Unit Test-2

Hints & Solutions

Solution Paper-1

$1. \quad [A,B,C]$

 $V_{\text{strength}} = 56$;

$$\therefore M = \frac{28}{11.2} = 2.5$$

∴ 1 contain 2.5 moles of H₂O₂

or
$$2.5 \times 34 = 85 \text{ g H}_2\text{O}_2$$

wt. of 1 litre solutin = 265 g (: d = 265 g/L)

$$\therefore$$
 w_{H₂O} = 180g or moles of H₂O = 10

$$x_{H_2O_2} = \frac{2.5}{2.5 + 10} = 0.2$$

$$\frac{w}{v} = \frac{2.5 \times 34}{1000} \times 100 = 8.5$$

$$m = \frac{2.4}{180} \times 1000 = 13.88$$

$2. \quad [B,C,D]$

$$3\text{Sn}^{2+} + 14\text{H}^+ + \text{CrO}_7^{2-} \rightarrow 3\text{Sn}^{3+} + 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$$

$3. \quad [B,C]$

$$n_{O_2} = \frac{16}{32} = 0.5 \,\text{N}_A$$
 no. of molecules

of
$$O_2 = 0.5 N_A$$

$$n_{O_3} = \frac{16}{48} = 0.33$$

$$atoms = 0.5 \times 2N_A$$

no. of molecules of

$$O_3 = 0.33 N_A = 0.99$$

$4. \quad [A,B,C]$

$$CS_2 + 3Cl_2 \rightarrow CCl_4 + S_2Cl_2$$
 $\frac{1}{74}$
 $\frac{2}{71 \times 3}$
 $\frac{1}{74}$
before = 0.0135
reaction
 $0.0135 - .0093$
 0.0093×154
 0.0042×74
 0.0042×74

5. [A, D]

Mass of 1 mole $CO_2 = 44$ gm

$$1 \text{ gm} = \frac{1}{1.67 \times 10^{-24}} \text{ u}$$

$$= \frac{100}{167} \times 10^{24 \times 44} \text{ u}$$

$$= \frac{4400}{167} \times 10^{24} \text{ u}$$

$$= 2.65 \times 10^{25} \text{ u}$$

6. [A,B,C,D]

(B)
$$\stackrel{2}{P_2}H_4 \longrightarrow \stackrel{-3}{PH_3} + \stackrel{-1/2}{P_4}H_2$$

(C)
$$\stackrel{0}{P_4}$$
 + NaOH \longrightarrow NaH₂PO₂ + $\stackrel{-3}{PH_3}$

(D)
$$CaOCl_2 \longrightarrow CaCl_2 + Ca(C\ell O_3)_2$$

7. [A,B,C]

 $1.2 \text{ kg FeS}_2 \Rightarrow 10 \text{ moles}$

FeS₂
$$\xrightarrow{80\%}$$
 SO₂ $\xrightarrow{60\%}$ $\xrightarrow{SO_3}$ $\xrightarrow{60\%}$ $\xrightarrow{H_2SO_4}$ $\xrightarrow{16}$ $\xrightarrow{SO_3}$ $\xrightarrow{60\%}$ $\xrightarrow{H_2SO_4}$ $\xrightarrow{2.88}$ $\xrightarrow{4.8}$ $\xrightarrow{30\%}$ $\xrightarrow{H_2SO_4}$ $\xrightarrow{12.88}$ $\xrightarrow{12.88}$

∴ H₂SO₄ can be between 1.44 mole to 5.76 mole

8. [4]

Initial moles of $NH_3 = 0.38$ moles

Moles of NH₃ remaining after completation

$$=(0.38-0.025x)$$

$$\frac{\text{Moles of NH}_3 \text{ in water}}{\text{Moles of NH}_3 \text{ in CHCl}_3} = 24$$

$$= \frac{\text{Moles of NH}_3 \text{ in water}}{24} = 0.0112$$

$$\therefore 0.38 - 0.025 \text{ x} = 0.0112 \times 24 + 0.0112$$
$$= 0.0112 \times 25$$

$$\therefore 0.025 \text{ x} = 0.38 - 0.0112 \times 25$$
$$= 0.38 - 0.28 = 0.1$$

or
$$x = \frac{0.1}{0.025} = 4$$

9. [5]

No. of m equ. Of Na₂CO₃ in 80 ml of resulting solution = $\frac{42.4}{53} \times 30 - 0.4 \times 50$

No. of m equ of Na₂CO₃ in 10 ml of above

solution
$$= 0.5$$

No. of m equ in 50 ml of diluted solution = 0.05

So $0.05 = Normality of 40 times diluted A \times V$

$$\Rightarrow 0.05 = \frac{0.4}{40} \times V \Rightarrow V = 5 \text{ mL}$$

10. [2]

$$2 \times \frac{0.7}{106 + 18x} = 5 \times 19.8 \times \frac{1}{10} \times \frac{1}{1000}$$

On solving, we get

$$x = 2$$

11. [3]

$$N_2H_4 \rightarrow Y + 10e^-$$

2X + 4 = 0

$$X = -2$$

∴ two nitrogen atoms losses = 10 e⁻¹ ∴ 1 nitrogen atoms losses = $5e^{-1}$ $N^{-2} \rightarrow N^{+3}$

$$27 = \frac{12}{x} \times 18$$

$$x = \frac{12 \times 18}{27} = 8$$

13. [B]

Theory based

14. [A]

Theory based

15. [B]

Theory based

16. [C]

Theory based

17. [B]

Theory based

18. [C]

Theory based

Solution Paper-2

1. [C]

Structure of H₂S₂O₈ is

It contains peroxide linkage for which oxidation number of these two O-atoms will be -1 each

$$\therefore 2 \times (+1) + 2x + 6 \times (-2) + 2 \times (-1) = 0$$

or
$$2 + 2x - 12 - 2 = 0$$
 or $x = +6$

2. [D]

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn + 4 H_2O] \times 2$$

$$C_2O_4^{2-} \to 2CO_2 + 2e^-] \times 5$$

2
$$MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow$$

$$2 Mn + 10 CO_2 + 8 H_2O$$

Thus, the coefficient of oxalate ion $C_2O_4^{2-}$ is 5.

3. [D]

Only in reaction (d), the O.N. of the elements undergo a change

$$Cu_2^{+1-2}S + 2FeO \rightarrow 2Cu + 2Fe + SO_2^{-4}$$

i.e. O.N. of Cu decreases from +1 to 0 and that of Fe decreases from +2 to 0 while that of S increases from -2 to +4. Therefore, it is a redox reaction.

4. [C]

Blackness appears in lead paintings due to its slow and gradual conversion to PbS. H₂O₂ oxidises black lead sulphate to white lead sulphate.

5. [C]

Sodium hexameta phosphate

6. [C]

Ca(OH)₂ removes soluble bicarbonates in the form of insoluble CaCO₃.

7. [C]

Factual.

8. [A,B,D]

$$M_1V_1 + M_2V_2 = MV$$

 $1 \times 100 + \frac{10 \times 98 \times 0.1}{98} \times 100 = M \times 200$

$$M = 1$$

$$M = \frac{1 \times 98 \times 200}{1000} = W$$

$$W = 19.6$$

9. [A,C]

$$\begin{array}{c} \text{CaCl}_2 \longrightarrow \text{CaCO}_3 \rightarrow \begin{array}{c} \text{CaO} \\ \text{56gm} \end{array}$$

: 56 gm CaO req. = 111 gm CaCl₂

:. 1.12 gm of CaO req. =
$$\frac{111}{56}$$
 × 1.12 = 2.22 gm

%
$$CaCl_2 = \frac{2.22}{4.44} \times 100 = 2.22 \text{ gm}$$

= 50 %

10. [B, C]

CH₃COOH + C₂H₅OH
$$\rightarrow$$
 CH₃COOC₂H₅ + H₂O
72 gm $2.77 \times 10^{25} \times 1.67 \times 10^{-24}$

$$\frac{72}{60} = 2.77 \times 1.67 \times 10$$

$$1.2 = \frac{2.77 \times 16.7}{46} = 1.005$$

alcohol is limiting reagent acetic acid is excess reagent

11. [A, C]

$$CaCO_3 \rightarrow CaO + CO_2$$

100 gm

$$\therefore 100 \text{ gm} \rightarrow = 56 \text{ gm}$$

$$\therefore 90 \text{ gm} \rightarrow = \frac{56}{100} \times 90$$

$$= 50.40 \text{ gm}$$

or 0.9 gm molecule

12. [A,C]

$$Xe 67.2 \frac{67.2}{131} = 0.512$$

O 32.8
$$\frac{32.8}{16} = 2.05$$

XeO₄ or Xe₂O₈

13. [C, D]

Since the molecular mass of N_2 & CO is 28 and N_2 O & CO₂ is 44 so both have no. of molecules in

one gram =
$$\frac{44}{N_A}$$
 & $\frac{28}{N_A}$

14. [A,B,C]

$$M = \frac{10 \times wt\%xd}{mol.wt.}$$

$$M = \frac{d}{\left(\frac{m^1}{1000} + \frac{1}{m}\right)}$$

Only ppm can not be calculate

15. [A]

Meq. Of KIO₃ = Meq. of KI
$$2I^{5+} + 10e \rightarrow I_2^0$$

$$M \times 5 \times 50 = 10 \times 0.1 \times 12I^- \rightarrow I_2^0 + 2e$$

$$M = 4 \times 10^{-3}$$

16. [A]

Meq. of ascorbic acid in 50 mL solution mixture with HCl

= Meq. of KIO₃
$$(I^{5+} + 6e \rightarrow \Gamma)$$

$$(I^{5+} + 6e \rightarrow \Gamma)$$

$$= 4 \times 10^{-3} \times 6 \times 1 = 0.024$$

Meq. of ascorbic acid in 500 mL

= 0.24 meq. in 250 ml

mixture of original solution

$$N \times 1000 = 0.96$$

or
$$N = 9.6 \times 10^{-4}$$

$$\therefore M = \frac{9.6 \times 10^{-4}}{2} = 4.8 \times 10^{-4}$$

Strength = $4.8 \times 10^{-4} \times 176 = 0.0845$ g/litre

17. [B]

Meq. of CuSO₄ in 100 mL = $100 \times 0.02 = 2$

$$\therefore w_{\text{CuSO}_4} = \frac{2 \times 249.6}{1000} = 0.499 \text{ g}$$

$$\therefore \mathbf{w}_{Cu} = \frac{0.499 \times 63.6}{249.6} = 0.127 \,\mathrm{g}$$

$$\therefore$$
 % of Cu = $\frac{0.127}{2.5} \times 100 = 5.08$

18. [B]

Eq.
$$I_2 = Eq.$$
 of $CuSO_4 = \frac{10 \times 0.02}{1000} = 2 \times 10^{-4}$

$$\therefore \frac{w}{254/2} = 2 \times 10^{-4}$$

$$w_{1_2} = 0.0254 \text{ g}$$