CHAPTER -: APPLICATION OF DERIVATIVES

MARKS WEIGHTAGE - 09 marks

NCERT Important Questions

EXERCISE 6.2	EXERCISE 6.3	EXERCISE 6.5
₽ Q5	☞ Q7	☞ Q 17
₽ Q6	₽ Q8	☞ Q 18
₽ Q7	☞ Q13	☞ Q19
₽ Q8	☞ Q14	☞ Q20
₽ Q9	☞ Q15	☞ Q21
₽ Q15	₹ Q18	₽ Q22
P Q16	© Q19	P Q23
	☞ Q21	☞ Q24
	© Q23	₽ Q25
	₽ Q25	₽ Q26

MISC. EXERCISE.

© Q7 © Q8 © Q9 © Q10 © Q11 © Q15 © Q17

☞ Q18

SOLVED EXAMPLES.

● 8 (Pg 201) 11 (Pg 202) 12 (Pg 203) 13 (Pg 204) 17 (Pg 209) 18 (Pg 209) 20 (Pg 210) 29 (Pg 222) 30 (Pg 223) 2 (Pg 224) 37 (Pg 226) 38 (Pg 227) 39(Pg 230) 41 (Pg 231) 43 (Pg 235) ☞ 50 (Pg 240)

OBJECTIVE TYPE QUESTIONS (1 MARK)

(a) 1 (b) $\frac{1}{3}$ (c) 2 (d) $\frac{1}{2}$ 2. The two curves $x^3 - 3xy^2 + 2 = 0$ and $3x^2y - y^3 = 2$ (a) touch each other (b) cut at right angle (c) cut at an angle $\frac{\pi}{3}$ (d) cut at an angle $\frac{\pi}{4}$ 3. The tangent to the curve given by $x = e^t$. cost, $y = e^t$. sint at $t = \frac{\pi}{4}$ makes with x-axis an angle: (a) 0 (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$ 4. The equation of the normal to the curve $y = \sin x$ at $(0, 0)$ is: (a) $x = 0$ (d) $y = 0$ (c) $x + y = 0$ (d) $x - y = 0$ 5. The point on the curve $y^2 = x$, where the tangent makes an angle of $\frac{\pi}{4}$ with x-axis is (a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (c) $(4, 2)$ (d) $(1, 1)$ 6. The curve $y = x^{\frac{1}{3}}$ has at $(0, 0)$ (a) a vertical tangent (parallel to y-axis) (d) no tangent (2) an oblique tangent (2) and $(0, 0)$ (3) $(0, 0)$ (4) $(0, 0)$ (5) $(0, 0)$ (6) $(0, 0)$ (7) $(0, 0)$ (8) $(0, 0)$ (7) $(0, 0)$ (7) $(0, 0)$ (8) $(0, 0)$ (9) $(0, 0)$ (10) $(0, 0)$ (11) $(0, 0)$ (12) $(0, 0)$ (13) $(0, 0)$ (14) $(0, 0)$ (15) $(0, 0)$ (16) $(0, 0)$ (17) $(0, 0)$ (17) $(0, 0)$ (18) $(0, 0)$ (19) $(0, 0)$	1.	The abscissa of the point on the curve $3y = 6x - 5x^3$, the normal at which passes through origin				ses through origin is
(a) touch each other (c) cut at an angle $\frac{\pi}{3}$ (d) cut at an angle $\frac{\pi}{4}$ 3. The tangent to the curve given by $x = e^t$. cost, $y = e^t$. sint at $t = \frac{\pi}{4}$ makes with x-axis an angle: (a) 0 (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$ 4. The equation of the normal to the curve $y = \sin x$ at $(0, 0)$ is: (a) $x = 0$ (d) $y = 0$ (c) $x + y = 0$ (d) $x - y = 0$ 5. The point on the curve $y^2 = x$, where the tangent makes an angle of $\frac{\pi}{4}$ with x-axis is (a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (c) $(4, 2)$ (d) $(1, 1)$ 6. The curve $y = x^{\frac{1}{5}}$ has at $(0, 0)$ (a) a vertical tangent (parallel to y-axis) (b) a horizontal tangent (parallel to x-axis) (c) an oblique tangent 7. The equation of normal to the curve $3x^2 - y^2 = 8$ which is parallel to the line $x + 3y = 8$ is (a) $3x - y = 8$ (b) $3x + y + 8 = 0$ (c) $x + 3y \pm 8 = 0$ (d) $x + 3y = 0$ 8. If the curve $3x + x^2 = 7$ and $3x + y = 7$, cut orthogonally at $3x + y = 7$ and $3x + y = 7$ a		(a) 1	(b) $\frac{1}{3}$	(c) 2		(d) $\frac{1}{2}$
4. The equation of the normal to the curve $y = \sin x$ at $(0, 0)$ is: (a) $x = 0$ (d) $y = 0$ (c) $x + y = 0$ (d) $x - y = 0$ 5. The point on the curve $y^2 = x$, where the tangent makes an angle of $\frac{\pi}{4}$ with x-axis is (a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (c) $(4, 2)$ (d) $(1, 1)$ 6. The curve $y = x^{\frac{1}{5}}$ has at $(0, 0)$ (a) a vertical tangent (parallel to y-axis) (b) a horizontal tangent (parallel to x-axis) (c) an oblique tangent (d) no tangent 7. The equation of normal to the curve $3x^2 - y^2 = 8$ which is parallel to the line $x + 3y = 8$ is (a) $3x - y = 8$ (b) $3x + y + 8 = 0$ (c) $x + 3y = 8 = 0$ (d) $x + 3y = 0$ 8. If the curve $3x + 2 = 7$ and $3x + 3 = 9$, cut orthogonally at $(1, 1)$, then the value of a is: (a) $(1, 1)$ (b) $(2, 2)$ (c) $(2, 2)$ (d) $(3, 2)$ (e) $(3, 2)$ (e) $(3, 2)$ (f) $(3, 2)$ (f) $(3, 2)$ (g) $(3, 2)$ (g) $(3, 2)$ (g) $(3, 2)$ (e) $(3, 2)$ (f) $(3, 2)$ (f) $(3, 2)$ (g) $(3, 2)$ (e) $(3, 2)$ (f) $(3, 2)$ (f) $(3, 2)$ (g) $(3,$	2.	(a) touch each oth	er (b)	cut at right angle		
4. The equation of the normal to the curve $y = \sin x$ at $(0,0)$ is: (a) $x = 0$ (d) $y = 0$ (c) $x + y = 0$ (d) $x - y = 0$ 5. The point on the curve $y^2 = x$, where the tangent makes an angle of $\frac{\pi}{4}$ with x-axis is (a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (c) $(4, 2)$ (d) $(1, 1)$ 6. The curve $y = x^{\frac{1}{5}}$ has at $(0, 0)$ (a) a vertical tangent (parallel to y-axis) (b) a horizontal tangent (parallel to x-axis) (c) an oblique tangent (d) no tangent 7. The equation of normal to the curve $3x^2 - y^2 = 8$ which is parallel to the line $x + 3y = 8$ is (a) $3x - y = 8$ (b) $3x + y + 8 = 0$ (c) $x + 3y \pm 8 = 0$ (d) $x + 3y = 0$ 8. If the curve $3x + 3x $	3.	The tangent to the	curve given by x =	e^{t} . cost, $y = e^{t}$. sint	at $t = \frac{\pi}{4}$ makes wi	th x-axis an angle:
5. The point on the curve $y^2 = x$, where the tangent makes an angle of $\frac{\pi}{4}$ with x-axis is (a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (c) $(4, 2)$ (d) $(1, 1)$ 6. The curve $y = x^{\frac{1}{5}}$ has at $(0, 0)$ (a) a vertical tangent (parallel to y-axis) (b) a horizontal tangent (parallel to x-axis) (c) an oblique tangent (d) no tangent 7. The equation of normal to the curve $3x^2 - y^2 = 8$ which is parallel to the line $x + 3y = 8$ is (a) $3x - y = 8$ (b) $3x + y + 8 = 0$ (c) $x + 3y \pm 8 = 0$ (d) $x + 3y = 0$ 8. If the curve $4x + x^2 = 7$ and $4x + 3x + 3x = 0$ (e) $4x + 3x + 3x = 0$ (f) $4x + 3x = 0$ (g) $4x + 3$		(a) 0	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{2}$	
(a) $\left(\frac{1}{2}, \frac{1}{4}\right)$ (b) $\left(\frac{1}{4}, \frac{1}{2}\right)$ (c) $(4, 2)$ (d) $(1, 1)$ 6. The curve $y = x^{\frac{1}{5}}$ has at $(0, 0)$ (a) a vertical tangent (parallel to y-axis) (b) a horizontal tangent (parallel to x-axis) (c) an oblique tangent (d) no tangent 7. The equation of normal to the curve $3x^2 - y^2 = 8$ which is parallel to the line $x + 3y = 8$ is (a) $3x - y = 8$ (b) $3x + y + 8 = 0$ (c) $x + 3y \pm 8 = 0$ (d) $x + 3y = 0$ 8. If the curve $3x + 2x = 7$ and $3x = 3x = 3x = 3x$, cut orthogonally at $(1, 1)$, then the value of a is: (a) $1x + 3x = 3$	4.	-				
 6. The curve y = x^{1/5} has at (0, 0) (a) a vertical tangent (parallel to y-axis) (b) a horizontal tangent (parallel to x-axis) (c) an oblique tangent (d) no tangent 7. The equation of normal to the curve 3x² - y² = 8 which is parallel to the line x + 3y = 8 is (a) 3x - y = 8 (b) 3x + y + 8 = 0 (c) x + 3y ± 8 = 0 (d) x + 3y = 0 8. If the curve ay + x² = 7 and x³ = y, cut orthogonally at (1, 1), then the value of a is: (a) 1 (b) 0 (c) -6 (d) 0.6 9. If y = x⁴ - 10 and if x changes from 2 to 1.99, what is the change in y (a)0.32 (b) 0.032 (c) 5.68 (d) 5.968 10. The equation of tangent to the curve y (1 + x²) = 2 - x, where it crosses x-axis is: (a) x + 5y = 2 (b) x - 5y = 2 (c) 5x - y = 2 (d) 5x + y = 2 11. The points at which the tangents to the curve y = x³ - 12x + 18 are parallel to x-axis are: (a) (2, -2), (-2, -34) (b) (2, 34), (-2, 0) (c) (0, 34), (-2, 0) (d) (2, 2), (-2, 34) 12. The tangent to the curve y = e²x at the point (0, 1) meets x-axis at: (a) (0, 1) (b) (-1/2, 0) (c) (2, 0) (d) (0, 2) 13. The slope of tangent to the curve x = t² + 3t - 8, y = 2t² - 2t - 5 at the point (2, -1) is: 	5.	The point on the c	curve $y^2 = x$, where	the tangent makes an	angle of $\frac{\pi}{4}$ with x	x-axis is
(a) a vertical tangent (parallel to y-axis) (b) a horizontal tangent (parallel to x-axis) (c) an oblique tangent (d) no tangent 7. The equation of normal to the curve $3x^2 - y^2 = 8$ which is parallel to the line $x + 3y = 8$ is (a) $3x - y = 8$ (b) $3x + y + 8 = 0$ (c) $x + 3y \pm 8 = 0$ (d) $x + 3y = 0$ 8. If the curve $3x^2 - y = 8$ (e) $3x + y + 8 = 0$ (f) $3x + 3y = 0$ 8. If the curve $3x^2 - y = 8$ (e) $3x + y + 8 = 0$ (f) $3x + 3y = 0$ 8. If $3x - y = 8$ (f) $3x + 3x $		(a) $\left(\frac{1}{2}, \frac{1}{4}\right)$	(b) $\left(\frac{1}{4}, \frac{1}{2}\right)$	(c) (4, 2)	(d) (1, 1)	
(a) $3x - y = 8$ (b) $3x + y + 8 = 0$ (c) $x + 3y \pm 8 = 0$ (d) $x + 3y = 0$ 8. If the curve $ay + x^2 = 7$ and $ax = y$, cut orthogonally at $(1, 1)$, then the value of a is: (a) 1 (b) 0 (c) -6 (d) 0.6 9. If $y = x^4 - 10$ and if x changes from 2 to 1.99, what is the change in y (a) 0.32 (b) 0.032 (c) 5.68 (d) 5.968 10. The equation of tangent to the curve $y (1 + x^2) = 2 - x$, where it crosses x-axis is: (a) $x + 5y = 2$ (b) $x - 5y = 2$ (c) $5x - y = 2$ (d) $5x + y = 2$ 11. The points at which the tangents to the curve $y = x^3 - 12x + 18$ are parallel to x-axis are: (a) $(2, -2), (-2, -34)$ (b) $(2, 34), (-2, 0)$ (c) $(0, 34), (-2, 0)$ (d) $(2, 2), (-2, 34)$ 12. The tangent to the curve $y = e^2x$ at the point $(0, 1)$ meets x-axis at: (a) $(0, 1)$ (b) $\left(-\frac{1}{2}, 0\right)$ (c) $(2, 0)$ (d) $(0, 2)$ 13. The slope of tangent to the curve $x = t^2 + 3t - 8, y = 2t^2 - 2t - 5$ at the point $(2, -1)$ is:	6.	(a) a vertical tange	ent (parallel to y-axi		angent (parallel to 2	x-axis)
(a) 1 (b) 0 (c) -6 (d) 0.6 9. If $y = x^4 - 10$ and if x changes from 2 to 1.99, what is the change in y (a) 0.32 (b) 0.032 (c) 5.68 (d) 5.968 10. The equation of tangent to the curve $y (1 + x^2) = 2 - x$, where it crosses x-axis is: (a) $x + 5y = 2$ (b) $x - 5y = 2$ (c) $5x - y = 2$ (d) $5x + y = 2$ 11. The points at which the tangents to the curve $y = x^3 - 12x + 18$ are parallel to x-axis are: (a) $(2, -2), (-2, -34)$ (b) $(2, 34), (-2, 0)$ (c) $(0, 34), (-2, 0)$ (d) $(2, 2), (-2, 34)$ 12. The tangent to the curve $y = e^2x$ at the point $(0, 1)$ meets x-axis at: (a) $(0, 1)$ (b) $\left(-\frac{1}{2}, 0\right)$ (c) $(2, 0)$ (d) $(0, 2)$ 13. The slope of tangent to the curve $x = t^2 + 3t - 8, y = 2t^2 - 2t - 5$ at the point $(2, -1)$ is:	7.					
(a) 0.32 (b) 0.032 (c) 5.68 (d) 5.968 10. The equation of tangent to the curve $y (1 + x^2) = 2 - x$, where it crosses x-axis is: (a) $x + 5y = 2$ (b) $x - 5y = 2$ (c) $5x - y = 2$ (d) $5x + y = 2$ 11. The points at which the tangents to the curve $y = x^3 - 12x + 18$ are parallel to x-axis are: (a) $(2, -2), (-2, -34)$ (b) $(2, 34), (-2, 0)$ (c) $(0, 34), (-2, 0)$ (d) $(2, 2), (-2, 34)$ 12. The tangent to the curve $y = e^2x$ at the point $(0, 1)$ meets x-axis at: (a) $(0, 1)$ (b) $\left(-\frac{1}{2}, 0\right)$ (c) $(2, 0)$ (d) $(0, 2)$ 13. The slope of tangent to the curve $x = t^2 + 3t - 8, y = 2t^2 - 2t - 5$ at the point $(2, -1)$ is:	8.			t orthogonally at (1, (c) – 6	1), then the value o	
(a) $x + 5y = 2$ (b) $x - 5y = 2$ (c) $5x - y = 2$ (d) $5x + y = 2$ 11. The points at which the tangents to the curve $y = x^3 - 12x + 18$ are parallel to x-axis are: (a) $(2, -2), (-2, -34)$ (b) $(2, 34), (-2, 0)$ (c) $(0, 34), (-2, 0)$ (d) $(2, 2), (-2, 34)$ 12. The tangent to the curve $y = e^2x$ at the point $(0, 1)$ meets x-axis at: (a) $(0, 1)$ (b) $\left(-\frac{1}{2}, 0\right)$ (c) $(2, 0)$ (d) $(0, 2)$ 13. The slope of tangent to the curve $x = t^2 + 3t - 8, y = 2t^2 - 2t - 5$ at the point $(2, -1)$ is:	9.		-		change in y	(d) 5.968
(a) $(2, -2), (-2, -34)$ (b) $(2, 34), (-2, 0)$ (c) $(0, 34), (-2, 0)$ (d) $(2, 2), (-2, 34)$ 12. The tangent to the curve $y = e^2x$ at the point $(0, 1)$ meets x-axis at: (a) $(0, 1)$ (b) $\left(-\frac{1}{2}, 0\right)$ (c) $(2, 0)$ (d) $(0, 2)$ 13. The slope of tangent to the curve $x = t^2 + 3t - 8$, $y = 2t^2 - 2t - 5$ at the point $(2, -1)$ is:	10.	_				
(a) (0, 1) (b) $\left(-\frac{1}{2}, 0\right)$ (c) (2, 0) (d) (0, 2) 13. The slope of tangent to the curve $x = t^2 + 3t - 8$, $y = 2t^2 - 2t - 5$ at the point (2, -1) is:	11.					x-axis are: (d) (2, 2), (-2, 34)
13. The slope of tangent to the curve $x = t^2 + 3t - 8$, $y = 2t^2 - 2t - 5$ at the point $(2, -1)$ is:	12.	The tangent to the	curve $y = e^2x$ at the	e point (0, 1) meets x	-axis at:	
		(a) (0, 1)	(b) $\left(-\frac{1}{2},0\right)$	(c) (2, 0)		(d) (0, 2)
	13.					2, -1) is:

14.	14. The two curves $x^3 - 3xy^2 + 2 = 0$ and $3x^2y - y^3 - 2 = 0$ intersect at an angle of (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{6}$					
	(a) $\frac{1}{3}$	(b) $\frac{1}{2}$	(c) $\frac{-}{4}$	$\frac{(a)}{6}$		
15.	The interval on where $(a) [-1, \infty)$		$= 2x^{3} + 9x^{2} + 12x - 1$ (c) $(-\infty, -2]$	is decreasing is: (d) [-1, 1]		
16.	Let the $f: R \rightarrow R$ l (a) has a minimum (c) is a decreasing		(b) has a maximum,			
17.	$y = x (x - 3)^2 decr$	reases for the values o	f x given by:			
	(a) $1 < x < 3$	(b) $x < 0$	(c) x > 0	(d) $0 < x < \frac{3}{2}$		
18.	(a) increasing in $\left(\right.$	$ = 4 \sin^3 x - 6 \sin^2 x + \left(\pi, \frac{3\pi}{2}\right) $ (b) de $ \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] $ (d) de	12 sinx + 100 is strictly ecreasing in $\left(\frac{\pi}{2}, \pi\right)$ ecreasing in $\left[0, \frac{\pi}{2}\right]$	ý		
19.	Which of the follo	owing functions is dec	creasing on $\left(0, \frac{\pi}{2}\right)$?			
	(a) sin2x	(b) tanx	(c) cosx	(d) cos 3x		
20.	 20. The function f (x) = tanx - x (a) always increases (b) always decreases (c) never increases (d) sometimes increases and sometimes decreases. 					
21.	If x is real, the min $(a) -1$	nimum value of $x^2 - 8$ (b) 0	3x + 17 is (c) 1	(d) 2		
22.	The smallest value (a) 126	e of the polynomial x ² (b) 0	$x^3 - 18x^2 + 96x$ in [0, 9] (c) 135	is (d) 160		
23.	23. The function $f(x) = 2x^3 - 3x^2 - 12x + 4$, has (a) two points of local maximum (b) two points of local minimum (c) one maxima and one minima (d) no maxima or minima					
24.	24. The maximum value of sin x . cos x is					
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\sqrt{2}$	(d) $2\sqrt{2}$		
25.	25. At $x = \frac{5\pi}{6}$, $f(x) = 2 \sin 3x + 3 \cos 3x$ is:					
	(a) maximum	(b) minimum	(c) zero	(d) neither maximum nor minimum.		
26.	Maximum slope o	of the curve $y = -x^3 +$ (b) 12	$3x^2 + 9x - 27$ is: (c) 16	(d) 32		
27.	$f(x) = x^x$ has a sta	ntionary point at				

(a) x	= e ($(b) x = \frac{1}{e}$	(c) $x = 1$	(d) $x = \sqrt{e}$	
28. The maximum value of $\left(\frac{1}{x}\right)^x$ is					
(a) e	((b) e ^e	(c) $e^{\frac{1}{e}}$	$(d) \left(\frac{1}{e}\right)^{\frac{1}{e}}$	
R(x)	$=3x^2 + 36x +$	5. The marginal reve	nue, when $x = 15$ is	of a product is given by	
(a) 1	·	(b) 96	(c) 90	(d) 126	
	which of the foll easing?	llowing intervals is th	e function f given by	$f(x) = x^{100} + \sin x - 1 \text{ strictly}$	
(a) (0	•	(b) $\left(\frac{\pi}{2},\pi\right)$	(c) $\left(0, \frac{\pi}{2}\right)$	(d) None of these	
	interval in which $-\infty, \infty$) (ch y = $x^2 e^{-x}$ is increa (b) (-2, 0)	sing is (c) $(2, \infty)$	(d) (0, 2)	
32. The	slope of the no	rmal to the curve y =	$2x^2 + 3\sin x \text{ at } x = 0$	is	
(a) 3	1	(b) $\frac{1}{3}$	(c) –3	(d) $-\frac{1}{3}$	
33. The (a) (s a tangent to the cur (b) (2, 1)	ve y2 = $4x$ at the point (c) $(1, -2)$	t (d) (– 1, 2)	
	point on the cu $2\sqrt{2}$,4)	erve $x^2 = 2y$ which is a (b) $(2\sqrt{2}, 0)$	nearest to the point $(0$ (c) $(0, 0)$	(d) (2, 2)	
35. For all real values of x, the minimum value of $\frac{1-x+x^2}{1+x+x^2}$ is					
(a) 0		(b) 1	(c) 3	(d) $\frac{1}{3}$	
36. The maximum value of $[x(x-1)+1]^{\frac{1}{3}}$, $0 \le x \le 1$ is					
(a) ($\left(\frac{1}{3}\right)^{\frac{1}{3}}$	(b) $\frac{1}{2}$	(c) 1	(d) 0	
37. A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of					
	m^3/h	(b) $0.1 \text{ m}^3/\text{h}$	(c) $1.1 \text{ m}^3/\text{h}$	(d) $0.5 \text{ m}^3/\text{h}$	
38. The slope of the tangent to the curve $x = t^2 + 3t - 8$, $y = 2t^2 - 2t - 5$ at the point $(2, -1)$ is					
(a) $\frac{2}{3}$	<u>7</u>	(b) $\frac{6}{7}$	(c) $\frac{7}{6}$	(d) $\frac{-6}{7}$	

39. The line y = mx + 1 is a tangent to the curve $y^2 = 4x$ if the value of m is

1	<u>```</u>	`	1
•	а	,	J

(d)
$$\frac{1}{2}$$

40. The normal at the point (1,1) on the curve $2y + x^2 = 3$ is

(a)
$$x + y = 0$$

(b)
$$x - y = 0$$

(c)
$$x + y + 1 = 0$$
 (d) $x - y = 0$

$$(d) x - y = 0$$

41. The normal to the curve $x^2 = 4y$ passing (1,2) is (b) x - y = 3 (c) x + y = 1

(a)
$$x + y = 3$$

(b)
$$x - y = 3$$

(c)
$$x + y = 1$$

(d)
$$x - y = 1$$

42. The points on the curve $9y^2 = x^3$, where the normal to the curve makes equal intercepts with the axes

(a)
$$\left(4,\pm\frac{8}{3}\right)$$

(b)
$$\left(4, -\frac{8}{3}\right)$$
 (c) $\left(4, \pm \frac{3}{8}\right)$ (d) $\left(\pm 4, \frac{3}{8}\right)$

(c)
$$\left(4,\pm\frac{3}{8}\right)$$

(d)
$$\left(\pm 4, \frac{3}{8}\right)$$

43. The values of a for which $y = x^2 + ax + 25$ touches the axis of x are_____.

44. If f (x) = $\frac{1}{4x^2 + 2x + 1}$, then its maximum value is _____.

45. Let f have second deriative at c such that f'(c) = 0 and $f \square''(c) > 0$, then c is a point of _____.

46. Minimum value of f if f (x) = sinx in $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ is _____.

47. The maximum value of sinx + cosx is _____.

48. The curves $y = 4x^2 + 2x - 8$ and $y = x^3 - x + 13$ touch each other at the point_____.

49. The equation of normal to the curve $y = \tan x$ at (0, 0) is _____.

50. The values of a for which the function $f(x) = \sin x - ax + b$ increases on R are _____.

51. The function $f(x) = \frac{2x^2 - 1}{x^4}$, x > 0, decreases in the interval _____.

52. The least value of the function $f(x) = ax + \frac{b}{x}$ (a > 0, b > 0, x > 0) is _____.

53. The angle θ , $0 < \theta < \frac{\pi}{2}$, which increases twice as fast as its sine is _____