439. [D]

 Mg^{+2} has electronic configuration $1s^2$ $2s^22p^6$; no unpaired electrons $_{22}Ti^{3+}$ has electronic configuration (Ar) $3d^1$; one unpaired electron.

 V^{3+} has electronic configuration (Ar) $3d^2$; two unpaired electrons.

Fe²⁺ has electronic configuration (Ar) 3d⁶ ; four unpaired electrons .

440. [C]

$$\sqrt{n(n+2)} = 5.93$$

 $\Rightarrow n = 5$
(A) Cr $\rightarrow [Ar]4s^13d^5$
 $\Rightarrow Cr^{2+} \rightarrow [Ar] 4s^03d^4$
 $\Rightarrow no. of unpaired electron = 4$
(B) V $\rightarrow [Ar] 4s^2, 3d^3$
 $V^{3+} \rightarrow [Ar] 3d^1$
 $\Rightarrow unpaired electron = 1$
(C) Mn $\rightarrow [Ar] 4s^2, 3d^5$
 $Mn^{2+} \rightarrow [Ar] 4s^0, 3d^5$
 $\Rightarrow unpaired electron = 5$
(D) Fe $\rightarrow 4s^2, 3d^6$
 $\Rightarrow Fe^{2+} \rightarrow [Ar] 4s^0, 3d^6$
 $\Rightarrow unpaired electron = 4$

441. [C]

 $K_{2}[Cu(CN)_{4}] \Rightarrow Cu^{2+}$ $Cu \rightarrow 4s^{1} 3d^{10}$ $\Rightarrow Cu^{2+} \rightarrow 4s^{0} 3d^{9}$ 1 1 1 1 1 1 1

 \Rightarrow hyb \rightarrow dsp²

mganetic moment $\sqrt{1 \times 3}$ {unpaired excited in 4} = 1.73 BM Cu[(CN)₄]²⁻ is a square planar complex.

Cu in this complex is n + 2 (d⁹) oxidatin state. There is only one unpaired electron (n = 1).

442. [D]

 $K_{3}[Fe(CN)_{5}CO]$

Potassium carbonylpentacyanoferrate (II) As there are two ligands, carbonyl and cyano hence these must be arranged alphabetically and iron has oxidation state + 2.

443. [C]

The compound containing unpaired electron in metal cation would be coloured

(A) $Zn(NO_3)_2$

 $\Rightarrow Zn^{_{2+}}$

 \Rightarrow 4s⁰ 3d¹⁰

 \Rightarrow unpaired electron = 0

$$\Rightarrow$$
 Li⁺

 $\Rightarrow 1s^2$

 \Rightarrow unpaired electron = 0

(C) $Co(NO_3)_2$

 $\Rightarrow Co^{2+}$

 \Rightarrow 4s⁰ 3d⁷

 \Rightarrow unpaired electron = 3

(D) $K_2SO_4 \cdot H_2(SO_4)_3 \cdot 24H_2O$ $\downarrow \qquad \downarrow$ \Rightarrow Unpaired unpaired $e^- = 0$ $e^- = 0$ \Rightarrow Co(NO₃)₂ would be compond.

444. [B]

for Cr³⁺ \Rightarrow H₂O acts as SFL. \Rightarrow [Cr(H₂O)₆]³⁺ has highest SFL

445. [B]

+2 +4 $MnSO_4 \rightarrow MnO_2$ There is transfer of two electrons

$$Eq.mass = \frac{Molecular mass}{Number of electrons transferred}$$

446. [D]

Formula of the complex salt is $[Pt(NH_3)_4Cl]Cl_3$ $[Pt(NH_3)_4Cl]Cl_3 \leftrightarrow [Pt(NH_3)_4Cl]^+ + 3Cl^-$ Total ion = 4

447. [B]

Ag $^{+}$ has d 10 configuration with no unpaired electron.

448. [B]

 Fe^{2+} has d^6 configuration and is expected to be most paramagnetic with four unpaired electrons.

449. [B]

(MA₅B) will not show geometrical isomerism.

450. [B]

The coordination entity has four chloride ions,

451. [B]

 $[\operatorname{NiCl}_{4}]^{2-}$ $\Rightarrow \operatorname{Ni}^{2+} 4s^{0}, 3d^{8}$ 1 1 1 1 1 3d 4s 4p $\Rightarrow Hyb sp^{3}, tetrahedral$ $[\operatorname{Ni}(\operatorname{CN})_{4}]^{2-} \operatorname{Ni}^{2+} 4s^{0}, 3d^{8}$ $\operatorname{CN} \rightarrow SFL$ 1 1 1 1 1 1 4s 4p

 \Rightarrow Hyb dsp² sq. planer Primary valency = 0.5 of transition metal Secondary valency = C.N. of T.M.

452. [A]

(A) $[Co(NH_3)_6]CI_3 \rightarrow [Co(NH_3)_6]^{3+} + 3CI^{-}$ Total ion = 4 $[Pt(NH_3)_5]Cl_3 \rightarrow Total ion = 4$ (B) $[Co(NH_3)_6]Cl_3$ Total ion = 4 [Pt(NH₂)₂Cl₂]Cl Total ion = 2 $(C) [Co(NH_3)_5CI]Cl_2$ Total ion = 3 $[Pt(NH_3)_6]Cl_4$ total ion = 5 (D) $[Co(NH_3)_4Cl_2]Cl$ Total ion = 2 $[Pt(NH_3)_4Cl_2]Cl_2$ Total ion = 3 Same no. of ion = same electrical conductance.

453. [B]

 $C_2O_4^{2-}$ is ligand and a chelating ligand and hence most stable complex compound would be formed in can $C_2O_4^{2-}$.

454. [C]

More than value of K, more forward the reaction would be indicating the strong nature of ligand

455. [B]

 $[\rm Cr(\rm NH_3)_4\rm Cl_2]^+$ has POS will be optically inactive

456. [B]

 $[Cr(H_2O)_6]^{3+}$ $Cr \rightarrow 4s^1 \ 3d^5$ $Cr^{3+} \rightarrow 3d^3 \ 4s^0$ $\Rightarrow \text{ No. of unpaired electron} = 3$

457. [A]

 $[Pt(NH_3)_5Br]Br_3 \rightarrow [Pt(NH_3)_5Br]^{3+} + 3Br^{-1}$ Total no. of ion produced = 4

458. [C]

Value of stability constant α strength of the ligand \Rightarrow CN⁻ would be strongest ligand

459. [D]

 $\mu_{spin} = 4.9$

 $\Rightarrow \sqrt{n(n+2)} = 4.9 \Rightarrow n = 4$ \Rightarrow unpaired electron (A) $[Fe(CN)_{\epsilon}]^{3-} \Rightarrow Fe^{3+} 4s^0 3d^5$ unpaired = 1(B) $[Fe(H_2O)_6]^{3+} \Rightarrow Fe^{3+}$ 3d⁵ unpaired electron = 5(C) $[Fe(CN)_6]^{4-} \Rightarrow Fe^{3+}$ 3d⁶ unpaired electron = 0(D) $[Fe(H_2O)_6]^{2+} \Rightarrow Fe^{3+}$ 3d 4s 4p unpaired electron = 4 $\mu_{spin} = 4.9 \text{ BM}$ 460. [A] M.M. = 1.73 BM $\Rightarrow \sqrt{n(n+2)} = 1.73$ \Rightarrow n = 1 (A) $[Mn(CN)_{6}]^{4-}$ $\Rightarrow M^{2+}$ 3d⁵ unpaired electron = 1(B) $[Co(NH_2)_6]^{3-1}$ $\Rightarrow Co^{2+}$ 3d⁶ unpaired electron = 0(C) $[MnF_6]^{3-}$ $\Rightarrow Mn^{3+}$ $\uparrow\uparrow\uparrow\uparrow$ _ 3d 4s 4p

unpaired electron = 4

461. [C]

Noble metal blue Au, Pt, Ir are not effect by conc HNO_3 or conc H_2SO_4 they are only affected by aqua regia. Au is used in photography (present in photograph) Ag + AuCl₃ \rightarrow AgCl + Au

462. [B]

463. [A]

 d^{5} 1 1 1 1 1 with SFL, unpaired e = 1 with WFW, unpaired e = 5 (B) 1 1 1 SFL or WFL, no unpaired e = 2 (C) d^{6}

with SFL unpaired e=0(D) correct as in care of d^{A} , to d^{7} , no. of ungain evhor depar upon the nature of hige

```
464. [D]

[Cr(CN)_6]^{3-} RAN = 24+12-3

= 33

\left[ \dot{Cu}(CN)_4 \right]^{3-} EAN=29+4×2

= 36
```