DPP - Daily Practice Problems

Chapter-wise Sheets

Moving Charges and Magnetism

Max. Marks : 180 Marking Scheme : (+4) for correct & (-1) for incorrect answer Time : 60 min.

INSTRUCTIONS : This Daily Practice Problem Sheet contains 45 MCQs. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.

1. An insulating rod of length ℓ carries a charge q distributed uniformly on it. The rod is pivoted at its mid point and is rotated at a frequency f about a fixed axis perpendicular to rod and passing through the pivot. The magnetic moment

of the rod system is
$$\frac{1}{2a}\pi qf\ell^2$$
. Find the value of a.

(8	a)	6	(b)) 4	4
· · ·		-	<u>۱</u>	/	

(c) 5	(d)	8
-------	-----	---

2. A portion of a conductive wire is bent in the form of a semicircle of radius r as shown below in fig. At the centre of semicircle, the magnetic induction will be

3. A closely wound solenoid of 2000 turns and area of crosssection 1.5×10^{-4} m² carries a current of 2.0 *A*. It suspended through its centre and perpendicular to its length, allowing it to turn in a horizontal plane in a uniform magnetic field 5×10^{-2} tesla making an angle of 30° with the axis of the solenoid. The torque on the solenoid will be:

(a) 3×10^{-2} N-m (b) 3×10^{-3} N-m

- (c) 1.5×10^{-3} N-m (d) 1.5×10^{-2} N-m
- 4. An alternating electric field, of frequency v, is applied across the dees (radius = R) of a cyclotron that is being used to accelerate protons (mass = m). The operating magnetic field (B) used in the cyclotron and the kinetic energy (K) of the proton beam, produced by it, are given by :

(a)
$$B = \frac{mv}{e}$$
 and $K = 2m\pi^2 v^2 R^2$

(b)
$$B = \frac{2\pi mv}{e}$$
 and $K = m^2 \pi v R^2$

(c)
$$B = \frac{2\pi mv}{e}$$
 and $K = 2m\pi^2 v^2 R^2$
(d) $B = \frac{mv}{e}$ and $K = m^2 \pi v R^2$

5. A galvanometer of 50 ohm resistance has 25 divisions. A current of 4×10^{-4} ampere gives a deflection of one per division. To convert this galvanometer into a voltmeter having a range of 25 volts, it should be connected with a resistance of

(a)	2450 Ω in series	(b)	2500 Ω in series.
(c)	245 Ω in series.	(d)	2550 Ω in series.

RESPONSE GRID 1. abcd 2. abcd 3. abcd 4. abcd 5. abcd

If we double the radius of a coil keeping the current through 6. it unchanged, then the magnetic field at any point at a large distance from the centre becomes approximately (b) three times (a) double

(u)	uouoie	(0)	three threes
(c)	four times	(d)	one-fourth

- 7. A particle of mass m, charge Q and kinetic energy T enters a transverse uniform magnetic field of induction \vec{B} . After 3 seconds, the kinetic energy of the particle will be: (a) 3T (b) 2T
 - (c) T (d) 4T
- A 10 eV electron is circulating in a plane at right angles to a 8. uniform field at magnetic induction 10^{-4} Wb/m² (= 1.0 gauss). The orbital radius of the electron is
 - (a) 12 cm (b) 16 cm
 - (c) 11 cm (d) 18 cm
- 9. A uniform electric field and a uniform magnetic field exist in a region in the same direction. An electron is projected with velocity pointed in the same direction. The electron will
 - (a) turn to its right
 - (b) turn to its left

(a)

- (c) keep moving in the same direction but its speed will increase
- (d) keep moving in the same direction but its speed will decrease
- **10.** Proton, deuteron and alpha particle of same kinetic energy are moving in circular trajectories in a constant magnetic field. The radii of proton, deuteron and alpha particle are respectively r_p , r_d and r_{α} . Which one of the following relation is correct?
 - (a) $r_{\alpha} = r_p = r_d$ (b) $r_{\alpha} = r_p < r_d$

(c) $r_{\alpha} > r_d > r_p$ (d) $r_{\alpha} = r_d r_p$

11. A moving coil galvanometer has 150 equal divisions. Its current sensitivity is 10-divisions per milliampere and voltage sensitivity is 2 divisions per millivolt. In order that each division reads 1 volt, the resistance in ohms needed to be connected in series with the coil will be

$$10^5$$
 (b) 10^3 (c) 9995 (d) 9999

- 12. A 2 μ C charge moving around a circle with a frequency of 6.25×10^{12} Hz produces a magnetic field 6.28 tesla at the centre of the circle. The radius of the circle is
 - (a) 2.25m (b) 0.25m (c) 13.0m (d) 1.25m
- 13. A charged particle with charge q enters a region of constant, uniform and mutually orthogonal fields \vec{E} and \vec{B} with a velocity \vec{v} perpendicular to both \vec{E} and \vec{B} , and comes out without any change in magnitude or direction of \vec{v} . Then

(a)
$$\vec{v} = \vec{B} \times \vec{E} / E^2$$
 (b) $\vec{v} = \vec{E} \times \vec{B} / B^2$

(c)
$$\vec{v} = \vec{B} \times \vec{E} / B^2$$
 (d) $\vec{v} = \vec{E} \times \vec{B} / E$

14. A square current carrying loop is suspended in a uniform magnetic field acting in the plane of the loop. If the force on one arm of the loop is \vec{F} , the net force on the remaining three arms of the loop is

- (a) $3 \vec{F}$ (b) $-\vec{F}$ (c) $-3 \vec{F}$ (d) \vec{F} (c) $-3 \vec{F}$ (d) \vec{F}
- 15. A straight section PQ of a circuit lies along the X-axis from $x = -\frac{a}{2}$ to $x = \frac{a}{2}$ and carries a steady current *i*. The magnetic field due to the section PQ at a point X = +a will be

(a) proportional to a (b) proportional to a^2 (c) proportional to 1/azero (d)

- 16. A and B are two **T)** A conductors carrying a current *i* in the same direction. x and v are $\cap B$ two electron beams moving in the same direction. Then •• V
 - (a) there will be repulsion between A and B, attraction between x and y
 - (b) there will be attraction between A and B, repulsion between x and y
 - there will be repulsion between A and B and also x and y (c)(d) there will be attraction between A and B and also x and y
- 17. A galvanometer of resistance, G is shunted by a resistance S ohm. To keep the main current in the circuit unchanged, the resistance to be put in series with the galvanometer is

(a)
$$\frac{S^2}{(S+G)}$$
 (b) $\frac{SG}{(S+G)}$ (c) $\frac{G^2}{(S+G)}$ (d) $\frac{G}{(S+G)}$

18. A current I flows in an infinitely long wire with cross section in the form of a semi-circular ring of radius R. The magnitude of the magnetic induction along its axis is:

 $\mu_0 I$

(a)
$$\frac{\mu_0 I}{2\pi^2 R}$$
 (b) $\frac{\mu_0 I}{2\pi R}$ (c)

Two equal electric currents are flowing 19. perpendicular to each other as shown in the figure. AB and CD are perpendicular to each other and symmetrically placed with respect to the current flow. Where do we expect the resultant magnetic field to be zero?

(a) On AB (b) On CD

- (c) On both AB and CD (d) On both OD and BO
- 20. A closed loop PQRS carrying a current is placed in a uniform magnetic field.

If the magnetic forces on segments PS, SR, and RQ are F_1 , F_2 and F_3 respectively and are in the plane of the paper and along the directions shown, the force on the segment QP is

(a) $F_3 - F_1 - F_2$

(c)
$$\sqrt{(F_3 - F_1)^2 - F_2^2}$$

(d) $F_2 - F_2 + F_2$

DECRONCE	6. abcd	7. abcd	8. abcd	9. abcd	10. abcd
RESPONSE	11.@b©d	12.@b©d	13.@b©d	14. @b©d	15. @bcd
GRID	16. @ b C d	17. ⓐ ⓑ ⓒ ⓓ	18. @ b C d	19. @ © Ō	20. abcd

- **21.** A long solenoid carrying a current produces a magnetic field B along its axis. If the current is double and the number of turns per cm is halved, the new value of the magnetic field is
- (a) 4B (b) B/2(c) *B* (d) 2B 22. A particle of charge q and mass m moves in a circular orbit of radius r with angular speed ω . The ratio of the magnitude of its magnetic moment to that of its angular momentum
 - depends on (a) ω and q(b) ω, q and m
 - (c) q and m(d) ω and m
- 23. A current loop in a magnetic field
 - can be in equilibrium in one orientation (a)
 - can be in equilibrium in two orientations, both the equi-(b) librium states are unstable
 - (c) can be in equilibrium in two orientations, one stable while the other is unstable
 - (d) experiences a torque whether the field is uniform or non-uniform in all orientations
- Two long parallel wires P and Q are held perpendicular to the plane of paper with distance of 5 m between them. If P and Q carry current of 2.5 amp. and 5 amp. respectively in 24. the same direction, then the magnetic field at a point halfway between the wires is

(a)
$$\mu_0/17$$
 (b) $\sqrt{3}\mu_0/2\pi$

(c) $\mu_0/2\pi$ 25. A very long straight wire carries a current I. At the instant when a charge + Qat point P has velocity \vec{v} , as shown, the force on the \uparrow ¹ charge is

(a)
$$a \log OY$$
 (b) $opposite to OY$
(c) $a \log OX$ (d) $opposite to OX$

Two wires with currents 2A and 1A are enclosed in a circular 26. loop. Another wire with current 3 A is situated outside the

loop as shown. The $\oint \vec{B} \cdot d\vec{l}$ around the loop is

(a) μ_0

(b) $3\mu_0$

(c) $6\mu_0$

- (d) $2\mu_0$
- 27. If in a circular coil A of radius R, current I is flowing and in another coil B of radius 2R a current 2I is flowing, then the ratio of the magnetic fields B_A and B_B , produced by them will be
 - (a) 1 (b) 2 (c) 1/2 (d) 4
- 28. A charged particle moves through a magnetic field perpendicular to its direction. Then
 - (a) kinetic energy changes but the momentum is constant
 - (b) the momentum changes but the kinetic energy is constant

- (c) both momentum and kinetic energy of the particle are not constant
- both momentum and kinetic energy of the particle are (d) constant
- 29. The deflection in a galvanometer falls from 50 division to 20 when a 12 ohm shunt is applied. The galvanometer resistance is
 - (a) 18 ohm (b) 36 ohm (c) 24 ohm (d) 30 ohm
- 30. When a long wire carrying a steady current is bent into a circular coil of one turn, the magnetic induction at its centre is B. When the same wire carrying the same current is bent to form a circular coil of n turns of a smaller radius, the magnetic induction at the centre will be
- (d) n^2B (a) B/n(b) nB (c) B/n^2 31. The magnetic field due to a current carrying circular loop of radius 3 cm at a point on the axis at a distance of 4 cm from the centre is 54 μ T. What will be its value at the centre of
 - (b) 150 µT
 - (c) 250 uT (d) 75 µT
- 32. A charge moving with velocity v in X-direction is subjected to a field of magnetic induction in negative X-direction. As a result, the charge will
 - (a) remain unaffected
 - (b) start moving in a circular path Y–Z plane
 - (c) retard along X-axis
 - (d) move along a helical path around X-axis
- 33. An electron travelling with a speed u along the positive x-axis enters into a region of magnetic field where

$$B = -B_0 \hat{k}$$
 (x > 0). It comes out of the region with speed v then

- (c) v > u at v > 0
- (d) v > u at v < 0
- 34. If an ammeter is to be used in place of a voltmeter, then we must connect with the ammeter a
 - (a) low resistance in parallel
 - (b) high resistance in parallel
 - high resistance in series (c)
 - (d) low resistance in series
- 35. An infinite straight conductor carrying current 2 I is split into a loop of radius r as shown in fig. The magnetic field at the centre of the coil is

RESPONSE	21.abcd	22.@b©d	23. abcd	24. abcd	25. abcd
	26. @bcd	27.@b©d	28. abcd	29. abcd	30. @b©d
GRID	31.@bcd	32. abcd	33. abcd	34. @bcd	35. @b©d

3 A

- **36.** A parallel plate capacitor of area 60 cm² and separation 3 mm is charged initially to 90 μ C. If the medium between the plate gets slightly conducting and the plate loses the charge initially at the rate of 2.5×10^{-8} C/s, then what is the magnetic field between the plates ?
 - (a) $2.5 \times 10^{-8} \,\mathrm{T}$ (b) $2.0 \times 10^{-7} \,\mathrm{T}$
 - (c) $1.63 \times 10^{-11} \text{ T}$ (d) Zero
- **37.** Four wires, each of length 2.0 m, are bent into four loops P, Q, R and S and then suspended in a uniform magnetic field. If the same current is passed in each, then the torque will be maximum on the loop (a) P (b) Q (c) R (d) S
- **38.** A certain region has an electric field $\vec{E} = (2\hat{i} 3\hat{j}) \text{ N/C}$ and a uniform magnetic field $\vec{B} = (5\hat{i} + 3\hat{j} + 4\hat{k}) \text{ T}$. The force experienced by a charge 1C moving with velocity $(\hat{i} + 2\hat{j})$ ms⁻¹ is

(a)
$$(10\hat{i} - 7\hat{j} - 7\hat{k})$$
 (b) $(10\hat{i} + 7\hat{j} + 7\hat{k})$

- (c) $(-10\hat{i} + 7\hat{j} + 7\hat{k})$ (d) $(10\hat{i} + 7\hat{j} 7\hat{k})$
- **39.** A galvanometer of resistance 100 Ω gives a full scale deflection for a current of 10⁻⁵ A. To convert it into a ammeter capable of measuring upto 1 A, we should connect a resistance of
 - (a) 1Ω in parallel (c) $10^5 \Omega$ in series
- (b) $10^{-3} \Omega$ in parallel (d) 100Ω in series
- **40.** A square loop, carrying a steady– current I, is placed in a horizontal plane near a long straight conductor carrying a steady current I_1 at a distance d from the conductor as shown in figure. The loop will experience
 - (a) a net repulsive force away from the conductor
 - (b) a net torque acting upward perpendicular to the horizontal plane
 - (c) a net torque acting downward normal to the horizontal plane
 - (d) a net attractive force towards the conductor
- **41.** Two coaxial solenoids of different radius carry current I in the same direction. $\vec{F_1}$ be the magnetic force on the inner solenoid due to the outer one and $\vec{F_2}$ be the magnetic force

on the outer solenoid due to the inner one. Then :

- (a) $\overrightarrow{F_1}$ is radially inwards and $\overrightarrow{F_2} = 0$
- (b) $\overrightarrow{F_1}$ is radially outwards and $\overrightarrow{F_2} = 0$
- (c) $\overrightarrow{F_1} = \overrightarrow{F_2} = 0$
- (d) $\vec{F_1}$ is radially inwards and $\vec{F_2}$ is radially outwards
- **42.** A beam of electrons is moving with constant velocity in a region having simultaneous perpendicular electric and magnetic fields of strength 20 Vm^{-1} and 0.5 T respectively at right angles to the direction of motion of the electrons. Then the velocity of electrons must be
 - (a) 8 m/s (b) 20 m/s (c) 40 m/s (d) $\frac{1}{40} \text{ m/s}$
- **43.** The magnetic flux density B at a distance r from a long straight wire carrying a steady current varies with r as

- **44.** The AC voltage across a resistance can be measured using a :
 - (a) hot wire voltmeter
 - (b) moving coil galvanometer
 - (c) potential coil galvanometer
 - (d) moving magnet galvanometer
- **45.** When a charged particle moving with velocity \vec{y} is subjected

to a magnetic field of induction $\overline{\mathsf{B}}$, the force on it is non-zero. This implies that

- (a) angle between \vec{v} and \vec{B} is necessarily 90°
- (b) angle between \vec{v} and \vec{B} can have any value other than 90°
- (c) angle between \vec{v} and \vec{B} can have any value other than zero and 180°
- (d) angle between \vec{v} and \vec{B} is either zero or 180°

Response Grid	36.@(b 41.@(b	60) 60)	37. a (b 42. a (b	600 600	38. a b c d 43. a b c d	39. a (t 44. a (t)00)00	40. (a)b)c)d) 45. (a)b)c)d)
DAILY PRACTICE PROBLEM DPP CHAPTERWISE CP18 - PHYSICS								
Total Questions			45	Total Marks			180	
Attempted				Correct				
Incorrect				Net Sco	re			
Cut-off Score			45	Qualifying Score			60	
Success Gap = Net Score – Qualifying Score								
Net Score = (Correct × 4) – (Incorrect × 1)								