) =0ifm>0orzifm<O.

s-50

Thus taking limits as s — 0, we get

Tsin mt
o |
In this problem m = 1 which is > 0 therefore the

ot :—gifm>00r—-g— fm<0.

answer is r
5
(b)
it is a standard result that
S
L{coshal) = ———
s ~a
(c)
1
[ =7
(sg + s)
1 1 11

= 1-¢![Using standard formulag]
Standard formula:

()

S

() e
1

)
_4[ 1 }
s2(s + 1)

1 A B C
BCYIRN "“+—-2—+—“—““
s (s+1) s ¢ s+

1 Ads+ )+ Bs+1)+0)
s?(s+1) P(s+1)
Matching coefficient of s?, s and constant in
numerator we get,
A+C=0 (D
A+ B=0 i)

1

A1)

i
-~




Ba= 1 .. (i)
Solvingwe get A=~1,B=1,C= 1

- 1 1 1
SO, f()—ml.. [*S—‘{‘;é“{"m:,
=~14+t+el=t-14 ¢t
(d) :
Jim {9 = lim sF(s)
Given that,
35+ 1
F(s) = ,
) [s3+4s2+(K-3)s]
Jim A1) = 1
= lim s S5+ 1 = 1
$-0 | 3 + 48% + (K- 3)s
- lim 35+ 1 1
$-0| & + 45 + (K - 3)
1
> g3~
= K-8 =1 .
= K=4
d)
Ne need

g(3) = f(0) and g(5) = £(1)
Inly choice (d) satisfies both these conditions

1S seen below:
shoice (d)is

2 2
o0 = 13- 3) =10
ind g(5) = I’(g -~2?3) =f(1)

3y definition of Liaplace transform,

Lifor = [ e f(t) o
L{f(H}

i

3 5
&gﬁmm+kgﬂmm
2 7 5t
+[ e fit) ot

1l

fse”s’.o.dt + fSe"Sf.T.dt

+f;°e”3‘.0.dt

13.

14.

15.

= e Bt —g2s
5 5 [1-e72¢]
(d)
1 A B
Fs) = Ss+h) s s+

_Als+ )+ B(s)

T s(s+ )
= A(s+ 1)+ B(s) = 1
Put s$=0
= A=1
and §=-1
= B = -1
So  Asj= ol

s s+1
Now f(t) = L(F(s)) = &P~ et
f(ty=1-¢t

(d)
d’y _dy
—_— D Y o=
52t =8

taking Laplace transform on both the sides we
have
S2Y(S) + 25+ 2sY(8) + 4 + Y(s) = 1

(82 + 25+ 1) Y(s) = - (25 + 3)
-(2s +3)
M) = (s+1)?

Y1 . _“[ 2 +_.,._.1___
(s) = (s+1) (S+1)2}

= ) = - [2et + teu(t)
dy o
i [-2e7t + et~ te (1)
dy
Efatt:(ﬂ T [WZ w1 WO]
_C_]I_Z = 1
tlagt=0r
(c)
it ]
L{a‘;‘z— + f" =0
L{f} = F{s}
L{f"} = S2F(s) ~ sf(0) — f(s)



SH(S)~4+ Fs) =0 18. (b)
et = cos 5t + i sin 5t
(82 + 1) F(s) = 4 _ s 5i s+5i
4 L{eli®h) = — +t—3 =2
e\ s°+256 s°+25  §°+25
/—<S) - 2
s°+1
4 20. (c)
Lif = — .
s°+1 F(s) = fo f(t)e™*" dt
16. (d) 1
t $+2 = er‘Sth fO-e”Stdz‘
., o °Te
[{e?cos bt) = (5+ 27 B2 0 1
a=-2,b=4 st !
S B R
» s+a -$ o -§
. L{g7tcos (41)] = _w—(s+a)2.+16
_21-e7) 2-2¢°
17. (b) s s
Given, X(s) = (_z_ﬁii—w 21. (b)
18°+10s+21]
Using initial value theorem, T
? ‘ L(f(0) = [e (D)ot
X(O+) = le {SX(S)] 0
s 0
(0% = lim —25(—?5—15—)—] 22, Sol.
3+-§w | . ;’Ex;=6x2—6x
= lim ===3 (%) =0
soe| 4, 10 2_;} 1 6x2-6xr=0 x=-1 f-1)=-5G Min
5 s 6x(x—~1)=0 x =2 f2)
18. Sol. x=01 x=0 f0)=0
Given f"(x) = 12x -6 x =1 1) =-1
#0) = y'(0) = 1 ;E?i = f MMaX
s’ - in
Zx)z/ 45:+4y =0 () G. Minima is -5 atx = 1.
Taking the Laplace transform of equation (i), we ~ 23. (a)
get s
$2Y(5) - $¥(0) - (0) + 4[sY(5) - Y(O)] + 4(5) = 0 Leos o) = 5
[2 + 4s + 4]Y(s) = sY(0) y'(0) + 4y(0)
[2+45+4]Y(s)=5s+1+4 24. (b)

B s+5 _ (8+D)
ne) = (s +4s+4)  (s+27
1 3

= +
(s+2) (s+27

y(x) = % + 3x e
atx =1, y(x) = ¢’ + 32
=077

Solution of laplace equation having continuous
Second order partial derivating

V2 =0
0 92
S
a ay

¢ is harmonic function.



25.

26.

27.

(a)

Laplace transform of sin 5t u(t) —

s?+25
5 5
(s=2)°+25 % —45+29

e? sin5t u(t) —
(d)
The differential equation,

dylt) 1
(1) =3 x(t
o +6y() x(1)

So, sY(s)+ %Y(s) = 3 X(s)

Y(s) = 3”?
(S‘f‘ 6}
X(s) = 91
s+~)
3
So, Y(s) = 9

I

So, b = (5467 ~54e7¥) ut)

(c)
The function is f(x) = 0,
-p<x <0
=p-x, 0<x<n
And Fourier series is

100 n 2[cosx COSS.X+COS5X+ }
X} = — —
4 T 12 32 52
{sinx sin2x  sin3x }
+ + .

4 ,
1 2 3 ()
At x = 0, (a point of discontinuity), the fourier

series converges to _;—[f(o”) + f(O+ ” .

where f(07) = lim(n-x)=mn

x-30

Hence, eq. (i), we get

no_m 2l o1, }
2 4 @2 3%

A,
= 1 32 52 g

(b)

f(t) = tet
L(t i
=2
By first shifting rule
1
L(te!) = -
(te) Gy
(c)
-2 ~-n<x<0
(x) =
2 O<x<m

a, = 2 J.f(x) COS[ fmxj ax
T

0 T

n

.2 [ f(x) cosnx dhx = 2 [2cosnx dx
o o

_ 4[sinnx " _4sinnm_sin0
ks L - -
=20-0=0
n
Alternative:
Since function is odd function.
= =0
(b)
fix) = xcosx in (-, )
f(=x) = (~x) cos (~x)
= —x COS x
= —f(x)
f(x) = x cos x is odd function
8 =0
(d)
Given, flx) = x
f(=x) = —x
ie. .. f(x) = xis an odd function
Hence, 8y =0
a,=0

Therefore the Fourier series for the function fx) is
given by

fx) = ibnsinnx (1)
n=1
17 : 17 .

b, = —f f(x)sinnx dx = — f xSinnx dx
n s

-7 -7



S Al

1| ~mcosnn -~ COSnm
e cof)

7 n n

1

= —~[~—2<:osnn]=»2—(~1)”+1
n n
e, b = 2y (i)
n

Substituting equation (if) in equation (i) we get

fx) = i%(—%)“”sinnx

n=1

P U —

A T \ LA P
v = 22( N sinnx
=1 n

n
sinx  sin2x sin3x  sindx
X = 2 - + -
1 2 3 4

put, on both sides

®
]
N a

2 1—0—1+O+-1—+O—-1—+...
3 .+ 5 7

1 1 1
T =t — =t
3 b5 7

Sol.

A1) =

Ccos?x =

1 cosZx

fix) = *2“*‘ >
f(x) = %9+ > a,-cosnx
ri=1
g =1
a,=0
_ 1
%=73
35. Sol.
2
ay ., v Sy _
gt dt 4
y(0) =1
y'(0)=0

By applying Laplace transform,
s°Y(s) - s(1) + sY(s) - 1+ %Y(S) =0

s+1 s+1

)

N2 + e
(S+EJ +1 (s+—2—) +1

———Bytakinginverse Laplace transform,

INGTIEY

y(t) = g7!/? [cos(z‘) + %sin(t)} D t>0
At t=m,
y(t=m)= e2[(~1) + (0)]
= -e™?=_0.2078~-0.21

36. (a)

17 ,
8 = ELf(x)Sln5xdx

1r0 n
= — f -nsinbxdx + fnsinSxdx
n;—n 0

Q=

| [«cos 5x]O [moos 5x T‘
-7 +m
5 ~17 5 -0

i
5
|
3
TN

|
ml,\,
N
+
3
TN
orino
N’
|
i
3=
B
U”:}
| I |
i
ol s



