## The p-Block Elements (Group 13 and Group 14)

6.

7.

1. Which of the following hydroxide is acidic?

(a) 
$$Al(OH)_3$$
 (b)  $Ca(OH)$ 

(c)  $Tl(OH)_3$  (d)  $B(OH)_3$ 

- 2. Al is more reactive than Fe but Al is less easily corroded than Fe because
  - (a) it is a noble metal
  - (b) oxygen forms a protective oxide layer
  - (c) iron undergoes reaction easily with water
  - (d) Fe form mono and divalent ions.
- **3.** Often a ground glass stopper gets stuck in the neck of a glass bottle containing NaOH solution. This is due to :
  - (a) The presence of dirt particles in between.
  - (b) The formation of solid silicate in between by the reaction of  $SiO_2$  of glass with NaOH.
  - (c) The formation of  $Na_2CO_3$  in between by the reaction of  $CO_2$  of air and NaOH.
  - (d) Glass contains a boron compound which forms a precipitate with the NaOH solution.
- 4. Si<sub>2</sub>O<sub>5</sub>  $\frac{2n}{n}$  anion is obtained when:

### Toughnut

- (a) no oxygen of a  $SiO_4^{4-}$  tetrahedron is shared with another  $SiO_4^{4-}$  tetrahedron
- (b) one oxygen of a  $SiO_4^{4-}$  tetrahedron is shared with another  $SiO_4^{4-}$  tetrahedron
- (c) two oxygen of a  $SiO_4^{4-}$  tetrahedron are shared with another  $SiO_4^{4-}$  tetrahedron
- (d) three oxygen of a  $SiO_4^{4-}$  tetrahedron are shared with another  $SiO_4^{4-}$  tetrahedron
- 5. Boric acid is a weak monobasic acid and acts as Lewis acid
  - (a) By donating H
  - (b) By accepting OH-
  - (c) By donating lone pair of electrons
  - (d) By accepting lone pair of electrons.

Al Metal X' + Gas 'P'NaOH(aq.)  $+H_2O$  'Y' + Gas 'Q'

The incorrect statement regarding above reactions is:



- (a) Al shows amphoteric character
- (b) Gas 'P' and 'Q' are different
- (c) Both X and Y are water soluble
- (d) Gas Q is inflammable
- Ge(II)compounds are powerful reducing agents whereas Pb(IV)compounds are strong oxidants. It is because
  - (a) Pb is more electropositive than Ge
  - (b) ionization potential of lead is less than that of Ge
  - (c) ionic radii of  $Pb^{2+}$  and  $Pb^{4+}$  are larger than those of  $Ge^{2+}$  and  $Ge^{4+}$
  - (d) of more pronounced inert pair effect in lead than in Ge
- 8. Which of the following conceivable structures for  $CCl_4$  will have a zero dipole moment?
  - (a) Square planar
  - (b) Square pyramid (carbon at apex)
  - (c) Irregular tetrahedron
  - (d) None of these
- 9. Least thermally stable is –



- (a) CCl<sub>4</sub> (b) SiCl<sub>4</sub> (c) GeCl<sub>4</sub> (d) GeBr<sub>4</sub>
  10. To a piece of charcoal, sulphuric acid is added. Then:
  - (a) there is no reaction
  - (b) water gas is formed
  - (c)  $SO_2$  and  $CO_2$  are evolved
  - (d)  $\overline{\text{CO}}$  and  $\overline{\text{SO}}_2$  are evolved
- 11. The correct statement with respect to CO is
  - (a) it combines with  $H_2O$  to give carbonic acid
  - (b) it reacts with haemoglobin in RBC
  - (c) it is powerful oxidising agent
  - (d) it is used to prepare aerated drinks

- **12.**  $CO_2$  and  $N_2$  are non-supporters of combustion. However for putting out fires CO<sub>2</sub> is preferred over N<sub>2</sub> because CO<sub>2</sub>
  - (a) does not burn
  - (b) forms non-combustible products with burning substances
  - (c) is denser than nitrogen
  - (d) is a more reactive gas
- 13. Which of the following is not correct?
  - (a)  $Ge(OH)_2$  is amphoteric
  - (b)  $GeCl_2$  is more stable than  $GeCl_4$
  - (c)  $\text{GeO}_2$  is weakly acidic
  - (d)  $\text{GeCl}_4$  in HCl forms  $[\text{GeCl}_2]^{2-}$  ion
- Which of the following is similar to graphite? 14.

a) B (b) BN (c) 
$$B_2H_6(d)$$
  $B_4C$ 

15. In the following sets of reactants which two sets best exhibit the amphoteric characters of

Al<sub>2</sub>O<sub>3</sub>. xH<sub>2</sub>O?

Set 1:  $Al_2O_3$ .  $xH_2O(s)$  and  $OH^-(aq)$ Set 2: Al<sub>2</sub>O<sub>3</sub>.xH<sub>2</sub>O (s) and H<sub>2</sub>O (l) Set 3:  $Al_2O_3$ .  $xH_2O(s)$  and  $H^+(aq)$ Set 4: Al<sub>2</sub>O<sub>3</sub>.xH<sub>2</sub>O (s) and NH<sub>3</sub> (aq) (a) 1 and 2 (b) 1 and 3 (c) 2 and 4(d) 3 and 4

- The gas evolved on heating CaF<sub>2</sub> and SiO<sub>2</sub> with 16. concentrated H<sub>2</sub>SO<sub>4</sub>, on hydrolysis gives a white gelatinous precipitate. The precipitate is:
  - (a) hydrofluosilicic acid
  - (b) silica gel
  - (c) silicic acid
  - (d) calciumfluorosilicate
- 17. On adding ammonium hydroxide solution to  $Al_2(SO_4)_3(aq)$ : Tricky

- (a) A precipitate is formed which does not dissolve in excess of ammonium hydroxide
- (b) A precipitate is formed which dissolves in excess of ammonia solution
- (c) No precipitate is formed
- (d) None of these
- 18. Which of the following statements are correct?
  - Aluminium forms  $[AIF_6]^{3-}$  ion while boron (i) forms only  $[BF_4]^-$  ion due to presence of *d*-orbitals in aluminium.
  - The first member of a group differs from (ii) the heavier members in its ability to form  $p\pi$ - $p\pi$  multiple bonds to itself and to other second row elements. While heavier member forms  $d\pi$ -p $\pi$  bonds.

- (iii) *d*-orbitals contribute more to the overall stability of molecules than  $p\pi$ - $p\pi$  bonding of second row elements.
- (i) (ii) (iii) (a) (b) (i)(iii)
- (c) (i)(ii)(d) (ii)(iii)
- 19. An aqueous solution of  $FeSO_4$ ,  $Al_2(SO_4)_3$  and chrome alum is heated with excess of  $Na_2O_2$  and filtered. The materials obtained are :



- (a) a colourless filtrate and a green residue
- a yellow filtrate and a green residue (b)
- a yellow filtrate and a brown residue (c)
- (d) a green filtrate and a brown residue
- 20. Which statement is not true about potash alum?
  - On heating it melts and loses its water of (a) crystallization.
  - (b) It's aqueous solution is basic in nature.
  - (c) It is used in dyeing industries.
  - (d) It's empirical formula is  $KAl(SO_4)_2$ .12H<sub>2</sub>O.
- Anhydrous aluminium chloride  $(Al_2Cl_6)$  is 21. covalent compound and soluble in water giving:
  - (a)  $Al^{3+}$  and  $Cl^{-}$  ions
  - (b)  $[Al(H_2O)_6]^{3+}$  and  $Cl^-$  ions
  - (c)  $[AlCl_2(H_2O)_4]^+$  and  $[AlCl_4(H_2O)_2]^-$  ions
  - (d) none of the above
- 22. Borax is converted into crystalline boron by the following steps:

Critical Thinking

Borax 
$$\xrightarrow{X}$$
 H<sub>3</sub>BO<sub>3</sub>  $\xrightarrow{\Delta}$  B<sub>2</sub>O<sub>3</sub>  $\xrightarrow{Y}$  B

X and Y are respectively:

- (d) HCl, Al (c) C,Al
- 23. On controlled hydrolysis and condensation, R<sub>2</sub>SiCl yields
  - (a)  $R_3Si O SiR_3$
  - (b)  $(R_3Si O SiR_3)$
  - (c) R<sub>2</sub>SiOH

$$\begin{array}{cccc} R & R \\ | & | \\ -Si - O - Si - \\ | & | \\ (d) & O & O \\ -Si - O - Si - \\ | & | \\ R & R \end{array}$$

- 24.  $B(OH)_3 + NaOH \rightarrow NaBO_2 + Na[B(OH)_4] + H_2O$ How can this reaction is made to proceed in forward direction?
  - (a) addition of cis 1, 2-diol
  - (b) addition of borax
  - (c) addition of trans 1, 2-diol
  - (d) addition of  $Na_2HPO_4$

of the following reactions?

25. Anhydrous AlCl<sub>3</sub> cannot be obtained from which

Critical Thinking

- (a) Heating AlCl<sub>3</sub>.6H<sub>2</sub>O
- (b) By passing dry HCl over hot aluminium powder
- (c) By passing dry Cl<sub>2</sub> over hot aluminium powder
- (d) By passing dry Cl<sub>2</sub> over a hot mixture of alumina and coke
- **26.** The role of fluorspar ( $CaF_2$ ) which is added in small quantities in the electrolytic reduction of alumina dissolved in fused cryolite ( $Na_3AlF_6$ ) is
  - (a) as a catalyst
  - (b) to make the fused mixture very conducting
  - (c) to increase the temperature of the melt.
  - (d) to decrease the rate of oxidation of carbon at the anode.
- 27. The correct order of increasing C O bond length of CO,  $CO_2$  and  $CO_3^{2-}$  is:
  - (a)  $CO_3^{2-} < CO_2 < CO$  (b)  $CO_2 < CO_3^{2-} < CO$

(c)  $CO < CO_3^{2-} < CO_2$  (d)  $CO < CO_2 < CO_3^{2-}$ 

- **28.** In silicon dioxide
  - (a) there are double bonds between silicon and oxygen atoms
  - (b) silicon atom is bonded to two oxygen atoms
  - (c) each silicon atom is surrounded by two oxygen atoms and each oxygen atom is bonded to two silicon atoms
  - (d) each silicon atom is surrounded by four oxygen atoms and each oxygen atom is bonded to two silicon atoms.
- **29.** Example of a three-dimensional silicate is:
  - (a) Zeolites (b) Ultramarines
  - (c) Feldspars (d) Beryls

**30.** Identify the incorrect statement : **Tricky** 

(a) In  $(Si_3O_9)^{6-}$ , tetrahedral  $SiO_4$  units share two oxygen atoms.

- (b) Trialkylchlorosilane on hydrolysis gives R<sub>3</sub>SiOH.
- (c)  $SiCl_4$  undergoes hydrolysis to give  $H_4SiO_4$ .
- (d)  $(Si_3O_9)^{6-}$  has cyclic structure.
- **31.** Aluminium chloride exists as dimer,  $Al_2Cl_6$  in solid state as well as in solution of non-polar solvents such as benzene. When dissolved in water, it gives
  - (a)  $[Al(OH)_6]^{3-}$  3HCl
  - (b)  $[Al(H_2O)_6]^3 = 3Cl^-$
  - (c)  $Al^3 3Cl^-$
  - (d) Al<sub>2</sub>O<sub>3</sub> 6HCl
- 32. When Al is added to NaOH solution
  - (a) No action takes place
  - (b) NaAlO<sub>2</sub> is formed and  $H_2$  is evolved
  - (c)  $Al(OH)_3$  is formed and  $H_2$  is evolved
  - (d)  $Na_2AIO_2$  is formed and  $H_2$  is evolved
- **33.** Which of the following statement(s) is / are incorrect for CO<sub>2</sub>?
  - (i) In laboratory  $CO_2$  is prepared by the action of dilute HCl on calcium carbonate
  - (ii) Carbon dioxide is a poisonous gas
  - (iii) Increase in carbon dioxide content in atmosphere lead to increase in green house effect.
  - (iv)  $CO_2$  as dry ice is used as a refrigerant for ice cream and frozen food.
  - (a) (i) and (ii) (b) Only(ii)
  - (c) (i), (ii) and (iii) (d) (ii) and (iii)
- **34.** A group 14 element is oxidised to form corresponding oxide which is gaseous in nature, when dissolved in water pH of the water decreases further addition of group 2 hydroxides leads to precipitation. This oxide can be

#### Tricky

- (a) GeO<sub>2</sub> (b) CO (c) CO<sub>2</sub> (d) SnO<sub>2</sub>
   **35.** PbF<sub>4</sub>, PbCl<sub>4</sub> exist but PbBr<sub>4</sub> and PbI<sub>4</sub> do not exist because of
  - (a) large size of Br<sup>-</sup> and I<sup>-</sup>
  - (b) strong oxidising character of  $Pb^{4+}$
  - (c) strong reducing character of  $Pb^{4+}$
  - (d) low electronegativity of  $Br^-$  and  $I^-$ .

- 36. Which one of the following is a correct set for SiO<sub>2</sub>?
  - (a) Linear acidic
  - (b) Linear, basic
  - (c) Tetrahedral, acidic
  - (d) Angular, basic.
- **37.** Which is not the use of orthoboric acid?
  - (a) As an antiseptic and eye wash.
  - (b) In glass industry.
  - (c) In glazes for pottery.
  - (d) In borax bead test.
- **38.** The factor responsible for weak acidic nature of B-F bonds in BF<sub>3</sub> is Tricky
  - (a) large electronegativity of fluorine
  - (b) three centred two electron bonds in  $BF_2$
  - (c)  $p\pi d\pi$  back bonding
  - (d)  $p\pi p\pi$  back bonding
- **39.** Which of the following has the minimum heat of dissociation:
  - (a)  $(CH_3)_3N: \rightarrow BF_3$
  - (b)  $(CH_3)_3N: \rightarrow B(CH_3)_2F$
  - (c)  $(CH_3)_3N: \rightarrow B(CH_3)_3$
  - (d)  $(CH_3)_3N: \rightarrow B(CH_3)F_2$
- 40. Lead is not affected by dil. HCl in cold because
  - (a) Pb is less electronegative than H
  - (b) PbO film is formed which resists chemical attack by acid
  - (c) PbCl<sub>2</sub> protective coating gets formed on Pb surface
  - (d) PbO<sub>2</sub> film is always present on Pb surface, which resist chemical attack
- 41. The catenation tendency of C, Si and Ge is in the order Ge < Si < C. The bond energies  $(in kJ mol^{-1})$  of C – C, Si – Si and Ge – Ge bonds

are respectively



- (a) 348, 297, 260 (b) 297, 348, 260
- (c) 348, 260, 297 (d) 260, 297, 348
- **42.** The melting pt. of group 13 follows the order
  - (a) B > Al > Ga > In > Tl
  - (b) B > Al < Ga > In > Tl
  - (c) B > Al > Tl > In > Ga
  - (d) B > Al < Ga < In < Tl

- **43**. All<sub>4</sub>, when reacts with  $CCl_4$ , gives
  - (a) AlCl, (b) CI<sub>4</sub>
  - (c)  $Al_{4}C_{2}$ (d) both (a) and (b)
- 44. Which of the following properties of aluminium makes it useful for food packaging?
  - (a) Good electrical conductivity
  - (b) Good thermal conductivity
  - (c) Low density
  - (d) Non toxicity
- 45. A metal, M forms chlorides in its +2 and +4oxidation states. Which of the following statements about these chlorides is correct?
  - (a)  $MCl_2$  is more ionic than  $MCl_4$
  - (b)  $MCl_2$  is more easily hydrolysed than  $MCl_4$
  - (c)  $MCl_2$  is more volatile than  $MCl_4$
  - (d) MCl<sub>2</sub> is more soluble in anhydrous ethanol than MCl<sub>4</sub>
- 46. Among the following substituted silanes the one which will give rise to cross linked silicone

polymer on hydrolysis is



- (a) R<sub>4</sub>Si (b)  $R_2SiCl_2$
- (c) RSiCl<sub>2</sub> (d) R<sub>3</sub>SiCl
- 47. Which of the following statements is false?
  - Water gas is a mixture of hydrogen and (a) carbon monoxide
  - Producer gas is a mixture of CO and nitrogen (b)
  - (c) Water gas is a mixture of water vapour and hydrogen
  - (d) Natural gas consists of methane, ethane and gaseous hydrocarbons.
- **48**. Lead pipes are not suitable for drinking water because
  - (a) lead forms basic lead carbonate
  - (b) lead reacts with water containing air to form Pb(OH),
  - a layer of lead dioxide is deposited over pipes
  - (d) lead reacts with air to form litharge
- 49. Choose the correct sequence for the geometry of the given molecules

Borazone, Borazole,  $B_3O_6^{3-}$ 

['P' stands for planar and 'N' stands for non-

planar]

- Toughnut
- (a) NP, NP, NP (b) P, P, NP
- (c) NP, P, NP (d) NP, P, P

- (c)

- **50.** Which out of the following compounds does not exist?
  - (a) BF<sub>3</sub> (b) TlCl<sub>3</sub>
  - (c)  $\text{TlCl}_5$  (d) Both (b) and (c)
- 51. Anhydrous AlCl<sub>3</sub> is prepared from

#### Tricky

- (a) conc. HCl and Al metal
- (b) aluminium and  $Cl_2$
- (c) dry HCl gas + heated Al metal
- (d) dil. HCl and Al metal
- **52.** Boric acid is polymeric due to
  - (a) its acidic nature
  - (b) the presence of hydrogen bonds
  - (c) its monobasic nature
  - (d) its geometry
- **53.** Al<sub>2</sub>O<sub>3</sub> can be converted to anhydrous AlCl<sub>3</sub> by heating **Toughnut** 
  - (a)  $Al_2O_3$  with NaCl in solid state
  - (b) a mixture of  $Al_2O_3$  and carbon in dry  $Cl_2$  gas
  - (c)  $Al_2O_3$  with  $Cl_2$  gas
  - (d) Al<sub>2</sub>O<sub>3</sub> with HCl gas
- 54. In which of the following, a salt of the type  $KMO_2$  is obtained?
  - (a)  $B_2H_6 + KOH(aq) \rightarrow$
  - (b)  $Al + KOH(aq) \rightarrow$
  - (c) Both
  - (d) None
- **55.** Bauxite ore is generally contaminated with impurity of oxides of two elements X and Y. Which of the following statement is correct?
  - Critical Thinking

- (a) X is a non-metal and belongs to the third period while Y is a metal and belongs to the fourth period.
- (b) One of two oxides has three-dimensional polymeric structure.
- (c) Both (a) and (b) are correct.
- (d) None of the above.
- **56.** A solid element (symbol Y) conducts electricity and forms two chlorides YCl<sub>n</sub> (colourless

volatile liquid) and  $\text{YCl}_{n-2}$  (a colourless solid). To which one of the following groups of the periodic table does Y belong?

- (a) 13 (b) 14 (c) 15 (d) 16
- **57.** The structure and hybridization of  $Si(CH_3)_4$  is (a) Bent, *sp* (b) Trigonal, *sp*<sup>2</sup>
  - (c) Octahedral,  $d^2sp^3$  (d) Tetrahedral,  $sp^3$
- **58.** When steam reacts with red hot coke to form CO<sub>2</sub> and hydrogen :
  - (a) Water acts as an oxidising agent.
  - (b) Water acts as a reducing agent.
  - (c) Carbon acts as an oxidising agent.
  - (d) There is no oxidation or reduction.
- **59.** Which of the following is/are not correctly matched?
  - (i)  $\text{GeO}_2 \text{Acidic}$
  - (ii) PbO<sub>2</sub>- Amphoteric
  - (iii) CO Neutral
  - (iv)  $SiO_2$  Amphoteric
  - (a) (i) and (iv) (b) (iv) only
  - (c) (ii) only (d) (iii) only
- **60.** The shape of gaseous SnCl<sub>2</sub> is
  - (a) tetrahedral (b) linear
  - (c) angular (d) T-shaped

### **Answer KEY**

| 1 | (d) | 7  | (d) | 13 | (b) | 19 | (c) | 25 | (a) | 31 | (b) | 37 | (d) | 43 | (d) | 49 | (d) | 55 | (c) |
|---|-----|----|-----|----|-----|----|-----|----|-----|----|-----|----|-----|----|-----|----|-----|----|-----|
| 2 | (b) | 8  | (d) | 14 | (b) | 20 | (b) | 26 | (b) | 32 | (b) | 38 | (d) | 44 | (c) | 50 | (c) | 56 | (b) |
| 3 | (b) | 9  | (d) | 15 | (b) | 21 | (c) | 27 | (d) | 33 | (b) | 39 | (c) | 45 | (a) | 51 | (c) | 57 | (d) |
| 4 | (d) | 10 | (c) | 16 | (d) | 22 | (d) | 28 | (d) | 34 | (c) | 40 | (c) | 46 | (c) | 52 | (b) | 58 | (a) |
| 5 | (b) | 11 | (b) | 17 | (a) | 23 | (a) | 29 | (c) | 35 | (b) | 41 | (a) | 47 | (a) | 53 | (b) | 59 | (b) |
| 6 | (b) | 12 | (c) | 18 | (c) | 24 | (a) | 30 | (b) | 36 | (c) | 42 | (c) | 48 | (b) | 54 | (c) | 60 | (c) |



4.

# **Hints & Solutions**

9.



- 1. (d)  $B(OH)_3$  is acid because it can take  $OH^-$  ions.  $H_3BO_3$  or  $B(OH)_3 + OH^- \rightarrow B(OH)_4^-$
- **2.** (b) The protective oxide layer prevents Al from further corrosion.
- 3. (b)  $SiO_2 + 2NaOH \rightarrow Na_2SiO_3 H_2O$ Sodium silicate





$$= \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad 1 \quad 2.5$$
  
∴ Formula Si<sub>2</sub>O<sub>5</sub><sup>2−</sup>.

**5. (b)** B OH 
$$_3$$
 2H<sub>2</sub>O  $\rightleftharpoons$  [B OH  $_4$ ] H<sub>3</sub>O

6. (b)

$$\begin{array}{c} \text{Al} \\ \text{Metal} \\ \text{Metal} \\ \text{Metal} \\ \text{NaOH(aq.)} \\ \text{H}_2\text{O} \\ \text{(Y)} \\ \text{(P)} \\ \text{Na[Al(OH)_4]} + H_2(g) \uparrow \\ \text{(Q)} \end{array}$$

- (d) Ge(II) tends to acquire Ge (IV) state by loss of electrons. Hence it is reducing in nature. Pb (IV) tends to acquire Pb (II) O.S. by gain of electrons. Hence it is oxidising in nature. This is due to inert pair effect.
- 8. (d)  $CCl_4$  is tetrahedral in nature.

- (d) The thermal stability of tetrahalides decreases in order  $CX_4 > SiX_4 > GeX_4 > SnX_4$  and in terms of same metal with different halides is in order of MF<sub>4</sub> > MCl<sub>4</sub> > MBr<sub>4</sub> > MI<sub>4</sub>.
- 10. (c) Charcoal is a pure form of carbon, its reaction with hot conc.  $H_2SO_4$  is as follows:  $C + 2H_2SO_4 \longrightarrow 2H_2O + 2SO_2 + CO_2$
- 11. (b) CO react with haemoglobin, forms carboxy haemoglobin and stopes the supply of  $O_2$
- 12. (c)  $CO_2$  being more dense covers the igniting material more effectively than  $N_2$ .
- **13.** (b)  $Ge^4$  is more stable than  $Ge^{2+}$ . Hence  $GeCl_4$  is more stable than  $GeCl_2$
- **14.** (b) Graphite and boron nitride have similar structure.
- 15. (b) Aluminium oxide is amphoteric oxide because it shows the properties of the both acidic and basic oxides. It reacts with both acids and bases to form salt and water.

$$\begin{array}{c} \operatorname{Al}_2\operatorname{O}_3 \cdot x\operatorname{H}_2\operatorname{O} + 2\operatorname{NaOH} \longrightarrow \\ & \operatorname{NaAlO}_2 + \operatorname{H}_2\operatorname{O} \\ \operatorname{Al}_2\operatorname{O}_3 \cdot x\operatorname{H}_2\operatorname{O} + \operatorname{HCl} \longrightarrow \operatorname{AlCl}_3 + \operatorname{H}_2\operatorname{O} \end{array}$$

16. (d) 
$$2CaF_2 SiO_2 H_2SO_4 \longrightarrow$$
  
SiF<sub>4</sub> H<sub>2</sub>O CaSO<sub>4</sub>  $\xrightarrow{\text{hydrolysis}}$   
CaSiF<sub>4</sub>

17. (a)  $Al_2(SO_4)_3 + 6NH_4OH \longrightarrow$ 

$$2Al(OH)_3 \quad 3(NH_4)_2SO_4$$
$$Al(OH)_3 + NaOH \longrightarrow Na^+[Al(OH)_4]^-$$
$$Soluble complex$$

It is insoluble in NH<sub>4</sub>OH.

- **18.** (c) *d*-orbitals are of higher energy than the *p* -orbitals, they contribute less to the overall stability of molecules than  $p\pi$ - $p\pi$  bonding of the second row elements.
- **19.** (c) The filtrate is yellow due to  $CrO_4^{2-}$  ion and residue is brown due to Fe(OH)<sub>3</sub>.

**20.** (b) Alum form acidic solution due to hydrolysis of  $Al^3$ .

21. (c) AlCl<sub>3</sub>.6H<sub>2</sub>O 
$$\xrightarrow{\text{dissociation}}$$
  
 $\begin{bmatrix} AlCl_2 H_2O_4 \end{bmatrix}^+ \begin{bmatrix} AlCl_4 H_2O_2 \end{bmatrix}$   
22. (d) Borax  $\xrightarrow{\text{HCl}}$  H<sub>3</sub>BO<sub>3</sub>  
B<sub>2</sub>O<sub>3</sub>  $\xrightarrow{\text{Al}}$  B(crystalline)

$$B_2O_3 \xrightarrow{Mg} B(Amorphous)$$

- 23. (a)  $R_3SiCl$  on hydrolysis forms only a dimer.  $R_3SiOH + HOSiR_3 \rightarrow R_3Si - O - SiR_3$ .
- (a) H<sub>3</sub>BO<sub>3</sub> acts as weak monobasic Lewis acid. B(OH)<sub>3</sub> + NaOH → Na[B(OH)<sub>4</sub>] On addition of cis-1, 2-diol in H<sub>3</sub>BO<sub>3</sub> solution, acidic strength of H<sub>3</sub>BO<sub>3</sub> increases due to chelation effect.

25. (a) 
$$2Al+6HCl \xrightarrow{\Delta, air} 2AlCl_3 3H_2$$
  
 $2Al+3Cl_2 \longrightarrow 2AlCl_3$   
 $Al_2O_3 3C 3Cl_2 \xrightarrow{1000 C} 2AlCl_3 3CC$   
vapours 3CC

- AlCl<sub>3</sub>.6H<sub>2</sub>O  $\xrightarrow{\Delta}$  Al(OH)<sub>3</sub> 3HCl 3H<sub>2</sub>O Thus AlCl<sub>3</sub> cannot be obtained by this method.
- **26.** (b)  $CaF_2$  when added to fused cryolite, lowers the m.p. and increases the conductivity.

27. (d) Structures of CO, CO<sub>2</sub> and 
$$CO_3^{2-}$$
 are :



Bond length Hence, the decreasing (C—O) bond length is :  $CO < CO_2 < CO_3^{2-}$  **28.** (d) In SiO<sub>2</sub> (quartz), each of O-atom is shared between two SiO<sub>4</sub><sup>4-</sup> tetrahedra.



**29.** (c) The feldspars are most abundant aluminosilicate minerals in the Earth surface. The silicon atoms and aluminium atoms occupy the centres of interlinked tetrahedra

of  $SiO_4^{4-}$  and  $AIO_4^{5-}$ . These tetrahedra connect at each corner to other tetrahedra forming an intricate, three dimesional, negatively charged framework. The sodium cations sit within the voids in this structure.

(b) The hydrolysis of Trialkylchlorosilane R<sub>3</sub>SiCl yields dimer :

$$\begin{array}{ccc} R & R \\ | & | \\ R - Si - O - Si - R \\ | & | \\ R & R \end{array}$$

**31. (b)** 
$$Al_2Cl_6$$
  $12H_2O \Longrightarrow$ 

30.

$$2[Al(H_2O)_6]^{3+}$$
 6Cl<sup>-</sup>

- **32.** (b) Al NaOH  $H_2O \rightarrow NaAlO_2 + H_2 \uparrow$ .
- **33.** (b) Carbon dioxide is not a poisonous gas.
- 34. (c)  $CO_2$  forms carbonic acid  $H_2CO_3$ , when dissolved in water, CO is neutral, whereas other two  $GeO_2$  and  $SnO_2$  are solids.
- **35.** (b) F and Cl are more oxidising in nature and can achieve Pb in (IV) O.S. but  $Br_2$  and  $I_2$  can not achieve Pb in (IV) O.S. secondly  $Pb^4$  is strong in oxidising nature and in its presence,  $Br^-$  and  $I^-$  can not exist.
- **36.** (c)  $\operatorname{SiO}_2$  being oxide of non metal is acidic in nature and silicon is bonded to O atoms tetrahedrally. It has giant structure.
- **37.** (d) Borax on heating gives  $B_2O_3$  and  $NaBO_2$  which is glassy mass and used for boraxbead test.
- 38. (d) It is pπ-pπ back bonding involving B and F. The smaller atoms show more back bonding.

- **39.** (c) Due to + I effect of methyl groups the Lewis character of  $B(CH_3)_3$  decreases and coordination becomes weaker.
- **40.** (c) Pb with dil. HCl forms protective coating of PbCl<sub>2</sub>.
- **41.** (a) The linking of identical atoms with each other to form long chains is called catenation. However, this property decreases from carbon to lead. Decrease of this property is associated with M-M bond energy which decreases from carbon to lead.
- **42.** (c) Due to structural changes, melting point, increases from Ga to Tl and Ga has the lowest melting point.
- **43.** (d)  $AII_3$ , on reaction with  $CCl_4$ , gives the  $AICl_3$  $4AII_3 + 3CCl_4 \longrightarrow 4AICl_3 \quad 3CI_4$
- **44.** (c) Due to the low density of aluminium, it is useful for food packaging.
- **45.** (a) Metal atom in the lower oxidation state forms the ionic bond and in the higher oxidation state the covalent bond because higher oxidation state means small size and great polarizing power and hence greater the covalent character. Hence  $MCl_2$  is more ionic than  $MCl_4$ .
- **46.** (c) The cross linked polymers will be formed by RSiCl<sub>3</sub>

(Cross linked polymer)

- 47. (a) Water gas is CO  $H_2$
- **48.** (b) 2Pb  $2H_2O O_2 \rightarrow 2Pb(OH)_2$
- **49.** (d) Borazone : A crystalline form of boron nitride which has diamond like structure. (Non-planar) Borazole : Inorganic benzene :  $B_3N_3H_6$  (planar)



- **50.** (c) Because  $TI^{+5}$  does not exist
- 51. (c)  $2Al + 3Cl_2 \xrightarrow{\Delta} 2AlCl_3$  (anhydrous)
- 52. (b) In Boric acid each B atom is  $sp^2$  hybridized and contains BO<sub>3</sub><sup>3-</sup> units which are held together by hydrogen bonds.
- **53.** (b)  $Al_2O_3$  can be converted to anhydrous  $AlCl_3$  by heating a mixture of  $Al_2O_3$  and carbon in dry  $Cl_2$

54. (c)  $B_2H_6$  2KOH  $2H_2O \rightarrow 2KBO_2$   $6H_2$ Potassium metaborate

2Al 2KOH 
$$2H_2O \rightarrow 2KAlO_2$$
  $3H_2$   
Potassium  
meta aluminate

- 55. (c) Two oxides present in bauxite as an impurity are  $SiO_2$  and  $Fe_2O_3$ . Si belongs to the third period and Fe to the fourth period.  $SiO_2$  has a three dimensional structure.
- 56. (b) SnCl<sub>4</sub> is colourless volatile liquid and SnCl<sub>2</sub> is colourless solid Sn conducts electricity and it belongs to 14 group.
- 57. (d) Hybridisation  $\frac{1}{2}(4 \ 4 \ 0-0) \ 4$ , sp<sup>3</sup> tetrahedral.

58. (a) 
$$H_2O+C \longrightarrow CO_2$$
  $H_2$   
Steam  $H_2O$  oxidises  $C \longrightarrow CO_2$ ,  
hence  $H_2O$  acts as oxidising agent.

- **59.** (b)  $SiO_2$  is acidic oxide.
- 60. (c) Shape of  $SnCl_2$  is angular due to  $sp^2$  hybridisation and having the following structure

$$\operatorname{Sn}_{\operatorname{Cl}}^{\operatorname{Cl}}$$