DPP NO. 04 TOPIC : QUADRATIC EQUATION

1.	The sum of the recipro (A) p/q.	cals of the roots of the eq (B) -p/q.	of the roots of the equation $x^2 + px + q = 0$ is b) -p/q. (C) q/p. (D) -q/p.						
2.	The roots of the equation $3x^2 - 4x + 3 = 0$ are –								
	(A) real and unequal	(B) real and equal	(C) imaginary	(D) none of these					
3.	For the quadratic equation $x^2 - 2x + 1 = 0$, the value of $x + \frac{1}{x}$ is –								
	(A) –1	(B) 1	(C) 2	(D) –2					
4.	If one root of the equat (A) 2	ion px ² –14x + 8 = 0 is si (B) 3	$px^{2}-14x + 8 = 0$ is six times the other, then p is equal to - B) 3 (C) 1 (D) None of these						
5.	The roots of $x^2 - 2x - (r (A)) - r, r - 1$	^{.2} – 1) = 0 are : (B) 1 –r, r +1	(C) 1, r	(D) 1 – r, r					
6.	Which of the following equations has the sum of its roots as 3?								
	(A) $x^2 + 3x - 5 = 0$	$(B) - x^2 + 3x + 3 = 0$	(C) $2x^2 - \frac{3}{2}x - 1 = 0$	(D) $3x^2 - 3x - 3 = 0$					
7.	If the sum and product of the roots of the quadratic equation $ax^2 - 5x + c = 0$ are each equal to 10, the values of a and c are								
	(A) $\frac{1}{2}$ and -5	(B) $\frac{1}{2}$ and 5	(C) 5 and $\frac{3}{2}$	(D) $\frac{3}{2}$ and 5					
8.	Which of the following equations has two distinct real roots?								
	(A) $x^2 + 3x + 2\sqrt{2} = 0$		(B) $x^2 + x - 5 = 0$						
	(C) $2x^2 - 3\sqrt{2}x + \frac{9}{4} = 0$)	(D) $5x^2 - 3x + 1 = 0$						
9.	Which constant must be added and subtracted to solve the quadratic equation $9x^2 + \frac{3}{4}x - \sqrt{2} = 0$ by the								
	method of completing	the square ?							
	$(A)\frac{1}{8}$	(B) $\frac{1}{64}$	(C) $\frac{1}{4}$	(D) $\frac{9}{64}$					
40	The succession equation	where one of the resta							
10.	(A) $x^2 - 6x + 4 = 0$	(B) $3x^2 + 5x + 2 = 0$	(C) $x^2 - 2x + 7 = 0$	(D) $2x^2 + 3x + 5 = 0$					
11.	The numerator of a fraction is 2 less than the denominator. If the sum of a fraction and its reciprocal is								
	$2\frac{4}{63}$. Find the fraction	_							
12	Two water taps togothe	r can fill a tank in 0^3 be	urs. The tap of larger dis	ameter takes 10 hours less than					

- **12.** Two water taps together can fill a tank in $9\frac{3}{8}$ hours. The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.
- **13.** Sum of the areas of two squares is 468 m². If the difference of their perimeters is 24 m, find the sides of the two squares.
- **14.** Using the quadratic formula, solve $a^2b^2x^2 (4b^4 3a^4)x 12a^2b^2 = 0$.
- **15.** If x = 2 & x = 3 are the roots of the equation $3x^2 2mx + 2n = 0$ then find the value of m & n

Answers Key

DPP NO. 4 TOPIC : QUADRATIC EQUATION

1.	В	2.	С	3.	С	4.	В	5.	В	6.	В	7.	В
8.	В	9.	В	10.	А	11.	<u>7</u> 9	12.	25 hr	. , 15 hr.	13.	12 m	ı, 18 m
14.	$\frac{4b^2}{a^2}$	$,\frac{-3a^2}{b^2}$	15.	$m = \frac{1}{2}$	5/2, n = 9	9							