

MCQs with One Correct Answer

Which of the following statements is correct about the reaction given below?

$$4Fe(s) + 3O_2(g) \longrightarrow 2Fe_2O_3(g)$$

- (a) Total mass of iron and oxygen in reactants = total mass of iron and oxygen in product therefore, it follows law of conservation of mass.
- (b) Total mass of reactants = total mass of product; therefore, law of multiple proportions is followed.
- (c) Amount of Fe₂O₃ can be increased by reducing the amount of any one of the reactants (iron or oxygen).
- (d) Amount of Fe₂O₃ produced will decrease if the amount of any one of the reactants (iron or oxygen) is taken in excess.
- 2. Which of the following statements indicates that law of multiple proportion is being followed.
 - Sample of carbon dioxide taken from any source will always have carbon and oxygen in the ratio 1:2.
 - (b) Carbon forms two oxides namely CO, and CO, where masses of oxygen which combine with fixed mass of carbon are in the simple ratio 2:1.

- (c) When magnesium burns in oxygen, the amount of magnesium taken for the reaction is equal to the amount of magnesium in magnesium oxide formed.
- (d) At constant temperature and pressure, 200 mL of hydrogen will combine with 100 mL oxygen to produce 200 mL of water vapour.
- 3. The number of water molecules in 250 mL of water is closest to [Given, density of water is 1.0] g mL⁻¹; Avogadro's number = 6.023×10^{23}]
 - (a) 83.6×10^{23}
- (b) 13.9×10^{23}
- (c) 1.5×10^{23}
- (d) 33.6×10^{23}
- A metal oxide has the formula Z_2O_3 . It can be reduced by hydrogen to give free metal and water. 0.1596 g of the metal oxide requires 6 mg of hydrogen for complete reduction. The atomic weight of the metal is
 - (a) 27.9
- (b) 159.6 (c) 79.8
- (d) 55.8
- 4 g of a hydrated crystal of formula A.xH₂O has 0.8 g of water. If the molar mass of the anhydrous crystal (A) is 144 g mol⁻¹, The value of x is
- (b) 1
- (c) 2
- A solution of 20.2 g of 1,2-dibromopropane in 6. MeOH upon heating with excess Zn produces 3.58 g of an unsaturated compound X. The yield (%) of X is closest to [Atomic weight of Br is 80]
 - (a) 18
- (b) 85
- (c) 89
- (d) 30

7. 8.	$5.0~{\rm g}$ of a certain element X forms $10.0~{\rm g}$ of its oxide having the formula ${\rm X_4O_6}$. The atomic mass of X is (a) $12.0~{\rm amu}$ (b) $24.0~{\rm amu}$ (c) $30.0~{\rm amu}$ (d) $32.0~{\rm amu}$ The maximum number of molecules are present in (a) $15~{\rm L}$ of ${\rm H_2}$ gas at STP (b) $5~{\rm L}$ of ${\rm N_2}$ gas at STP	16.	3.0 g of oxalic acid [(CO ₂ H) ₂ .2H ₂ O] is dissolved in a solvent to prepare a 250 mL solution. The density of the solution is 1.9 g/mL. The molality and normality of the solution, respectively, are closest to (a) 0.10 and 0.38 (b) 0.10 and 0.19 (c) 0.05 and 0.19 (d) 0.05 and 0.09
9.	 (c) 0.5 g of H₂ gas (d) 10 g of O₂ gas Number of moles of MnO₄ required to oxidize one mole of ferrous oxalate completely in acidic medium will be (a) 0.6 moles (b) 0.4 moles 	17.	How many moles of P ₄ O ₆ and P ₄ O ₁₀ will be produced by the combustion of 12.4 g of phosphorous (atomic mass 31) in 12.8 g of oxygen, leaving no P ₄ or O ₂ ? (a) 0.1 and 0.3 mol (b) 0.15 mol and 0.25 mol
10. 11.	(c) 7.5 moles (d) 0.2 moles A metallic chloride contain 47.22% metal. Calculate the equivalent weight of metal. (a) 39.68 (b) 31.76 (c) 36.35 (d) 33.46 The number of moles of water present in a	18.	(c) 0.05 mol each (d) 0.1 mol each 5 g sample contain only Na ₂ CO ₃ and Na ₂ SO ₄ . This sample is dissolved and the volume made up to 250 mL. 25 mL of this solution neutralizes 20 mL of 0.1 M H ₂ SO ₄ . Calculate the % of Na ₂ SO ₄
	spherical water droplet of radius 1.0 cm is [Given: density of water in the droplet = 1.0 g cm ⁻³] (a) $\frac{\pi}{18}$ (b) $\frac{2\pi}{27}$ (c) 24π (d) $\frac{2\pi}{9}$	19.	in the sample. (a) 42.4 (b) 57.6 (c) 36.2 (d) 0.576 1 mole of equimolar mixture of ferric oxalate and ferrous oxalate requires x mole of KMnO ₄ in acidic medium for complete oxidation. x is:
12.	If potassium chlorate is 80% pure, then 48 g of oxygen would be produced from (atomic mass of K=39) (a) 153.12 g of KClO ₃ (b) 122.5 g of KClO ₃ (c) 245 g of KClO ₃ (d) 98 g of KClO ₃	20.	(a) 0.5 mole (b) 0.9 mole (c) 1.2 mole (d) 4.5 mole Two solutions of a substance (non electrolyte) are mixed in the following manner. 480 mL of 1.5 M first solution + 520 mL of 1.2 M second
13.	10 g CaCO ₃ were dissolved in 250 mL of 100 M HCl or the solution was boiled. What volume of 2M KOH would be required to equivalence point after boiling? Assume no change in volume during boiling.		solution. What is the molarity of the final mixture? (a) 2.70 M (b) 1.344 M (c) 1.50 M (d) 1.20 M Numeric Value Answer
14.	(a) 50 mL (b) 25 mL (c) 75 mL (d) 60 mL The density of 3M solution of sodium chloride is 1.252 g mL^{-1} . The molality of the solution will be: (molar mass, NaCl = 58.5 g mol^{-1})	21.	A mixture of HCOOH and H ₂ C ₂ O ₄ is heated with concentrated H ₂ SO ₄ . The gas produced is collected and on treating with KOH solution, the volume of gas decreases by one-sixth. Calculate the molar ratio of the two acids
15.	(a) 260 m (b) 2.18 m (c) 2.79 m (d) 3.00 m 2 g of a mixture of CO and CO ₂ on reaction with excess I_2O_5 produced 2.54 g of I_2 . What would be the mass % of CO ₂ in the original mixture? (a) 60 (b) 30 (c) 70 (d) 35	22.	(HCOOH: $H_2C_2O_4$) in the original mixture. One gram of a metallic chloride was found to contain 0.835 g of chlorine. Its vapour density is 85.5. If its molecular formula is M_xCl_y , then what is value of $(x+y)$?

- 23. 0.7875 g of crystalline barium hydroxide is dissolved in water. For the neutralization of this solution 20 mL of N/4 HNO₃ is required. How many moles of water of crystallization are present in one mole of this base? (Given: Atomic mass Ba = 137, O = 16, N = 14, H = 1)
- 24. A mixture contains 1.0 mole each of NaOH, Na₂CO₃ and NaHCO₃. When half of mixture is titrated with HCl, it required x mole of HCl in presence of phenolphthalein. In another experiment, half of mixture required y mole of same HCl in presence of methyl orange. Find the value of (x+y).
- 25. A 0.276 g impure sample of copper ore is dissolved and Cu²⁺ is titrated with KI solution. I₂ liberated required 40 mL of 0.1M Na₂S₂O₃ solution for titration. What is the % of impurities in the ore?

- 26. Density of a sulphuric acid solution is 1.225g/ mL. and it is 40% H₂SO₄ by weight. Determine molarity of this solution.
- 27. A 16.24 mL sample of vinegar of density 1.06 g/mL required 48.24 mL of 0.36 N solution of a standard alkali. Determine percentage weight of acetic acid in vinegar.
- **28.** How much volume of sulphur dioxide at STP will be obtained by completely burning 10 g of pure sulphur?
- 29. How much volume of 4.0 M HNO₃ is required to prepare 60 mL of 0.2 M HNO₃ from a stock solution of 4.0 M HNO₃?
- 30. The minimum number of moles of O₂ required for complete combustion of 1 mole of propane and 2 moles of butane is _____.

ANSWER KEY																			
1	(a)	4	(d)	7	(b)	10	(b)	13	(b)	16	(c)	19	(b)	22	(5)	25	(8)	28	(7)
2	(b)	5	(c)	8	(a)	11	(b)	14	(c)	17	(c)	20	(b)	23	(8)	26	(5)	29	(3)
3	(a)	6	(b)	9	(b)	12	(a)	15	(b)	18	(b)	21	(4)	24	(3)	27	(6)	30	(18)

Hints & Solutions

Some Basic Concepts of Chemistry

(a) Law of mass conservation states that matter can neither be created nor destroyed, or in a chemical reaction, the total mass of the reactants is equal to the total mass of the products.

$$4 \text{ Fe (s)} + 3 \text{ O}_2 \text{ (g)} \rightarrow 2 \text{FeO}_3 \text{ (g)}$$

 56×4 32×3 2×160
 $= 224\text{g}$ $= 96 \text{ g}$ $= 320 \text{ g}$

- (b) Statement (b) is correct according to the 5. law of multiple proportions.
- (a) Given: Density of water = 1.0 g mL^{-1} Volume of water = 250 mL

$$\therefore \text{ Mass of water} = \text{Density} \times \text{Volume}$$
$$= 1.0 \times 250 = 250 \text{ g}$$

18 g of water contains

$$=6.023 \times 10^{23}$$
 molecules

:. 250 g of water contains

$$= \frac{6.023 \times 10^{23}}{18} \times 250 = 83.65 \times 10^{23} \text{ molecules}$$

(d) The reaction may given as

$$Z_2O_3 + 3H_2 \longrightarrow 2Z + 3H_2O$$

 $0.1596 \text{ g of } Z_2O_3 \text{ react with } H_2 = 6 \text{ mg} = 0.006 \text{ g}$

∴ 1 g of H₂ react with

$$=\frac{0.1596}{0.006}$$
 = 26.6g of Z₂O₃

 \therefore Eq. wt. of $Z_2O_3 = 26.6$ (from the definition of eq. wt.)

Eq. wt. of Z + Eq. wt. of O = E + 8 = 26.6 \Rightarrow Eq. wt. of Z = 26.6 - 8 = 18.6 Valency of metal in $Z_2O_3 = 3$

Eq. wt.of metal =
$$\frac{\text{Atomic wt.}}{\text{valency}}$$

- \therefore At. wt. of Z = 18.6 \times 3 = 55.8
- (c) :: Given of weight of hydrated crystal = 4 g Weight of water = 0.8
 - \therefore Weight of anhydrous salt = 4 0.8 = 3.2
 - : 3.2 g anhydrous salt = 0.8 g of water
 - :. 144 g anhydrous salt

$$=\frac{0.8}{3.2} \times 144 = 36$$
 g of water

$$x = \frac{36}{18} = 2$$

1,2-Dibromopropane

Moles of 1, 2-dibromo propane

$$=\frac{20.2}{202}$$
 = 0.01 mole

Moles of prop-1-ene =
$$\frac{358}{42}$$
 = 0.085 mole

% yield =
$$\frac{0.085}{0.1} \times 100 = 85\%$$

7. **(b)** Using the relationship

 $\frac{\text{Mol.mass of oxide}}{\text{Mass of metal in molar mass}} = \frac{\text{mass of oxide}}{\text{mass of metal}}$

$$\frac{4x+96}{4x} = \frac{10}{5} \Rightarrow x = 24$$

8. (a) No. of molecules in different cases

(a) : 22.4 litre at STP contains = 6.023×10^{23} molecules of H₂

$$\therefore 15 \text{ litre at STP contains} = \frac{15}{22.4} \times 6.023 \times 10^{23}$$

$$=4.03 \times 10^{23}$$
 molecules of H₂

(b) : 22.4 litre at STP contains
=
$$6.023 \times 10^{23}$$
 molecules of N₂

: 5 litre at STP contains =
$$\frac{5}{22.4} \times 6.023 \times 10^{23}$$

=
$$1.344 \times 10^{23}$$
 molecules of N₂

(c) :
$$2 \text{ g of H}_2 = 6.023 \times 10^{23} \text{ molecules of H}_2$$

$$\therefore 0.5 \text{ g of H}_2 = \frac{0.5}{2} \times 6.023 \times 10^{23}$$

=
$$1.505 \times 10^{23}$$
 molecules of H₂

$$= \frac{10}{32} \times 6.023 \times 10^{23} \text{ molecules of O}_2$$

=
$$1.88 \times 10^{23}$$
 molecules of O_2

Thus (a) will have maximum number of molecules

9. **(b)**
$$5 | COO^- + 2 MnO_4^- + 16 H^+ \longrightarrow$$

From above equation 2 moles MnO₄ required to oxide 5 moles of oxalate.

Thus number of moles of MnO_4 required to oxidise one mole of oxalate = 2/5 = 0.4

:. Equivalent weight of metal

$$= \left(\frac{\text{Mass of Metal}}{\text{Mass of chloride}}\right) \times 35.5$$

$$=\frac{47.22}{52.78}\times35.5=31.76$$

11. (b) Volume of a spherical water droplet

$$=\frac{4}{3}\pi r^3 = \frac{4}{3}\pi (1)^3$$

$$V = \frac{4}{3}\pi \text{ cm}^3$$

Mass of spherical water droplet

$$= P \times V = 1 \times \frac{4}{3} \pi = \frac{4}{3} \pi g$$

 $18 \, \text{g of water} = 1 \, \text{mol}$

no. of moles of water in a spherical water droplet

$$=\frac{4\pi}{3\times18}=\frac{2\pi}{27}$$

12. (a)
$$2KClO_3 \xrightarrow{\text{heat}} 2KCl + 3O_2$$

 $2 \times 122.5 \text{ g}$
 245
 $2KCl + 3O_2$
 $3 \times 32 \text{ g}$
 96

48 g of oxygen will be produced from 122.5 g of KClO₃

:. Amount of 80% KClO3 needed

$$=\frac{100}{80}\times122.5=153.12 \text{ g}$$

13. (b) Meq. of CaCO₃ =
$$\frac{10}{50}$$
 × 1000 = 200

Meq. of
$$HCl = 250 \times 1 = 250$$

Meq. of HCl left in the solution = 250 - 200 = 50

- \therefore Meq. of KOH required $V \times 2 = 50$
- ∴ V=25 mL
- 14. (c) The relation between molarity (M) and molality(m) is

$$d = M \left(\frac{1}{m} + \frac{M_2}{1000} \right)$$
, $M_2 = Mol.$ mass of solute

On putting value

$$1.252 = 3\left(\frac{1}{m} + \frac{58.5}{1000}\right)$$

on solving
$$m = 2.79$$

15. (b) $5CO + I_2O_5 \rightarrow 5CO_2 + I_2$

1 mol of $I_2 \equiv 1$ mol of $I_2O_5 \equiv 5$ mol of CO

Hence, mol of
$$CO = 5 \times \frac{2.54}{254} = 0.05$$

Mass of
$$CO = 0.05 \times 28 = 1.4 g$$

Mass of
$$CO_2 = 2 - 1.4 = 0.6 g$$

Mass % of
$$CO_2 = \frac{0.6}{2} \times 100 = 30\%$$

16. (c) Given mass of oxalic acid = 3 g Molar mass of oxalic acid, (COOH)₂.2H₂O = 126

We know that, density =
$$\frac{\text{Mass}}{\text{Volume}}$$

$$\rho = \frac{M}{V} \Rightarrow M = \rho \times V$$

∴ Mass of solvent = Density × Volume

Molality (m) =
$$\frac{n_{\text{solute}}}{m_{\text{solvent}}} = \frac{m / M}{\rho V}$$

$$= \frac{3/126}{1.9 \times 250 \times 10^{-3}}$$
$$10^3$$

$$=\frac{10}{42\times19\times25}$$

$$m = 0.05$$

 $n_{\rm f}$ of oxalic acid = 2

Normality (N) = Molality \times n_f

$$N = \frac{n}{V(in L)} \times n_f$$

$$= \frac{3/126}{250\times10^{-3}}\times2$$

$$=$$
 $\frac{40}{42} \times 2 = 0.19$

17. (c) Moles of $P_4 = \frac{12.4}{4 \times 31} = 0.1$

Moles of
$$O_2 = \frac{12.8}{32} = 0.4$$

Let x moles of P₄ form P₄O₆.

Then, moles of
$$O_2$$
 required $= x \times 3 + (0.1 - x) \times 22$.
 $5 = 0.4$ (given) $\Rightarrow x = 0.05$

18. (b) Only Na_2CO_3 reacts with H_2SO_4 ; $Na_2CO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2CO_3$ m-moles of $Na_2CO_3 =$ m-moles of H_2SO_4

> = $20 \times 0.1 = 2$ m-moles of Na₂CO₃ in 250 mL solution

$$=\frac{250}{25}\times2=20$$

wt. of Na₂CO₃ = $20 \times 106 \times 10^{-3} = 2.12 \text{ g}$

% of Na₂CO₃ =
$$\frac{2.12}{5}$$
 × 100 = 42.4

$$\therefore$$
 % Na₂SO₄ = 100 - 42.4 = 57.6

19. **(b)** $\operatorname{Fe}_{2}(C_{2}O_{4})_{3} + \operatorname{MnO}_{4}^{-} + \operatorname{H}^{+} \longrightarrow 2\operatorname{Fe}^{3+}$ (n=6) (n=5)

$$+ 6CO2 + H2O$$

$$FeC_2O_4 + MnO_4^- + H^+ \longrightarrow Fe^{3+} + 2CO_2 + H_2O$$
 $(n=3)$ $(n=5)$

Total equivalents of $(Fe_2(C_2O_4)_3 + FeC_2O_4)$ = equivalents of $KMnO_4$

$$\therefore 0.5 \times 6 + 0.5 \times 3 = x \times 5$$

moles of KMnO₄ = x = 0.9

20. (b) From the molarity equation.

$$M_1V_1 + M_2V_2 = MV$$

Let M be the molarity of final mixture,

$$M = \frac{M_1V_1 + M_2V_2}{V}$$
 where $V = V_1 + V_2$

$$M = \frac{480 \times 1.5 + 520 \times 1.2}{480 + 520} = 1.344 \text{ M}$$

21. (4) $HCOOH \xrightarrow{H_2SO_4} H_2O + CO$

$$\mathrm{H_{2}C_{2}O_{4}} \xrightarrow{\mathrm{H_{2}SO_{4}}} \mathrm{H_{2}O} \ + \ \mathrm{CO} \ + \ \mathrm{CO_{2}}$$

moles

b moles b moles

Total number of moles of gases formed = a + 2b

Moles of gas (CO_2) absorbed by KOH = b

Hence, $b = \frac{1}{6}(a + 2b)$ [Yolume ∞ No. of moles)

$$a/h = 4$$

22. (5) $M_x Cl_y = MCl_y$ (: valency of Cl = 1) Molar mass of $M_x Cl_y = 85.5 \times 2 = 171$ g/mol (M)(x) + (35.5)(y) = 171 ... (i)

$$\frac{\text{Mass of chlorine}}{\text{Mass of metalic chloride}} = \frac{0.835}{1}$$

$$=\frac{35.5\,\mathrm{y}}{\mathrm{M}(x)\,+\,(35.5)(\mathrm{y})}$$

On solving y = 4 and x = 1x + y = 5

23. (8) Ba(OH)₂·xH₂O(aq)·+HNO₃(aq)
$$\longrightarrow$$
 Ba(NO₃)₂+H₂O(I)
Eq. of Ba(OH)₂·xH₂O = eq. of HNO₃

$$\frac{0.7875}{(171+18x)} \times 2 = \frac{1}{4} \times \frac{20}{1000}$$

24. (3) In HPh Eq. of NaOH + Eq. of Na₂CO₃ = Eq. of HCl (0.5) (1) + (0.5) (1) =
$$(x)$$
 (1) x = 1 In MeOH, Eq. of NaOH + Eq. of Na₂CO₃ + Eq. of NaHCO₃ = Eq. of HCl (0.5) (1) + (0.5) (2) + (0.5) (1) = (y) (1) y = 2 $x + y$ = 3

25. (8)
$$Cu^{2+} + KI \longrightarrow I_2 + Cu^+$$
 n -factor = 1 n -factor = 2

$$\begin{array}{ccc} I_2 & + & Na_2\,S_2O_3 & \longrightarrow NaI + Na_2S_4O_6 \\ n - \text{factor} = 2 & n - \text{factor} = 1 \end{array}$$

Eq. of Cu^{2+} = Eq. of I_2 produced = Eq. of I_2 reacted = Eq. of $Na_2S_2O_3$.

$$(x)(1) = \left(\frac{40}{1000}\right)(0.1)(1)$$

 $x = 4 \times 10^{-3} \,\text{mol}$

Mass of pure $Cu = 4 \times 10^{-3} \times 63.5 = 0.254 \text{ g}$

% Purity =
$$\frac{0.254}{0.276} \times 100 = 92\%$$

% Impurity = 8%

26. (5) Consider one litre of solution. Weight of solution = 1225 g;

Weight of solute = $1225 \times 0.4 = 490 \text{ g}$

Moles of solute =
$$\frac{490}{98}$$
 = 5.0

Hence, molarity (M) = 5.0

27. (6) m.eq of acid in 16.24 mL of its solution
$$=48.24 \times 0.36 = 17.366$$

$$= 17.366 \times 10 - 3 \times 60 = 1.042 \text{ g}$$

$$\Rightarrow$$
 Mass of solution = 17.21 g

$$=\frac{1.042}{17.21}\times100=6$$

28. (7) The reaction involved is: S + O₂ → SO₂ i.e., one mole of S combines with one mole of O₂ to produce one mole of SO₂.

Moles of S =
$$\frac{10}{32}$$
 = 0.3125

$$\Rightarrow$$
 Moles of SO₂ = 0.3125

$$\Rightarrow$$
 Vol of SO₂ = $0.3125 \times 22.4 = 7.0$ L

29. (3) Molarity × Volume (in mL) = milimoles of solute (mmoles)

Therefore, mmoles of HNO₃ required $= 60 \times 0.2 = 12$

$$\Rightarrow$$
 V(mL) = $\frac{\text{m mole}}{\text{molarity}} = \frac{12}{4} = 3 \text{ mL}$

30. (18) Complete combustion of hydrocarbons can be represented by the following reaction.

$$C_x H_y + \left(x + \frac{y}{4}\right) O_2 \longrightarrow x CO_2 + \frac{y}{2} H_2 O$$

For propane combustion reaction is

$$C_3H_8 + \left(3 + \frac{8}{4}\right)O_2 \longrightarrow 3CO_2 + \frac{8}{2}H_2O$$

$$\therefore C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

Similarly, for butane is

$$C_4H_{10} + \left(4 + \frac{10}{4}\right)O_2 \longrightarrow 4CO_2 + \frac{10}{2}H_2O$$

$$\therefore C_4H_{10} + \frac{13}{2}, O_2 \longrightarrow 4CO_2 + 5H_2O$$

: For 1 mol of
$$C_4H_{10}$$
 required $O_2 = \frac{13}{2}$ mol

:. For 2 mol of C₄H₁₀ required O₂

$$=\frac{13}{2} \times 2 = 13 \text{ mol}$$

 \therefore Number of moles of O₂ required = 5 + 13 = 18