CHEMICAL KINETICS

DPP - 05 CLASS -12th TOPIC -PRACTICE QUESTION

- **Q.1** A reaction, which is second order, has a rate constant of 0.002 L mol-1 s-1. If the initial conc. of the reactant is 0.2 M. How long will it take for the concentration to become 0.0400 M?
 - (A) 1000 sec
 - (B) 400 sec
 - (C) 200 sec
 - (D) 10,000 sec
- **Q.2** Which is not true for a second order reaction?
 - (A) It can have rate constant 1 x 10-2 L mol-1 s-1
 - (B) Its half-life is inversely proportional to its initial concentration
 - (C) Time to complete 75% reaction is twice of half-life
 - (D) Half-Life = 1/k x Initial conc.
- Q.3 The rate constant for a certain second order reaction is 8 x 10^-5 M^-1 min^-1. How long will it take a 1 M solution to be reduced to 0.5 M in reactant?
- Q.4 The reaction CH3CH2NO2 + OH- gives CH3CH- NO2 + H2O obeys the rate law for pseudo first order kinetics in the presence of a large excess of hydroxide ion. If 1% of nitro ethane undergoes reaction in half a minute when the reactant concentration is 0.002 M. What is the pseudo first order rate constant?

 $(\log 99 = 1.996)$

SOLUTION CHEMICAL KINETICS

DPP - 05 CLASS -12th TOPIC -PRACTICE SOLUTION

Sol.1 Correct option is D

$$\frac{1}{a} = \frac{1}{a_0} + kt$$

$$\frac{1}{0.04} = \frac{1}{0.2} + 0.002t$$

t = 10000 sec

Sol.2 Correct option is C

Unit of Rate Constant for a second order reaction is mol-1 Ls-1.

 $t_{1/2} \propto a^{1-n}$. Here n = 2

 $t_{1/2} \alpha a^{-1}$. So Its Inversely Proportional to Half Life.

 $t_{1/2} = \frac{1}{ak}$ where a is initial concentration

Time to complete 75% reaction is twice to half life is false. Its is true for 1st Order Reaction

Sol.3 The time required to reduce the concentration of 1 M solution to 0.5 M (i.e one-half) is the half life period.

For second order reaction

$$t_{1/2} = \frac{1}{k[A_0]} = \frac{1}{8 \times 10^{-5} \,\text{M}^{-1} \,\text{min}^{-1} \times 1\text{M}}$$

 $= 1.25 \times 10^4 \text{min}$

Sol.4 1 per cent of nitroethane undergoes reaction in half a minute when the reactant concentration is 0.002M.

Amount of nitroethane reacted = $\frac{0.002}{0.01}$ = 0.00002

The expression for the rate constant is $k = \frac{2.303}{T} log \frac{a}{(a-x)}$

$$= \frac{2.303}{0.5} log \frac{0.002}{(0.002 - 0.00002)} = 2 \times 10^{-2} min^{-1}$$