Unit 1 : Arithmetic Progressions

1. If the n^{th} term of an Arithmetic Progression is $a_n = 4n + 5$ then the third term is	
a) 5 b) 9 c) 13 d) 17	
2. The value of 'x' in the Arithmetic Progression 2, x, 14 is	
a) 28 b) 16 c) 7 d) 8	
3. In an Arithmetic Progression where $a_n = 3n - 2$, the 2^{nd} term is	
a) 2 b) 4 c) 6 d) 8	
4. The fourth term of an Arithmetic Progression where $a_n = 2n - 1$ is	
a) 23 b) 9 c)5 d) 7	
5. The common difference of the Arithmetic Progression 3, 6, 9, 12 is	
a) -3 b) 3 c) 6 d)9	
6. The sum of the first 'n' Natural Numbers is	
a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+1)}{2}$ c) $\frac{n(n+1)}{3}$ d) $n(n+1)$	
7. Which among the following is an Arithmetic Progression?	
a) 1, 4, 6 b)12, 10, 14 c)35, 30, 25 d)8, 13, 19,	
8. The formula to find the n th term of an Arithmetic Progression is	
a) $a_n = a - (n-1)d$ b) $a_n = a + (n+1)d$ c) $a_n = a + (n-1)d$ d) $a_n = 2a + (n-1)d$	
9. If in an Arithmetic Progression $a_n = 3n - 1$ then the common difference is	
a) 1 b) 2 c) 3 d) 4	
10. Sum of first 10 Natural Numbers is	
a) 45 b)50 c)55 d)65	
11. The common difference of the Arithmetic Progression 3, 1, -1, -3 is	
a) 2 b) -2 c) 4 d) -4	
12. The common difference of the Arithmetic Progression $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, is	
a) 0 b) 1 c) $\frac{1}{2}$ d) $-\frac{1}{2}$	
13. The number to be entered into the in the Arithmetic Progression 2, 26 is	
a)12 b)13 c)14 d) 16	
14. If the first term is 'a' and the n th term is 'l' then the sum of n terms of an Arithmetic Progression is _	
a) $S = {a \choose n+1}$ b) $S = {n \choose n+1}$ a) $S = {1 \choose n+1}$	
a) $S_n = \frac{a}{2}(n+l)$ b) $S_n = \frac{n}{2}(a+l)$ c) $S_n = \frac{l}{2}(a+n)$ d) $S_n = \frac{1}{2}a(n+l)$	

15. If the first term	is 'a' and the common diff	erence is 'd' then the for	rmula to calculate the sum of n terms
of an Arithmeti	c Progression is		
a) $S_n = \frac{n}{2}$	(a+(n-1)d)	b) $S_n = \frac{n}{2} (a$	a+2(n-1)d)
c) $S_n = \frac{n}{2}$	2a + (n-1)d)	$d) S_n = \frac{n}{2} \left(\frac{n}{2} \right)$	(n+1)d
16. The next four to	erms of the Arithmetic Prog	gression 2, 5, 8, 11, 14	is
a) 16, 18, 20,	22 b) 15, 16, 17, 1	c) 18, 22, 24, 26	d) 17, 20, 23, 26
17. The third term	of an Arithmetic Progression	on whose fourth term is 9	and common difference is 2 is
a) 8 b) 7 c	e) 6 d) 5		
18. If the n th term o	of an Arithmetic Progression	n is $a_n = 13 - 2n$ then its	fourth term is
a) 9 b) 7	c) 5 d) 4		
19. In an Arithmeti	c Progression of $a_3 = 10$ and	$d a_4 = 8$ then the commo	on difference is
a) -2 b) 2	c)1 d)-1		
20. The next terms	of the Arithmetic Progressi	ion 4, -1, -6 is	
a) -10,-15	b) -12, -15 c)11, 16	d)-11, -16	
21. The value of S_3	in the Arithmetic Progress	ion 7, 4, 1, -2	
a) 1 b)3	c) -3 d)12		
22. If the sum of an	Arithmetic Progression wh	hose first term and the la	ast term are 1 and 11 respectively is 36
then the numbe	r of its terms is		
a)5 b)6	c)7 d)8		
23. If the n th term o	of an Arithmetic Progression	n is $a_n = 2n - 1$ then the	Arithmetic Progression is
a)1, 5, 9	b)2, 6, 10	c)1, 3, 5	d)1, 2, 3
24. The common of	lifference of an Arithmetic	Progression whose n th to	erm is $a_n = 5 - 2n$ is
a) -3	b) -2	c) -1	d) 2
25. In the Arithmet	ic Progression 6, x, y, 18 th	ne value of x and y respe	ectively are
a) 8, 12	b) 10, 13	c) 10, 14	d) 14, 10
26. The common di	ifference of two Arithmetic	Progressions is equal. I	f the first term of the first Arithmetic
_		_	ssion is 10 then the difference of the
5 th term of these	e Arithmetic Progressions i	S	
a) 2	b) 3	c) 4	d) 5
27. If the sum of 'n		rogression is $S_n = 3n^2 +$	5n then its 2 nd term is
a) 22	b) 14	c) 12	d) 10

Unit 2: Triangles

28. The mathematician who proposed that "A line drawn parallel to one side of the triangle divides the oth
two sides in equal proportion" is
a) Pythagoras b) Thales c) Euclid d) Euler P
29. In the given figure if ST QR then $\frac{PS}{SQ}$ is equal to
a) $\frac{PT}{TR}$ b) $\frac{PS}{TR}$ c) $\frac{PT}{SQ}$ d) $\frac{PT}{SR}$
30. If the ratios of the sides of two similar triangles is 4 : 9 then the ratios of the areas
of these triangles is
a) 2:3 b) 4:9 c) 81:16 d) 16:81
31. In the given figure if XY BC then $\frac{AX}{AB}$ is equal to
a) $\frac{AX}{AY}$ b) $\frac{AX}{XB}$ c) $\frac{AY}{AC}$ d) $\frac{AC}{AY}$
32. The length of the sides of a triangle are given below. Which of the following forms
a right-angled triangle?
a) 7 cm, 24 cm, 25cm b) 3 cm, 8 cm, 6 cm
b) 50 cm, 80 cm, 100 cm d) 130 cm, 12 cm, 5 cm
33. \triangle ABC and \triangle BDE are two similar triangles. If 'D' is the midpoint of BC then
Area of ΔABC : Areas of ΔBDE is equal to
a) $2:1$ b) $1:2$ c) $4:1$ d) $1:4$
34. The mathematician who proposed the theorem which states that "In a right-angled triangle, the square
the hypotenuse is equal to the sum of the squares on the other two sides" is
a) Thales b) Pythagoras c) Brahma Gupta d) Euclid
35. The corresponding sides of two similar triangles are
a) Equal b) Parallel c) Not Equal d) Proportional
36. The areas of two similar triangles are 120 cm ² and 480 cm ² respectively, then the ratio of any pair of
corresponding sides is
a) 1:4 b) 1:2 c) 4:1 d) 2:3
37. In the given figure if $\angle B = 90^{\circ}$ then the correct relation among the following is
a) $BC^2 + AC^2 = AB^2$ b) $AB^2 + AC^2 = BC^2$

d) $AC^2 - BC^2 = AB^2$

c) $AB^2 - AC^2 = BC^2$

38. In the figure if two triangles are similar then the ratio of their corresponding sides is _

b)
$$\frac{AB}{PR} = \frac{BC}{QR} = \frac{AC}{PQ}$$

c)
$$\frac{AB}{QR} = \frac{BC}{RP} = \frac{AC}{PQ}$$
 d) $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$

d)
$$\frac{AB}{PO} = \frac{BC}{OR} = \frac{AC}{PR}$$

39. In the given figure $\triangle ABC \sim \triangle DEF$ then $\frac{Area\ of\ \triangle ABC}{Area\ of\ \triangle DEF}$ is equal to

40. The ratios of the areas of two similar triangles is 9:16 then the ratios of their corresponding sides is _____

- b) 4:3
- c) 9:16
- d) 81:256

- 41. In $\triangle ABC$ if $\angle B = 90^{\circ}$, AC = 13 cm and AB = 5 cm then BC is equal to _____

 - a) 10 cm b) 11 cm
- c) 12 cm
- d) 18 cm
- 42. In $\triangle ABC$ if area of $\triangle ABC = 54$ cm, BC = 3 cm, EF = 4 cm then area of $\triangle DEF$ is _____

- b) 96cm²
- c) 94 cm^2
- $d)92 \text{ cm}^2$

43. In $\triangle ABC$ if DE||BC AD = 2 cm, DB = 3 cm and AE = 3 cm then EC is equal to ___

- b) 4.5 cm d)) 4.6 cm d) 5.4 cm

44. In $\triangle ABC$ if AB = 6 cm, BC = 8cm, AC = 10 cm then value of $\angle B$ is _____

- b) 90^{0}
- c) 60^{0}
- d) 30^{0}

- b) 8 cm
- c) 10 cm
- d) 16 cm

46. A 6m tall pole casts a shadow of length 4m on the ground. At the same time if a building standing next to it, casts a shadow of length 28m then the height of the building is __

a) 48m

- b) 42m
- c) 40m
- d) 36m

a) 15 cm

- b) 12 cm
- c) 10 cm
- d) 8 cm

48. In triangle ABC if $\angle B = 90^{\circ}$, then AD =

a) 4cm

- b) 3.2cm
- c) 2.8cm
- d) 1.8cm

49. In the figure $\triangle DEF \sim \triangle ABC$ and $\angle F = \angle C = 50^{\circ}$ then length of

AB is _____

- a) 8cm
- b) 6cm
- c) 4cm
- d) 3cm

- 50. In triangle ABC if $\angle B = 90^{\circ}$, then CD = _____
 - a) 6.4cm
- b) 6.2cm
- c) 5.4cm
- d) 5.2cm

51. In triangle ABC if DE \parallel BC and AD:DB = 3:4 then

Area of $\triangle ABC$: Area of $\triangle DEF =$

- a) 9:49
- b) 49:9
- c) 1:49
- d) 49:1

Unit 3: Pair of Linear Equations in Two Variables

52. If a pair of linear equations $x + 2y = 3$ and $2x + 4y = k$ are coincident then the value of 'k' is
a) 3 b) 6 c) -3 d) -6
53. If $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are pair of linear equations which form intersecting lines the
the ratio of their co-efficient is
a) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ d) $\frac{a_1}{a_2} = \frac{b_1}{b_2}$
54. Number of solutions for the pair of Linear Equations $2x + 3y - 9 = 0$ and $4x + 6y - 18 = 0$ is
a) 0 b) 1 c) 2 d) Infinity
55. In the equation $x + y = 7$ if $x = 3$ then the value of y is
a) 6 b) 5 c) 4 d) 3
56. If the pair of linear equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are coincident then the correct relation
among the following is
a) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ b) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ c) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ d) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$
57. If $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are pair of linear equations which have infinite solutions, the
the correct relation among the following is
a) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ b) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ c) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ d) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$
58. For what value of k will the graphs of the linear equations $2x - y + 4 = 0$ and $6x - ky + 12 = 0$ coincide?
a) $\frac{1}{3}$ b) $\frac{-1}{3}$ c) 3 d) -3
59. If the graphical representation of pair of linear equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ is
coincident then they have
a) No solution b) Unique Solution c) Two solutions d) Infinitely many solutions
60. If the graphical representation of the pair of linear equations $4x + ky + 8 = 0$ and $4x + 4y + 2 = 0$ are
parallel then the value of k is
a) -4 b) 2 c) 4 d) 8
61. Types of lines represented by the pair of linear equations $6x + 2y - 4 = 0$ and $2x + 4y - 12 = 0$ is
a) Intersecting b) Perpendicular c) Parallel d) Coincident

i

62. On solving the equation $x + y = 4$ and $x - y = 2$ the values of x and y will be
a) (3, 1) b) (2, 2) c) (1, 3) d) (10, 4)
63. In the given equations $2x + y = 5$ and $x - y = 1$ the values of x and y will be
a) (3,2) b) (2, 1) c) (1, 2) d) (2, 3)
64. In the equation $2x + y = 8$ if $x = 3$ then the value of y is
a) 4 b) 3 c) 2 d) 1
65. If the pair of linear equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are consistent then the number of
solutions is
a) 0 b) 1 c) 2 d) Infinite
66. The value of $\frac{c_1}{c_2}$ in the pair of linear equations $3x + 2y = 5$ and $2x - y - 6 = 0$ is
a) $\frac{-5}{6}$ b) $\frac{-6}{5}$ c) $\frac{5}{6}$ d) $\frac{3}{2}$
67. If $x + 2y - 3 = 0$ and $5x + ky + 7 = 0$ are a pair of linear equations which have no solution then the value
of k is
a) 10 b) 6 c) 3 d)1
68. If the pair of linear equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are consistent then their graphica
representation is
a) Parallel b) Coincident c) Intersecting d) Intersecting or Coincident
69. Number of solutions for the pair of linear equations $x + y = 0$ and $x + y = 3$ is
a) One solution b) Two solutions c) No solutions d) Infinite Solutions
70. In the equation $3x + y = 10$ if $y = 4$ then the value of x is
71. 0 b) 1 c) 2 d) 3

Unit 4: Circles

81.	A st	traight li	ne which	intersects a	circle at two poir	nts is called	
	a)	Secant	b)	Tangent	c) Radius	d) Perpendicular Line	e
82.	The	number	of points	s in which a	tangent touches a	circle are	
	a)	0	b) 1	c) 2	d) Infinite		
83.	The	number	of tanger	nts that a cir	cle can have is _		
	a)	1	b) 2	c) 3	d) Infinite		
84.	The	maxim	ım numb	er of paralle	l tangents that a c	eircle can have are	
	a)	1	b) 2	c) 4	d) Infinite		
85.	The	commo	n point be	etween the c	ircle and the tang	gent of a circle is	
	a)	Centre	b) Po	oint of Conta	c) External	l Point d) None of th	ese
86.	The	length o	of the tang	gent drawn t	to a circle of radiu	as 3 cm from a distance :	5 cm from its centre is
	a)	3 cm	b) 4 cn	n c) 5	cm d) 6 cm	1	
87.	If th	ne length	of the ta	ngent drawr	from an external	I point Q to a circle is 24	cm and the distance between
	the	point Q	and centr	e of the circ	le is 25 cm then the	he measure of the radius	is
		7 cm	b) 12 d	,) 24.5 cm	
88.						angents to the circle with	h P
					S		
	ĺ	60^{0}	b) 70 ⁰	c) 80 ⁰			0 110.
		_		_		n from an external point	°
						of ∠ <i>POA</i> is	
					d) 100 ⁰		
						l point 'A', 5 cm away fi	rom the centre of the circle is
					is		
	,	5 cm	ŕ	ŕ	4 cm d) 3		A
91.	In th	he figure	e 'O' is th	e centre of t	the circle. If $\angle AC$	$OB = 100^0$ then $\angle OAB$ is	equa
		000		\ 40 ⁰	1) 200		
0.2				c) 40^0			
92.		•		•		n at the point of contact	18
02	,	450	b) 60 ⁰	c) 80°	d) 90 ⁰	. 1 6	
93.						wn to a circle from an ex	ternal point is
	a)	U b)	1 c) 2 d) I	nfinite		

94. In the figure if PA and PB are tangent to the circle with centre 'O' then	A /	∠AOB
$\angle APB =$		
a) 90^{0} b) 120^{0} c) 180^{0} d) 360^{0}		
95. In the figure 'O' is the centre of the circle, PA and PB are tangents.	B	_
If $\angle AOB = 100^{\circ}$ then measure of $\angle APO$ is		
a) 90^{0} b) 80^{0} c) 50^{0} d) 40^{0}	P (o)
96. In the figure 'O' is the centre of the circle, PA is the tangent. If $\angle APO = 50^{\circ}$	В	\langle
then $\angle APO = $	A	
a) 60^0 b) 50^0 c) 40^0 d) 30^0	(°/	
97. The maximum number of tangents that can be drawn to circle at a point on it is		
a) 0 b) 1 c) 2 d) Infinite	A	
98. In the figure 'O' is the centre of the circle. If $OA = PA$ then $\angle AOP =$		
		P
a) 50^0 b) 45^0 c) 40^0 d) 30^0		
99. In the figure PA and PB are tangents to the circle. If $\angle APB = 60^{\circ}$ then $\triangle APB$ is	A	L 112
·		60° P
a) Isosceles Triangles b) Equilateral Triangle		
c) Scalene Triangle d) Right Angled Triangle	В	
100. In the figure PQ and PR are the tangents. If $\angle PQR = 60^{\circ}$ and PQ = 9 cm then	0	
the length of the chord QR is	60 9 cm	>> P
a) 6 cm b) 7 cm c) 8 cm d) 9 cm		
101. The tangents drawn at the end points of the diameter of a circle	R	
a) Intersect each other b) Coincide with each other	c	
c) Parallel to each other d) Perpendicular to each other		\
102. In the figure 'O' is centre of the circle. Measure of $\angle ACB$ is	A	B
a) 45^0 b) 60^0 c) 90^0 d) 100^0		
103. In the figure PQ and PR are the tangents. If $\angle QPR = 70^{\circ}$ then $\angle PQR = $	-	
a) 70^0 b) 65^0 c) 55^0 d) 50^0		70°
104. In the figure AB, AD and DE are the tangents to the circle. If AB = 3 cm and	R	
DE = 4 cm then the length of AD is		A
b) 8 cm b) 7 cm c) 6 cm d) 5 cm	Ö	C
	E	D
	_	

105.In the figure TQ and TF are the tangents to the bigger circle and TR and TF are the tangents to the smaller circle. If TQ = 8 cm the TR =_____

- a) 10 cm
- b) 9 cm
- c) 8 cm
- d) 6 cm

106. In the figure if 'O' is the centre of the circle then the longest chord is

- a) AB
- b) CD
- c) PQ
- d) RS

Unit 5: Constructions

106. In the figure the ratio in which the point 'P' divides the line segment AB is a) 3:2 b) 2:3 c) 2:1 d) 3:1 107. If a point 'P' divides a line segment AB such that $\frac{PB}{AB} = \frac{3}{7}$ then the ratio of AP : PB will be _____ b) 7:4 c) 7:3 d) 4:3 a) 4:7 108. To construct a triangle similar to $\triangle ABC$, given BC = 4.5 cm, $\angle B = 45^{\circ}$, $\angle C = 60^{\circ}$ and the ratio of the corresponding sides is $\frac{3}{7}$ then the given line segment BC should be divided in the ratio a) 3:4 b) 3:7 c) 3:10d) 4:7109. In the figure the ratio in which the point 'P' divides the line segment AB is _ a) 3:2 b) 3: 4 c) 4: 3 d) 2: 3 110. In order to divide a given line segment in the ratio 3:5, the number of arcs to be constructed on the line forming an acute angle with the given line segment is _ a) 3 b) 5 c) 8 d) 10 111. In the given figure to construct $\triangle ABC$ similar to $\triangle ADE$, the ratio of the corresponding sides will be _____ a) $\frac{7}{3}$ b) $\frac{3}{4}$ c) $\frac{4}{3}$ d) $\frac{3}{7}$ 112. If two tangents with angles between them to be 60° are to be constructed from an external point, then the angle between the radii should be ____ b) 75^0 c) 90^0 d) 120^0 a) 60^{0} 113. In the given figure the ratio in which the point 'P' divides the line segment AB is _____ a) 4:3 b) 3:4 c) 4:7 d) 7:4 114. To construct tangents to a circle from an external point such that the angle between the tangents is 100^{0} then the angle between the radii should be _____ b) 90^0 c) 80^0 d) 50^0 a) 100^0

115.Number of tanger	nts that can be dra	awn to a circle from its	non-centric end	of a
a) 1 b) 2	c) 3 d) In	finite		
116.On constructing	$\Delta ABC \sim \Delta ADE$ the	e ratio of the correspond	ding sides of ΔA	DE /
are $\frac{3}{5}$ times the co	rresponding sides	of $\triangle ABC$. If AB=5cm	AC = 6cm and	B ₂ \ /
= 7cm then the ler	igth of sides BD	and DE of ΔADE (By C	Calculations)	B ₃ B ₄ B ₅
a) 2cm, 3cm	b) 30	em, 3.6cm		
c) 3cm, 4.6cm	d) 4d	em, 3.6cm		
117. Number of tanger	nts that can be dra	awn to a circle from a p	oint inside it is _	
a) 2	b) 1	c) 0	d) Infir	nite
118. $\triangle ABC$ is constru	cted similar to Δl	BDE . In $\triangle ABC \angle B = 9$	0°, AB=3cm	E
and BC=4cm. If the	ne corresponding	sides of $\triangle BDE$ is $\frac{5}{2}$ tin	nes that of	
ΔABC then the ler	ngth of BD and B	E respectively are		3 cm
(By Calculations)				B 4 clm
a) 10cm, 7.5cm	b) 7.	5cm, 10cm		B ₁

d) 12cm, 8cm

c) 8cm, 12cm

Unit 6: Coordinate Geometry

- 119. The distance of the point P(4,3) from the x axis is _____
 - 2 units b) 3 units
- c) 4 units
- d) 5 units
- 120. In the given graph the coordinates of the point A is
- (-1, 0) b) (1, -1) c) (0, 2)
- d)(2,0)
- 121. The coordinates of the midpoint which divides the line joining A (x_1, y_1)
 - and B (x_2, y_2) is _____

b)
$$\left(\frac{x_2-x_1}{2}, \frac{y_2-y_1}{2}\right)$$

b)
$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$
 d) $\left(\frac{x_1-x_2}{2}, \frac{y_1-y_2}{2}\right)$

d)
$$\left(\frac{x_1-x_2}{2}, \frac{y_1-y_2}{2}\right)$$

122. In the given figure if D is the midpoint of BC, then the coordinates of D are

a)
$$\left(\frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}\right)$$

b)
$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

c)
$$\left(\frac{x_1+x_3}{2}, \frac{y_1+y_3}{2}\right)$$

d)
$$(\frac{x_2+y_3}{2}, \frac{y_2+x_3}{2})$$

 \mathbf{C}

- 123. The distance of the point P(5,2) from the y axis is _____
 - a) 2 units
- b) 4 units
- c) 5 units
- d) 7 units
- 124. The co-ordinates of the origin are _____
 - a) (0,0)
- b) (0.1)
- c) (1.0)
- d)(1,1)
- 125. The formula to find out the distance between the points (x_1, y_1) and (x_2, y_2)

a)
$$\sqrt{(x_1 + x_2)^2 + (y_1 + y_2)}$$

a)
$$\sqrt{(x_1 + x_2)^2 + (y_1 + y_2)^2}$$
 b) $\sqrt{(x_1 + x_2)^2 - (y_1 + y_2)^2}$

c)
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 d) $\sqrt{(x_2 - x_1)^2 - (y_2 - y_1)^2}$

d)
$$\sqrt{(x_2-x_1)^2-(y_2-y_1)^2}$$

126. The distance between the origin and the point (x, y) is _____

a)
$$\sqrt{x^2 + y^2}$$

b)
$$\sqrt{x^2 - y^2}$$

c)
$$\sqrt{(x+y)^2}$$

b)
$$\sqrt{x^2 - y^2}$$
 c) $\sqrt{(x + y)^2}$ d) $\sqrt{(x - y)^2}$

127. The formula to find out the area of the triangle whose vertices are A (x_1, y_1) , B (x_2, y_2) and

$$(x_3, y_3)$$
 is _____

a)
$$\frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

b)
$$\frac{1}{2}[x_1(y_2-y_3)-x_2(y_3-y_1)-x_3(y_1-y_2)]$$

c)
$$\frac{1}{2}[x_1(y_2+y_3)+x_2(y_3+y_1)+x_3(y_1+y_2)]$$

d)
$$\frac{1}{2}[x_1(y_2+y_3)-x_2(y_3+y_1)-x_3(y_1+y_2)]$$

128. The dist	ance between	n the origin an	d the point	(3, 4) is	
a) 3 unit	s b) 4 u	nits c) 5 u	units o	d) 6 units	
129. The co-	ordinates of t	he midpoint or	f the line jo	ining the points A	(1, 4) and B (3, 6) is
a) (5,2)	b) (2,5)	c) (4,10)	d) (1	10, 4)	
130. The dist	ance between	n the origin an	d the point	(p, q) is	
a) $\sqrt{p^2}$	$\overline{\langle q^2 \rangle}$	b) $\sqrt{p^2 - q^2}$	c)	$\sqrt{(p+q)^2}$	$d)\sqrt{p^2+q^2}$
131. The dist	ance between	n the origin an	d the point	(4, -3) is	_
a) 5 unit	s b) 4 u	nits c) 3 u	units d) 1 unit	
132. The dist	ance betweer	n the origin an	d the point	(12, 5) is	
a) 13 un	its b) 12	units c) 7 u	units o	d) 5 units	
133. The dist	ance of the p	oint P (5,3) fro	om x axis a	nd y axis is	
a) 5	5 units, 3 uni	ts b) 3 t	units, 5 unit	ts	
c) 4 ur	nits, 3 units	d) 5 t	units, 2 unit	ts	
134. The dist	ance betweer	n the origin an	d the point	(0,4) is	
a)	2 unitsb) 4 u	nits c) 8 u	units o	d) 16 units	
135. The dist	ance of the p	oint (-4, -7) fr	om the y ax	is is	
a)	4 unitsb) 7 u	nits c)11	units d)	$\sqrt{65}$ units	
136. The dist	ance between	n the points (2,	,3) and (6,6) is	
a) 7	7 units b) 5 u	nits c) 4 ı	units o	d) 3 units	
137. The coo	rdinates of th	ne point on the	x axis will	be in the form	
a)	(0, y)	b) (x,0)	c) (0,0)	d) (x,y)	
138. The co-o	ordinates of t	he point of int	ersection of	f the x-axis and y-	axis is
a) ((1,0)	b) (0,1)	c) (0,0)	d) (1,1)	
139. Ordinate	e of all points	s on the x-axis	is		
a) ()	b) 1		c) 2	d) 3
140. Abscissa	a of all points	s on the y-axis	is	-	
a) 3	3	b) 2		c) 1	d) 0
141. The coo	rdinates of th	ne points which	n divides th	e line segment joi	ning the points (x_1, y_1) and (x_2, y_2)
internally	in the ratio	m ₁ : m ₂ is			
a) ($(\frac{m_1x_2+m_2x_1}{m_1+m_2}, \frac{1}{m_1})$	$\frac{m_1y_2 + m_2y_1}{m_1 + m_2}$		b) $\left(\frac{m_1x_2 - m_2x_1}{m_1 - m_2}, \frac{1}{m_1}\right)$	$\frac{m_1y_2 - m_2y_1}{m_1 - m_2}$
c) $\left(\frac{m_1}{n}\right)$	$\frac{x_2 + m_2 x_1}{m_1 - m_2}$, $\frac{m_1 y}{m_2}$	$\left(\frac{1}{1} + m_2 y_1}{1 - m_2}\right)$		d) $\left(\frac{m_1x_2 - m_2x_1}{m_1 + m_2}, \frac{1}{m_1}\right)$	$\frac{m_1y_2 - m_2y_1}{m_1 + m_2}$
142. Which o	of the followi	ng point is on	the x-axis?		
a)	(2,0)	b) (0,2)	c) (2,3)	d) (0, -2)	

143. Which of the following point is on the y-axis?

- a) (3,0)
- b) (0, -4)
- c)(-2,0)
- d) (4,6)

144. If the midpoint of the line joining the coordinates A (5, -2) and B(a, b) is the origin then the value of

'a' and 'b' is _____

- a) (5,-2)
- b) (-5,2)
- c)(0,0)
- d) (5,5)

145.If A (2,3), B (4, k) and C(6,-3) are collinear then the value of 'k' is _____

- a) -1
- b) 0
- c) 1

d) 2

146.If A(1,1) B(0,0) and C(a,b) then the correct relation among the following is _____

- a) a=2b
- b) a=b
- c) b=2a
- d) a=-b

147. In the given figure the length of PQ IS

- a) 3 units
- b) 4 units
- c) 5 units
- d) 6 units

Unit 7 : Quadratic Equations

148. If the roots of the equ	uation $x^2 + 6x + k = 0$ as	re equal then th	e value of 'k ' is equal to				
a) 9	b) – 9	c) 8	d) 5				
149. The standard form of quadratic equation is							
$a) ax^2 - bx + c = 0$	b) $ax^2+bx+c=0$ c)	$ax^2-bx-c=0$	d) $ax^2+bx-c=0$				
150. If one root of the qua	ndratic equation $(x-2)(x-2)$	(x+1) = 0 is 2 the	en the other root is				
a) 0	b) -1	c) 1	d) 3				
151. The roots of the quad	lratic equation ax ² +bx+	c=0 are					
a) $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	b) $\frac{-b \pm \sqrt{a^2 - 4bc}}{2a}$	$) \frac{-b \pm \sqrt{b^2 + 4ac}}{2a}$	$d) \frac{-b \pm \sqrt{a^2 + 4bc}}{2a}$				
152. If the roots of the qua	adratic equation $x^2 - kx$	t + 4 = 0 are equ	all then the value of 'k' is				
a) ± 2 b) ± 4	4 c) ± 8	d) ± 10	5				
153. The discriminant of t	the quadratic equation x	$x^2 + 5x + 6 = 0$ is	S				
a) 49	b) 25	c) 24	d) 1				
154. The roots of the equa	$ation x^2 - x - 6 = 0 are$	e					
a) (-2,3)	b) (-2,-3)	c) (2,3)	d) (2,-3)				
155. The roots of the equa	ation $(x-1)(x-2)=0$ are						
a) -1,-2	b) 1,2	c) -1,2	d) -2,1				
156. The discriminant of t							
a) $b^2 + 4ac$	b) $b^2 - 4ac$	c) $\sqrt{b^2 + 4ac}$	d) $\sqrt{b^2 - 4ac}$				
157. The standard form of	f the quadratic equation	x(x+1) = 30 is					
a) $x^2 + x = 30$	b) $x^2 + x - 30 = 0$	c) $x^2 - x - 30$	$= 0 d) x^2 - x = 30$				
158. If the roots of the qua	adratic equation are real	I then the value	of its discriminant is				
a) Less than zero	b) Greater than or equ	al to zero	c) -1 d) None of the above				
159. If the quadratic equa	tion $ax^2+bx+c=0$ does n	ot have real ro	ots then $b^2 - 4ac$ is				
a) Less than zero	b) Greater than zero	c) Equal to ze	ero d) Equal to one				
160. If the roots of the qua	adratic equation ax ² +bx	+c=0 are equal	then the value of $b^2 - 4ac$ is				
a) Less than zero	b) Greater than zero	c) Equal to ze	ero d) Equal to one				
161. The roots of the equa	ation $x^2 - 5x + 6 = 0$ are						
a) 2,3	b) -2,3 c) 2,-3	d) -2,-3	3				
162. The roots of the equa	ation $x^2 - 6x = 0$ are						
a) (0,-6)	b) (0,6) c) (6,-6	d) (-6,-	6)				

163.	. If $(x+4)(x-4)$	=9 then the valu	e of x is			
	a) ± 5	b) $\pm \frac{1}{5}$	c) 5, 5	d)	4, -4	
164.	.The quadratic	equation whose	roots are equa	al to 2 and -1	is	
	a) $x^2 + 2x - 2$	$= 0$ b) $x^2 + x$	+2=0	c) $x^2 - 2x + 2$	2 = 0	d) $x^2 - x - 2 = 0$
165.	.If the roots of	the equation kx	$^{2}+2x+3=0$	are equal the	value of	'k' is
	a) $\frac{1}{3}$	b) $\frac{-1}{3}$	c) 3	3	d) -3	
166.	.The discrimin	ant of the equation	on $2x^2 - x - 8$	= 0 is		
	a) -127	b) -65		c) -15		d) 65
167.	.If the discrim	inant of a quadra	tic equation as	$x^2+bx+c=0$ is	-3 then t	he roots of the equation are
	a) Real and d	istinct	b) No re	al roots		
	c) Roots are o	equal	d) None	of the above	;	
168.	.The maximun	n number of roots	s that a quadra	tic equation	can have	is
	a) 1	b) 2		c) 3		d) Infinite
169.	.If one root of	the equation $2x^2$	+kx +4=0 is 2	then the valu	ie of 'k' i	is
	a) 6	b) -1		c) -2		d) -6
170.	.The standard	form of the quad	ratic equation	$x^2 = 3x + 2$ is		
	a) $x^2 - 3x + 2 = 0$	b) $x^2 + 3x$	x-2=0	c) $x^2-3x-2=$	=0 d	$x^2+3x+2=0$
171.	.If one root of	the equation (3x	-2)(x+3)=0	is -3 then the	other ro	ot is
	a) $\frac{2}{3}$	b) $\frac{3}{2}$		c) $\frac{-2}{3}$	d	$)\frac{-3}{2}$
172.	.The standard	form of the equat	$\sin 2x^2 - 5(4x)$	-1) = 0 is		_
	a) $2x^2 - 20x - 5$	$6=0$ b) $2x^2-2$	0x+5=0	c) $2x^2+20x-$	-5=0 d	$(2x^2+20x+5=0)$
173.	.The nature of	the roots of the e	equation $2x^2$ -	x-3 = 0 is		
	a) Roots are	equal	b) Roo	ts are real an	d distinct	
	c) No real roo	ots	d) Roo	ts are irratior	nal	
174.	. The sum of the	he squares of two	consecutive	even numbers	s is 164.	Its mathematical representation is
-	a) $x^2 + (x+1)^2 =$	$= 164$ b) $x^2 + (x^2 + (x^2$	$+2)^2=164$	c) [x+(x+2)]	$ ^2=164$	d) $x^2 + (2x)^2 = 164$
175.	.The sum of th	e squares of two	consecutive of	dd numbers	is 130. Its	s mathematical representation is
-	a) $x^2 + (x+1)^2 =$	130 b) $x^2+(2)$	$(x)^2=130$	c) $x^2+(x+2)^2$	² =130	d) $(x+2x)^2=130$

Unit 8: Introduction to Trigonometry

176. The value	of sin 60 ⁰ x	cos 30 ⁰ is			
a) $\frac{1}{4}$		b) $\frac{\sqrt{3}}{4}$	c) $\frac{3}{4}$	d) $\frac{1}{2}$	
177. The value	of sin (90 ⁰ -6	9) is			
a) $\cos \theta$		b) $\tan \theta$	c) $\sec \theta$	d) $\cot \theta$	
178. The value	of tan 45 ⁰ is		_		
a) $\sqrt{3}$		b) 0`	c) 1	$d)\frac{1}{\sqrt{3}}$	
179. The value	of $tan\theta$ - con	$t(90^0 - \theta)$ is			
a) 1		b) 0	c) -1	d) $\frac{1}{2}$	
180.In the figur	re if $\angle B = 9$	0^0 , $\angle A = \angle C$ and	nd BC = 10 cm then t	the value of tan A is	A
		c) $\sqrt{3}$			
181.If 15 cot A	= 8 then the	e value of tanA	is		B 10cm
a) 0	b) $\frac{8}{15}$	c) 1	d) $\frac{15}{8}$		
182.If $\sqrt{3}$ tanθ	= 1 then the	e value of θ is			
a) 30^{0}		b) 45 ⁰	c) 60^{0}	d) 90 ⁰	
183. The value	of tan 45 ⁰ +	cot 45 ⁰ is			
a) 0		b) 1	c) 2	d) N.D.	
184. The value	of cot (90 ⁰ -3	30 ⁰) is			
a) $\frac{1}{\sqrt{3}}$	1	b) $\frac{1}{2}$	c) 1	d) $\sqrt{3}$	
185.In the figur	re if $\angle B = 9$	0^0 , $\angle C = \theta$, $\angle A$	$= \alpha$ then the value of	$f \sin \alpha + \cos \theta \text{ is} \underline{\hspace{1cm}}$	A a -
a) $\frac{6}{5}$	b) $\frac{8}{5}$	c) $\frac{7}{5}$	d) $\frac{3}{4}$		3
186. The value	of $\frac{\sin 80^{\circ}}{\cos 10^{\circ}}$ is				B 4 C
a) -1	b) 0	c) 1	d) N.D.		
187.If $3\tan\theta =$	3 then the v	alue of acute a	ngle θ is		
a) 90^{0}		b) 60 ⁰	c) 45 ⁰	d) 30^{0}	
188. The value	of $\cos^2 \theta + \alpha$	$\cos^2 (90^0 - \theta)$ is	s		
a) 2		b) 1	c) 0	d) -1	

$189.(1+\cos\theta)(1-\cos\theta)$	ns A) =

- a) $\sin^2\theta$
- b) $\cos^2\theta$
- c) $sec^2\theta$
- d) tan²6

190.In the given figure if $\angle Y = 90^{\circ}$, $\angle Z=30^{\circ}$ and XY=5cm then the length of XZ is

- a) 5cm
- b) 10cm
 - c) 15cm
- d) 20cm

191. If $\sin 18^0 = \cos A$ and A is an acute angle then $\angle A = \underline{\hspace{1cm}}$

- a) 90^{0}
- b) 82⁰
- c) 72^0
- d) 36

192. If $5 \sin A = 3$ then cosec A =_____

a) $\frac{3}{5}$

b) $\frac{4}{5}$

c) $\frac{5}{4}$

d) $\frac{5}{2}$

193. In triangle ABC if $\angle B = 90^{\circ}$ then tan A = _____

- a) $\frac{13}{5}$
- b) $\frac{5}{12}$
- c) $\frac{12}{5}$
- d) $\frac{5}{13}$

- a) $\cot^2 A$
- b)tan²A
- $c)sec^2A$
- d) cosec²A

195. In triangle ABC if $\angle A = 90^{\circ}$ then sin B = _____

- a) $\frac{AC}{AB}$
- b) $\frac{BC}{AC}$
- c) $\frac{AC}{BC}$
- d) $\frac{AB}{BC}$

196. The value of $\cos^2 17^0 - \sin^2 73^0$ is ______

a) 1

b) $\frac{1}{2}$

c) 0

d) -1

197. The value of $tan 10^0$ x $tan 80^0$ is _____

a) -1

h) 1

c) 0

d) $\sqrt{3}$

 $198.\frac{1-\tan^2 45}{1+\tan^2 45} = \underline{\hspace{1cm}}$

a) 0

b) 1

- c) -1
- d) $\frac{1}{2}$

 $199.\frac{\tan 55^{0}}{\cot 35^{0}} = \underline{\hspace{1cm}}$

a) 0

b) 1

- c) -1
- d) $\frac{1}{\sqrt{3}}$

200. In the figure if $\angle C = 90^{\circ}$ then cot A = _____

- a) $\frac{12}{13}$
- b) $\frac{5}{13}$
- c) $\frac{13}{5}$
- d) $\frac{5}{10}$

201. If $\sin \alpha = \frac{1}{2}$ and $\cos \beta = \frac{1}{2}$ then $\alpha + \beta =$

- a) 0^{0}
- $b)30^{0}$
- c) 60°
- d) 90^{0}

202. The trigonometric ratio equivalent to $\frac{1}{\sqrt{3}}$ is _____

- a) $\sin 30^{0}$
- b) $\cos 60^{\circ}$
- c) $\tan 30^{\circ}$
- d) tan 60⁰

203. The value of 10	$0\sin^2\theta + 10\cos^2\theta$ is _			
a) 10	b) 1	c) 0	d) $\frac{1}{10}$	
$204.\cos 48^{\circ} - \sin 42^{\circ}$) =			
a) 6	b) 1	c) 0	d) -1	
$205.\sec(90^{\circ}-A) = $ _				
a) cos a	b) sin a	c) cot a	d) cosec a	
$206.\frac{\cos c \ 31^{0}}{\sec 59^{0}} = \underline{\hspace{1cm}}$				
a) 0	b) $\frac{1}{2}$	c) 1	d) -1	
207. The value of si	n ² 60 ⁰ is			
a) $\frac{\sqrt{3}}{2}$	b) $\frac{3}{4}$	c) $\frac{4}{3}$	d) $\frac{2}{\sqrt{3}}$	
$208.1 + \cot^2 A = $				
a) $cosec^2A$	b) $\cos^2 A$	c) sec^2A	d) tan ² A	
$209.\sec^2 A = \underline{\hspace{1cm}}$				
a) $1 + \cot^2 A$	b) $1+ \tan^2 A$	c) 1+ cos	ec^2A d) $1+cos^2A$	
$210.\sec^2 A - \tan^2 A =$	=			
a) 0	b) 1	c) -1	d) 2	
211. Among the following	lowing the trigonome	etric ratios the ratio	whose value is 1 is	
a) $\sin 30^{\circ}$	b) $\cos 30^{0}$	c) $\sin 0^0$	d) $\cos 0^0$	
$212.\sin 30^{0} + \cos 6$	$0^0 = $			
a) 1	b) 0	$c)\frac{1}{4}$	d) $\frac{1}{2}$	
213. If 5 sec $A = 11$	then cosA =			
a) $\frac{11}{5}$	b) $\frac{5}{11}$	c) $\frac{1}{2}$	d) 1	C
214.In the figure if	$\angle \mathbf{B} = 90^0 \angle \mathbf{A} = \theta \ (\theta$	is an acute angle) t	hen $\cos (90^{\circ} - \theta) = $	- \
a) $\frac{12}{13}$	b) $\frac{5}{13}$	c) $\frac{13}{5}$	d) $\frac{12}{13}$	12 \13
215. If $2 \cos \theta = 1$				<u></u>
a) 90^{0}	b) 60^0 c) 45	0 d)	30^{0}	R 2 A
$216.\text{If } \sqrt{2}\cos\theta = 1$	1 then $\theta =$			
a) 30^{0}	b) 45 ⁰	c) 60^0	d) 90^0	

217. If $\sqrt{3} \tan \theta = 1$ then $\theta =$ _____

- a) 90^{0}
- b) 60⁰
- c) 45⁰
- d) 30^{0}

218.In the figure $\angle B = 90^{\circ}$, if $\angle A$ is an acute angle then $\sin (90^{\circ}-A) =$

a) $\frac{3}{5}$

- b) $\frac{4}{5}$
- c) $\frac{5}{4}$
- d) $\frac{5}{3}$

219.If $\cos A + \cos^2 A = 1$ then the value of $\sin^2 A + \sin^4 A$ is _____

a) 3

- b) 2
- c) 1

d) $\frac{1}{2}$

220. In the figure 'O' is the centre, AC is the tangent. If OC=10cm then

a) $10\sqrt{3}$ cm

b) $5\sqrt{3}$ cm

c) 5cm

d) $4\sqrt{3}$ cm

the

Unit 9: Some Applications of Trigonometry

221.If a	pole of height 4	$\sqrt{3}$ m from the g	ground casts a	shadow of leng	th 4m, then its a	ngle of elevation
towards	s the sun is					
a)	30^{0}	b) 45 ⁰	c) 60^{0}	d) 90^0		
222.Fr	om a point on the	ground 30m aw	ay from the fo	ot of the tower,	if the angle of	elevation of the top of
the	tower is 45 ⁰ then	the height of the	e tower is			
a)	60m b) 45	m c) 30m	d) $30\sqrt{3}$ m			D
223.Th	e angle of depress	sion from point	A are ∠DAC =	= 30°, ∠DAE =	45 ⁰ then the	300 450
ang	le of elevation fro	om point C is				
a)	15 ⁰ b) 30	c) 45^0	d) 75 ⁰			
224.A	10m long rope is	tied from a pole	of height 5m	to the ground.	The angle of	C [
elev	ation made by the	e rope with the	ground is		_	
a)	15^{0}	b) 30^{0}	c) 45^0	d) 60^0		
225.If t	he angle of eleva	tion of the sun is	s 45 ⁰ then the	ength of the sha	adow cast by a	15m tall building is
a)	25m	b) 20m	c) 15m	d) 10m		
226.If t	he height of the p	oole and the shac	low cast by it	are in the ratio	$\frac{1}{\sqrt{3}}$ then the angle	e of elevation formed
					V 3	
a) :	30^0 b) 45	c) 60^{0}	d) 90	0		
227.If t	he length of the s	hadow cast by a	building is 20	m and angle of	elevation from	the tip of the shadow
to tl	ne top of the build	ding is 600 then t	the height of th	ne building is _		
a)	20m	b) $20\sqrt{3}$ m	c) 25	m d) 30-	$\sqrt{3}$ m	
228.If a	n pole of height 21			_		towards the tip of the
	e from the tip of the		_	,	U	1
_	30^{0}		c) 60 ⁰	d) 90^0		
ŕ		,	,	,	y it then the ang	le of elevation of the
	of the pillar is	-	C	·		
	30^{0}	b) 45 ⁰	c) 60^0	d) 90^0		
230. Tł	ne angle of elevati				of the pole is 30	0^0 . If the height of the
	e is 100m then the	-			_	C
	$100\sqrt{3}$ m	b) 100m		$0(\sqrt{3}-1)$ m		
4,	,	-, -00	0, 10	- \ \ /	-/ _{1/3}	

231. From the poi	nt 15m away from the	foot of the pole	of height 50	m the angle of elev	vation to the top of the
pole is	·				
a) 15^{0}	b) 30 ⁰	c) 45 ⁰	d) 60^0		
232.A kite is flying	ng at a height of 75m al	bove the groun	d. If the incl	ination of the string	g of the kite with the
ground is 60°	then the length of the s	tring is			
a) $50\sqrt{2}$ m	b) 50√3 m	c) $\frac{50}{\sqrt{2}}$ r	n	$d)\frac{50}{\sqrt{3}}m$	
233. If the angle of	of depression of a ship a	as observed fro	m the top of	a 75m high light	D 30°
house is 30° th	hen the distance between	en the ship and	the light hou	ise is	75m
a) $25\sqrt{3} \text{ m}$	b) $75\sqrt{3} \text{ m}$ c) $\frac{75}{\sqrt{2}}$ n	d) 75	$\sqrt{2}$ m		
234. A ladder plac	ced along the wall make	es an angle of	60 ⁰ with the	the ground. If the	В (
foot of the lad	lder is 8m away from th	ne wall then the	e height of th	e wall is	
a) 4m	b) 8m	c) 8√	2 m	d) 16m	
235. The angle of	depression of a car wh	ich is at a dista	nce of $10\sqrt{3}$	m from the foot of	the building which is
10m tall is					
a) 30^{0}	b) 45 ⁰	c) 60^0	d) 90^0		
236. If the angle of	of depression of a boat t	From the top of	a bridge of l	neight 50m is 30° , t	hen the distance of th
boat from the	bridge is				
a) $50\sqrt{3}$ m	b) 50m	c) $25\sqrt{3}$ m	d) 2	25m	

Unit 10: Statistics

237.The	empiric	al relation	onship b	etween	the three	e meas	sures of central tendency is
a) 2	2 Media	n = Moc	de +3Me	an	b) 3N	A edian	n = Mode + 2 Mean
c)]	Median :	= Mode	+ Mean		d) M	edian =	= Mode – Mean
238.The	median	of the d	lata 5,3,1	4,16,19	and 20	is	
a)	14		b) 14.	5	c) 15		d) 16
239.The	midpoir	nt of the	class int	erval (1	0 - 25	is	<u></u>
a)	18		b) 17.	5	c) 17		d) 15
240.The	mean of	f the dat	a 1, 2, 3,	4, 5 is		_	
a)	15		b) 7.5			c) 3.5	5 d) 3
241.The	mode of	f the fol	lowing f	requenc	y distrib	oution	is
	X	5	10	15	20	25	
	f	2	8	3	10	5	
a) 1	25		b) 20			c) 15	d) 10
242.In th	ne freque	ency dis	tribution	of grou	iped dat	a if ∑f	$f_i x_i = 400$ and $\sum f_i = 20$ then its mean is
a) 1	20		b) 25			c) 40	d) 800
243.The	median	of the d	ata 15, 1	7, 19, 1	4, 12 is		
a)	17		b) 15			c) 14	d) 13
244. The	mean of	f the firs	st five pr	ime nun	nbers is		
a) :	5.7		b) 5.6			c) 5.5	5 d) 5
245.If fo	or certain	data th	e mean i	s 16 and	d mediai	n is 15	then the mode is equal to
a)	10		b) 11			c) 12	d) 13
246.The	mode of	f the dat	a 1, 0, 2,	, 2, 3, 1,	, 4, 5, 1,	0 is _	
a) :	3		b) 2			c) 1	d) 0
247. If the	he point	of inters	section o	f 'less t	han ogiv	ve' and	d 'more than ogive' of a given frequency distribution
is (30	0, 40) the	en the m	nedian w	ill be _			
a) :	30		b) 35			c) 40	d) 70
248. The	e value tl	hat repe	ats most	often in	n given s	set of c	data is
a) 1	Mean		b) Me	dian	c) Moo	de o	d) None of the above
249. The	e mean o	of 50 and	1 20 is _				
a) '	70		b) 35			c) 30	d) 20

250. Whi	ich among the foll	owing is i	not a measi	are of	centra	il tende	ncy?				
a) N	Mean	b) Media	n	c) M	lode	d)	Range	;			
251. If th	ne mean of the data	a 11, 8, 9,	12 and x is	s 10 tl	hen the	value	of 'x 'i	s			
a) 8	3	b) 9		c) 1	10		d) 11			
252.In a	group of data, the	mode is _									
a) Sco	ore which is repeat	ed less nu	ımber of tir	nes	b)	Middl	le Score	e			
c) Mo	st frequently repea	ated score			d)	None o	of the a	bove			
253.If the	e mode of 16, 15,	17, 16, 15	5, x,19, 17,	14, 8	is 15	then x	=		_		
a) 19)	b) 15		c) 1	14		d	8 (
254.If a c	certain group of da	ata has its	mean as 24	4 and	mode	as 12 th	nen its 1	nedia	n is		
a) 2	25	b) 22		c) 2	20		d	18			
255.The	mean of first 5 od	d number	s is								
a) 4		b) 5		c) 6	5		d)	7			
256.The	size of the class in	iterval (40)-50) is			_					
a) 10)	b) 40		c) 4	15		d) 50			
257.The	formula to calcula	te the mo	de is								
a) .	$1 + \left\lfloor \frac{f_1 - f_0}{f_1 - f_0 - 2f_2} \right\rfloor h$	b) $1 + \left\lfloor \frac{2}{f_1} \right\rfloor$	$\frac{f_1 - f_0}{-f_0 - f_2} \bigg] h$	c) 1+	$-\left\lfloor \frac{f_1-f_2}{2f_1-f_2} \right\rfloor$	$\left \frac{f_0}{f_0 - f_2} \right h$	d) 1 +	$\left\lfloor \frac{f_1}{2f_1 + 1} \right\rfloor$	$\frac{-f_0}{f_0-2f_2}$ h		
258.The	class interval which	ch contair	s the mode	in th	e follo	wing fi	requenc	y dist	ribution		
	Class Interval	0-10	10-20	2	0-30	30-40	0 40)-50	50-60		
	Frequency	3	9		15	30		18	5		
a)	(20-30)	b) (30-40)	c) ((40 <u>-</u> 50)		d) (50-	.60)	I	
	(20-30)			, `					,	n which of th	^
	e given frequency wing is correct?	uisuibuu	ion table n	mode	nes ii	i tile Cia	ass mie	ivai (3	50-40) ille	ii wilicii oi ui	е
TOHO		T			T						
	Class Interval	10-2	0 20-	30	30-	40	40-50)	50-60		
	Frequency	5	8		X		4		2		
a) :	x < 8	b) x < 4		c)	x < 5		d) x >	8		
260.In th	e following distrib	oution tab	le the class	-inter	val wh	ich cor	ntains tl	ne mo	de is		
	Class Interval	10-15	15-20	2	0-25	25	-30	30-	35		
	Frequency	10	12		15		8	1	3		
a) 1	5	b) 13		c) 1	12		d	8 (

261. In the following distribution table the class-interval which contains the median is _____

Class	Frequency	Cumulative
Interval		Frequency
10-20	7	7
20-30	12	19
30-40	11	30
40-50	18	48
50-60	12	60

a)	20 -	- 30
/		

c)
$$40-50$$

262. The formula to calculate the median is _____

a)
$$1 + \left[\frac{\frac{n}{2} - C_f}{f} \right] h$$

$$b) \ 1 + \left[\frac{\frac{n}{2} + C_f}{f}\right] h \qquad \qquad c) \ 1 + \left[\frac{\frac{n}{4} - C_f}{f}\right] h \qquad \qquad d) \ 1 + \left[\frac{\frac{n}{3} - C_f}{f}\right] h$$

c)
$$1 + \left[\frac{\frac{n}{4} - C_f}{f}\right] l$$

$$d) 1 + \left[\frac{\frac{n}{3} - C_f}{f}\right] h$$

263. In the following frequency distribution table the value of '1' when calculating the mode is

Class Interval	40-50	50-60	60-70	70-80	80-90
Frequency	7	10	8	6	5

- a) 40
- b) 50
- c) 60
- d) 70

264. The marks scored by a student in 6 subjects are 27, 30, 45, 60, 35 and x. If the mean of all scores is 42 then the value of x is _____

- a) 40
- b) 42
- c) 55
- d) 52

Unit 11: Surface Areas and Volumes

265. Volume of a cylinde	er is 300 m ³ . Volume o	of the cone whose radi	us and height is equal to that of the
cylinder is			
a) 900m ³	b) 600m ³	c) 150m ³	d) 100m ³
266.Surface Area of a sp	here whose radius is	7cm is	
a) 154cm ²	b) 308 cm^2	c)616 cm ²	d) 770 cm^2
267. The formula to calc	ulate the Curved Surf	ace Area of the frustur	m of a cone is
a) $\pi(r_1^2 + r_2^2)l$	b) $\pi(r_1 - r_2)$ l	c) $\pi(r_1 + r_2)$ l d) π	$r(r_1^2 - r_2^2)l$
268. Formula to calculate	e the Total Surface Ar	ea of a right circular cy	ylinder is
a) $\pi r^2 h$	b) 2 πr(r+h)	c) $\pi r(r+h)$ d) 2	$\pi r^2(r+h)$
269. Formula to find the	volume of a solid spho	ere	
a) $\frac{2}{3}\pi r^3$	b) $\frac{1}{3}\pi r^{3}$	c) $\frac{4}{3}\pi r^3$	$d) \frac{1}{3} \pi r^2$
270. Mathematical relation	onship between slant h	neight (l), height (h) an	nd radius (r) of a cone
a) $l^2 = h^2 + r^2$	b) $l^2 = h^2 - r^2$	c) $l^2 = r^2 - h^2$	$d) l = \sqrt{h^2 - r^2}$
271. If the radius of the c	one is 'r', height is 'l	' then the slant height	is 1=
a) $\sqrt{h^2 - r^2}$	b) $\sqrt{r^2 - h^2}$	c) $\sqrt{h^2 + r^2}$	d) $\sqrt{(r+h)^2}$
272.Lateral Surface Area	a of a cube whose volu	ume is 27 cm ³ is	
a) 36 cm^2	b) 54 cm ²	c) 63 cm ²	$d)108 \text{ cm}^2$
273.A sphere of radius '	r' cm is melted to form	n a cone 'R' cm and he	eight 'h' cm then the correct relation is
a) $\frac{4}{3}\pi r^3 = \frac{1}{3}\pi R^3 h$	b) $\frac{4}{3}\pi r^3 = \frac{1}{3}\pi R^2 h$	c) $\frac{2}{3}\pi r^3 = \frac{1}{3}\pi R^2 h$	d) $\frac{1}{3}\pi r^3 = \frac{4}{3}\pi R^2 h$
274. Perimeter of a base	of a cylinder is 24 cm	, height is 8cm then the	e Curved Surface Areas will be
a) 136 cm^2	b) 160 cm ²	c) 190 cm ²	d) 192 cm ²
275. A cuboid of dimension cube is	ions 12cm x 6cm x 3c	m is melted to form a	cube, then the edge of each face of the
a) 21cm	b) 12cm	c) 6cm	d) 3cm
,	,	•	f two circular ends are r_1 and r_2 is
a) $\frac{1}{3}\pi h(r_1 + r_2 + r_1 r_2)$	· ₂)	b) $\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_3^2)$	$r_1^2 r_2^2$)
c) $\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1^2)$	r_2)	d) $\frac{1}{3}\pi h(r_1 + r_2 + r_3)$	$r_1^2 r_2^2$)
277. Curved Surface Are	as of a cone whose rac	dius of the base is 7cm	, and slant height 10cm is

a) 110cm ²	b) 210cr	m^2 c) 2	220cm ²	d) 240cm ²	
278. A metallic s	phere of radius 'R'	cm is melted to f	form a meta	llic wire of radius 'r' c	m and length 'h' cm.
The correct r	elation among the	following is			
$a) \frac{4}{3} \pi R^3 = \frac{4}{3} \pi R^3$	$\frac{1}{3}\pi r^2 h$ b) $\frac{4}{3}\pi R^3$	$=\pi r^2 h \qquad (c)$	$\frac{1}{3}\pi R^3 = \frac{4}{3}\pi r^3$	^{2}h (d) $\frac{2}{3}\pi R^{3} = \pi r^{2}$	h
279. A solid cone	e is melted to from	a cylinder whose	radius is ec	ual to that of the cone.	If the height of the
cylinder is 5	cm, then the heigh	t of the cone is			
a) 18cı	m b) 15cm	c) 1	12cm	d) 10cm	
280. The ratio of	the volumes of two	o spheres is 64:27	respectivel	y. The ratio of their rad	dii is
a) 3:4	b) 4:3	c) 9	9:16	d) 16:9	
281.A Sphere of	radius 'r' units is	converted into a c	one of heigh	ht 'r' units. Radius of t	he cone is
a) r units	b) 2r units	e) 3r units d) 4	4r units		
282. Total Surfac	e Area of a solid h	emisphere is			
a) $4\pi r^2$	b) $3\pi r^2$	c) $2\pi r^2$	d) $\frac{4}{3}\pi r^2$		
283. A pencil sha	arpened at one edge	e is a combination	ı of		
a) Frustum	of a cone and a cy	linder b)	Cone and cy	linder	
c) Cylinder	and Hemisphere	d) (Cone and H	emisphere	•
284.A toy is prej	pared by mounting	a cone on the her	nisphere. Its	s Total Surface Area	is

c)
$$2\pi r^2 + \pi r l$$

d)
$$\frac{2}{3}\pi r^2 + \pi r^2$$

285. If the ratio of the radii of 2 spheres is 4:5 then the ratio of their areas is

b) 5:4

c) 16:25

d) 25:16

286. The combination of solids in this funnel is _____

b) Frustum of a cone and cylinder

c) Cylinder and Hemisphere

d) Cone and Cuboid

287. If the volume of two spheres is in the ratio 27:8 then the ratio of their radii is

- a) 2:3
- b) 3:2
- c) 4:9
- d) 9:4

288. The correct formula to find the volume of the given combination of solids is

b)
$$\frac{1}{2}\pi h(r^2+r^2+rr)+\pi r^2 h$$

c)
$$\frac{1}{3}\pi h(r^2+r^2+r^2r^2)+\pi r^2h$$
 d) $\frac{1}{3}\pi h(r^2+r^2+rr)+2\pi rh$

d)
$$\frac{1}{3}\pi h(r^2+r^2+rr)+2\pi r^4$$

289. Number of lead	sheets each of rac	dius 2 cm can mad	de by melting a	a sphere of radiu	is 4cm is
a) 1	b) 2	c) 4		d) 8	
290. The Combination	on of solids in the				
a) 2 cylinders	b)) 2 hemispheres +	cylinder		
c) 2 spheres +	cylinder d) 1 cylinder + 1 h	emisphere	· .	
291. The surface area	a of the capsule w	hose radius is 'r'	is		
a) $2x2\pi r^2 + 2$	πrh	b) $2x3\pi r^2 + 2\pi rh$	l		1
c) $2x2\pi r^2 + 2\pi$	r(r+h)	d) $\frac{4}{3}\pi r^3 + \pi r^2 h$			h
292. Total surface ar	ea of the cone wh	ose radius is 'r', a	and slant heigh	t is '1' is	
a) π(r+l)	b) πr(r+l)	c) πl(1	:+1)	$d)2\pi r(r+1)$	
293. Volume of hem	isphere whose rad	lius 'r' units is			
a) $\frac{1}{3}\pi r^3$	b) $\frac{2}{3}\pi r^{3}$	c) $\frac{4}{3}\pi r^3$	d) $\frac{3}{2}\pi r^3$		
294. The volume of t	this toy		2		
a) $\frac{2}{3}\pi r^3 + \frac{1}{3}\pi r^2 h$		(b) $\frac{4}{3}\pi r^3 + \frac{1}{3}\pi r^2 l$	1		h
(c) $\frac{1}{3}\pi r^3 + \frac{1}{3}\pi r^2 h$	l	(d) $\frac{2}{3}\pi r^3 + \frac{2}{3}\pi r^2 h$	1		
295. The volume of t	the cuboid whose	dimensions are (5	5 x 6 x 3) is		•
a)180 cubic u	nits	b) 120 cubic u	inits		
c) 90 cubic un	nits	d) cubic units	[-c x9		
296. Surface area of	the sphere whose	radius is 7cm is _			
a) 616 cm^2	b) 432 cm ²	c) 343	3 cm ²	d) 312 cm^2	
297. Curved surface	area of a hemisph	ere whose radius	is 7cm is		
a) 324cm ² ł	316 cm^2	c) 312 cm^2	d) 30	8 cm^2	
298. Total surface ar	ea of the hemisph	ere whose radius	is 7cm is		
a) 412cm ² t	o) 432 cm ²	c) 462 cm^2	d) 48	4 cm^2	
299. Curved Surface	Area of the cylind	der whose radius	is 7cm and hei	ght is 10 cm is _	
a) 220 cm^2	b) 410 cm^2	c) 432	2 cm^2	d) 440 cm^2	
300. Total Surface A	rea of the water p	ipe whose radius	is 'r' units and	l length is 'h' un	its
a) $2\pi r(r+h)$	b) 2πrh	c) $\pi r^2 + 2\pi rh$	d) πr	(r+h)	
301. If the perimeter	of the base of the	cylinder is 88cm	and the height	t is 10cm, then to	he volume of the
cylinder is					

a) $1890\pi \text{ cm}^3$ b) $1940\pi \text{ cm}^3$

c) $1960\pi \text{ cm}^3$

d) 1960 cm³

302. If the perimeter of the base of the cylinder is 22cm and height is 5cm then its Curved Surface Areas is

a) $45\pi \text{ cm}^2$

b) $35\pi \text{ cm}^2$

c) $35\pi \text{cm}^2$

d) 25π cm²

303. Taking some clay, a cone is formed. It is cut parallel to its base with a knife. When the smaller cone is separated the Total Surface Area of the solid that is remaining is _____

a) $\pi(r_1 + r_2)$ l

b) $\pi(r_1 + r_2)$ l+ $\pi r_1^2 + \pi r_2^2$

c) $\frac{1}{3}\pi h (r_1^2 + r_2^2 + r_1 r_2)$

d) $\pi[(r_1 + r_2)l + \pi r_1^2 + \pi r_2^2]$

ANSWERS

Unit 1: Arithmetic Progressions

1. d)
$$17 (a_n = 4n + 5)$$

$$a_3 = 4(3) + 5 = 12 + 5 = 17$$

2. d) 8 (
$$x = \frac{2+14}{2} = \frac{16}{2} = 8$$
)

3. b)
$$4 (a_n = 3n - 2)$$

$$a_2 = 3(2) - 2 = 6 - 2 = 4$$

4. c)
$$7(a_n = 2n - 1)$$

$$a_4 = 2(4) - 1 = 8 - 1 = 7$$

5. b)
$$3 [d= a_2 - a_1 = a_3 - a_2 = ----]$$

$$[d=6-3=3 (2^{nd} term - 1^{st} term) OR d=9-6=3 (3^{rd} term - 2^{nd} term)]$$

6. b)
$$\frac{n(n+1)}{2}$$

$$A) d= 4-1 \neq 6-4$$

[A)
$$d=4-1 \neq 6-4$$
 B) $d=10-12 \neq 14-10$ D) $d=13-8 \neq 19-13$

D)
$$d = 13-8 \neq 19-13$$

$$3 \neq 2$$

8. c)
$$a_n = a + (n-1)d$$

9. c) 3
$$[a_n = (3n-1) \Rightarrow a_1 = 3(1)-1 = 3-1 = 2$$

$$a_2 = 3(2) - 1 = 6 - 1 = 5 \Rightarrow d = a_2 - a_1 = 5 - 2 = 3$$

10. c) 55

$$S_n = \frac{n(n+1)}{2} = S_{10} = \frac{10(10+1)}{2} = \frac{5}{10(10+1)} = 55$$

11. b)
$$-2$$
 [$d=a_2-a_1=a_3-a_2=----$]

[
$$d=1-3=-2$$
 (2^{nd} term -1^{st} term) OR $d=-1-1=-2$ (3^{rd} term- 2^{nd} term)]

12. a) 0 [
$$d=a_2-a_1=a_3-a_2=----$$
]

[
$$d = \frac{1}{2} - \frac{1}{2} = 0$$
 (2nd term - 1st term) or $d = \frac{1}{2} - \frac{1}{2} = 0$ (3rd term-2nd term)]

13. c) 14
$$\left(x = \frac{2+26}{2} = \frac{28}{2} = 14\right)$$

14. b)
$$S_n = \frac{n}{2}(a+1)$$

15. c)
$$S_n = \frac{n}{2}[2a + (n-1)d]$$

16. d)
$$17.20.23.26$$
 (d= $a_2 - a_1 = 5-2 = 3$

Next 4 terms are =
$$14+3=17$$
, $17+3=20$, $20=3=23$, $23+3=26$)

17. b) 7 ($a_4=9$ and $d=2 : a_3=a_4-d=9-2=7$

(To get previous term subtract d from that term)

18. c) $5(a_n = 13 - 2n$

$$a_4 = 13-2(4) = 13-8 = 5$$

- **19.** a) -2 (**a**₃ = 10, a₄ = 8: d = a₄- **a**₃= 8-10 = -2
- **20.** d) -11,-16 (d= $a_2 a_1 = -1 4 = -5$

Next 2 terms are = -6-5 = -11 and -11-5 = -16)

- **21.** d) $12 (= a_1 + a_2 + a_3 = 1 + 4 = 7 = 12)$
- **22.** b) 6 (a=1 $a_n=11$ $S_n=36$ $S_n=\frac{n}{2}(a+a_n)$

$$36 = \frac{n}{2} (1+11) = \frac{n}{2} (12)^{6}$$

$$6n = 36$$

$$n = \frac{36^{6}}{6} = 6$$

23. c) 1,3,5..... (a_n=2n-1

$$a_1 = 2(1) - 1 = 2 - 1 = 1$$

$$a_2 = 2(2) - 1 = 4 - 1 = 3$$

$$a_3 = 2(3) - 1 = 6 - 1 = 5$$

24. b) -2 (a_n=5-2n

$$a_1 = 5-2(1)=3$$
 and $a_2=5-2(2)=5-4=1$: $d=a_2-a_1=1-3=-2$

- 25. c) 10, 14 (Answer by seeing the options)
- **26.** c) 4 (10-6 = 4, same difference continues)

$$S_n = 3n^2 + 5n$$

$$S_1 = 3(1)^2 + 5(1) = 3 + 5 = 8 = a_1$$

$$S_2 = 3(2)^2 + 5(2) = 12 + 10 = 22 = a_1 + a_2$$

$$a_2 = 22 - 8 = 14$$

Unit 2: Triangles

29. a)
$$\frac{PT}{TR}$$
 (According to BPT or Thales theorem, $\frac{PS}{SQ} = \frac{PT}{TR}$)

30. d) $16:81(4^2:9^2)$, According to Areas of Similar Triangles theorem, The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides)

31. c)
$$\frac{AY}{AC}$$
 (According to BPT or Thales theorem $\frac{AX}{AB} = \frac{AY}{AC}$)

32. a) 7cm, 24cm, 25cm (According to Pythagoras theorem
$$7^2 + 24^2 = 25^2$$

 $49 + 576 = 625 \Rightarrow 625 = 625$)

33. c) 4:1 (Equilateral triangles are similar and D is midpoint of BC).

$$\therefore BD = \frac{1}{2}BC \Longrightarrow 2BD = BC \therefore BC:BD = 2:1$$

Ratio of corresponding Sides = 2:1

:The ratio of the areas of two similar triangles= 2^2 : 1^2 = **4:1**

:The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding

sides.

OR

$$\frac{\text{Area of } \Delta ABC}{\text{Area of } \Delta BDC} = \frac{BC^2}{BD^2} = \frac{(2BD)^2}{BD^2} = \frac{4BD^2}{BD^2} = \frac{4}{1}$$

$$\therefore$$
 Area of \triangle ABC: Area of \triangle BDC = **4:1**

36. b) 1:2 (According to Areas of Similar Triangles theorem,
$$\frac{\text{Area of } \triangle \text{ ABC}}{\text{Area of } \triangle \text{ DEF}} = \frac{\text{BC}^2}{\text{EF}^2} = (\frac{\text{BC}}{\text{EF}})^2$$

$$\frac{\text{Area of } \triangle \text{ ABC}}{\text{Area of } \triangle \text{ DEF}} = \left(\frac{\text{BC}}{\text{EF}}\right)^2 = \frac{120}{480} = \frac{1}{4}$$

$$\therefore \frac{BC}{EF} = \sqrt{\frac{1}{4}} = \frac{1}{2}$$

37. d)
$$AC^2 - BC^2 = AB^2$$
 (According to Pythagoras theorem $AC^2 = AB^2 + BC^2$
 $\Rightarrow AC^2 - BC^2 = AB^2$)

38. d)
$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$$
 (Corresponding sides of similar triangles are in same ratio.

Corresponding sides $AB \rightarrow PQ$, $BC \rightarrow QR$, and $AC \rightarrow PR$)

39. c)
$$\frac{BC^2}{EF^2}$$
 (According to Areas of Similar Triangles theorem $\frac{Area\ of\ \Delta\ ABC}{Area\ of\ \Delta\ DEF} = \frac{AB^2}{DE^2} = \frac{BC^2}{EF^2} = \frac{AC^2}{DF^2}$

40. a) 3:4(According to Areas of Similar Triangles theorem,
$$\frac{Area \ of \ \Delta \ ABC}{Area \ of \ \Delta \ DEF} = \frac{BC^2}{EF^2} = (\frac{BC}{EF})^2 = \frac{9}{16}$$

$$\Rightarrow \frac{BC}{EF} = \sqrt{\frac{9}{16}} = \frac{3}{4}$$

41. c) 12cm (According to Pythagoras theorem, $AB^2 + BC^2 = AC^2$ $5^2 + BC^2 = 13^2$ $\Rightarrow BC^2 = 13^2 - 5^2$ = 169 - 25 = 144 $\Rightarrow BC = \sqrt{144} = 12$)

42. d) 96cm²(According to Areas of Similar Triangles theorem,
$$\frac{Area\ of\ \Delta\ ABC}{Area\ of\ \Delta\ DEF} = \frac{BC^2}{EF^2}$$

$$\Rightarrow \frac{54}{Area\ of\ \Delta\ DEF} = \frac{3^2}{4^2}$$

$$\Rightarrow \frac{54}{Area\ of\ \Delta\ DEF} = \frac{9}{16}$$

∴Area of $\triangle DEF = \frac{54 \times 16}{9} = 96 \text{ cm}^2$.

43. b) 4.5cm (According to BPT or Thales theorem, $\frac{AD}{DB} = \frac{AE}{EC}$

$$\Rightarrow \frac{2}{3} = \frac{3}{EC} \Rightarrow EC = \frac{3X3}{2} = \frac{9}{2} = 4.5$$
cm)

44. b) 90^0 (AB² + BC²= 6^2 + 8^2 = 36 + 64 = 100

$$AC^2 = 10^2 = 100$$

 \therefore AC² = AB² + BC² \therefore According to Pythagoras converse theorem, \angle B=90⁰)

- **45.** a) $4 \text{cm} (BD^2 = AD \times CD \Rightarrow BD^2 = 8 \times 2 = 16 \Rightarrow BD = \sqrt{16} = 4 \text{cm})$
- **46.** b) 42m

Simple Method: Height --Shadow

$$\begin{cases}
6m \rightarrow 4m \\
? \rightarrow 28m
\end{cases}
\Rightarrow \frac{6 \times 28}{4} = 42 \text{ m}$$

OR

In Figure, According to Thales Theorem

$$\frac{AB}{DE} = \frac{BC}{EC}$$

$$\frac{AB}{6} = \frac{28^{-7}}{4 \cdot 1}$$

$$AB = 6 \times 7 = 42 \text{ m}$$

47. c)
$$10\text{cm} (\Delta ABC \sim \Delta DEF \Rightarrow \frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} \Rightarrow \frac{5}{DE} = \frac{4}{8}$$

$$\frac{5}{DE} = \frac{4}{8}$$

$$5x 2 = DE \longrightarrow DE = 10cm$$

48. d) 1.8cm (
$$AB^2 = AD \times AC$$

 $3^2 = AD \times 5$

$$9=5AD \Rightarrow AD = \frac{9}{5} = 1.8$$

49. d) 3cm
$$(\frac{DE}{AB} = \frac{EF}{BC} = \frac{DF}{AC} = \frac{6}{AB} = \frac{8}{4} = \frac{10}{5} = 2 \Rightarrow AB = \frac{6}{2} = 3)$$

50. a)
$$6.4 \text{cm}$$
 (BC² = AC x CD $8^2 = 10 \text{ x CD}$

51.

$$64 = 10 \text{ CD} \Rightarrow \text{ CD} = \frac{64}{10} = 6.4$$

b)
$$49:9$$
 ($AD:DB = 3:4 \Rightarrow AD:AB = 3:7$
 $\Rightarrow AB:AD = 7:3 \Rightarrow \therefore \Delta \operatorname{area}(ABC): \Delta \operatorname{area}(ADE) = \mathbf{AB^2}: \mathbf{AD^2}$
 $7^2: 3^2 = 49:9$

Unit 3: Pair Of Linear Equations in Two Variables

52. b) 6 (Lines are coincident then,
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Rightarrow \frac{1}{2} = \frac{2}{4} = \frac{3}{k}$$

 $\Rightarrow \frac{1}{2} = \frac{3}{k} \Rightarrow k = 3 \times 2 = 6$

OR

We can understood in this way,

$$1 \times 2 = 2$$

$$\begin{cases}
1x & + 2y & = 3 \\
0 & 1 & 2x2 = 4 \\
2x & + 4y & = k
\end{cases}$$

$$3 \times 2 = 6$$

53. a)
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

54. d) Infinite

$$\left(\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Rightarrow \frac{2}{4}\right) \times 2 = \frac{3}{6} \times 2 = \frac{-9}{-18} \times 2 = \frac{1}{2}.$$

∴ Lines are coincident ⇒Infinite many solutions.

55. c)
$$4(x + y = 7 \Rightarrow 3 + y = 7 \Rightarrow y = 7 - 3 = 4$$

$$\begin{array}{c}
x + (y) = 7 \\
3 + (4) = 7
\end{array}$$

56. a)
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

57. a)
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

58. c) 3 (Lines are coincident
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Longrightarrow \frac{2}{6} = \frac{-1}{-k} = \frac{4}{12}$$
 Numerator x **3**= Denominator

$$2x3=6$$
 $4x3=12$

∴
$$(-1)$$
x**3** =-k=-3)

59. d) Infinite many solutions.

60. c) 4 (Lines are parallel then,
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \Rightarrow \frac{4}{4} = \frac{k}{4} \Rightarrow k=4$$

61. a) Intersecting (If lines are intersecting then, $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ here $\frac{6}{2} \neq \frac{2}{4}$ after simplification $3 \neq \frac{1}{2}$

62. a)
$$(3,1)$$
 (Easily identify the answer3+1 =4 and 3-1 =2)

Method: x + y = 4 ----(1)

$$x - y = 2$$
----(2)

$$2x = 6 \Rightarrow x = \frac{6}{3} = 3$$

Substitute x = 3 in equation (1),

$$3 + y = 4$$

$$y = 4 - 3 \Rightarrow y = 1$$
.

63. b) (2,1) [2x+y=5 and x-y=1 Easily identify the answer]

$$2(2)+1=52-1=1$$

Method:
$$2x + y = 5$$
 ----(1)

$$x - y = 1$$
----(2)

$$3x = 6 \Rightarrow x = \frac{6}{3} = 2$$

Substitute x = 2 in equation (1),

$$2x2 + y = 5$$

$$4 + y = 5 \Rightarrow y = 5-4 \Rightarrow y = 1$$

64. c) 2 (Substitute x = 3 in equation 2x + y = 8, we get 2(3) + y = 8

$$6 + y = 8 \Rightarrow y = 8 - 6 = 2$$

65. b) 1 (Consistent pair of equations are intersect in a single point and $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ exactly one solutions)

66. c) $\frac{5}{6}$ (we write equations in standard form(3x + 2y - 5=0 and 2x - y - 6 = 0) $\mathbf{c_1} = -5$ $\mathbf{c_2} = -6$

Then,
$$\frac{c_1}{c_2} \Rightarrow \frac{-5}{-6} = \frac{5}{6}$$
)

67. a) 10 (Pair of equations has no solution only if lines are parallel and $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

$$\frac{1}{5} = \frac{2}{k} \Rightarrow k = 5 \text{ x} = 2 = 10$$

68. c) Intersect each other $(\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ Unique solution)

69. c) No solutions (Lines are Parallel $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ then, No solutions)

70. c) 2 [Substitute y = 4in equation 3x + y = 10 we get, 3(x) + 4 = 10

$$3x = 10 - 4 = 6 \implies x = \frac{6}{3} = 2$$

71. a) (3,3)

72. c) 4 (y = 2x - 3)

$$5 = 2x-3$$

$$5+3 = 2x \Rightarrow 2x=8 \Rightarrow x=\frac{8}{2}=4$$
)

73. c) (2,2) 2x-y=2; $x-y=0 \Rightarrow x=y$

$$2x - x = 2$$

$$\therefore$$
 x=2 and y=2

74. b) (2,0)

75. b) 1
$$2x-y=5[(3,a)]$$

$$2(3)$$
-a = $5 \Rightarrow 6$ -a= $5 \Rightarrow 6$ -5=a \Rightarrow a=1

76. d) No Solution (Parallel lines
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \Rightarrow \frac{1}{1} = \frac{1}{1} \neq \frac{3}{-7}$$
$$\Rightarrow 1 = 1 \neq \frac{-3}{7}$$

77. c) 6 (Parallel lines
$$\frac{1_1}{3} = \frac{4}{2k} \ [\neq \frac{c_1}{c_2}]$$

$$\Rightarrow$$
 2k = 4x3=12 \Rightarrow k= $\frac{12}{2}$ =6

78. b)
$$x=2$$
, $y=1$ ($4x - 3y = 5$ go through wit options)

$$8-3 = 5$$

79. c) Infinitely many solutions
$$(\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Rightarrow \frac{3}{9} = \frac{4}{12} = \frac{-5}{-15} \Rightarrow \frac{1}{3} = \frac{1}{3} = \frac{1}{3} \Rightarrow \text{lines are coincde})$$

Unit 4: Circles

80. a) Secant (In this figure Secant of the Circle intersects Circle at A and B)

81. b) 1 (In this figure the tangent touching circle at one & only point P)

82. d) Infinite (There are infinite points on the circle. The tangent can be drawn at each point

(In figure Some tangents have been drawn)

83. d) Infinite (Infinite diameter can be drawn in a Circle. The tangents drawn at the end points of each diameter are parallel)

84. b) Point of contact (In the figure point of contact P is on the circle and the tangent)

85. b) 4cm(This is application of Pythagoras theorem.3, 4, 5are Pythagorean triplets)

86. a) 7cm (This is application of Pythagoras theorem. **7, 24, 25** are Pythagorean triplets)

87. b)
$$70^{0}$$
 (Angle between radii + Angle between tangents = 180^{0})

$$\angle POQ + \angle PTQ = 180^{0}$$

$$110^{0} + \angle PTQ = 180^{0}$$

$$\therefore \angle PTQ = 180-110 = 70$$

88. b) 50^0 (In figure

$$\angle AOB + \angle APB = 180^{\circ}$$
 $\angle AOB + 80 = 180^{\circ}$
 $\angle AOB = 180-80 = 100$
Now $\angle POA = \frac{100}{2} = 50^{\circ}$

89. d) 3cm (This is application of Pythagoras theorem.**3**, **4**, **5**are Pythagorean triplets)

$$AB^{2} + OB^{2} = OA^{2}$$
 $4^{2} + OB^{2} = 5^{2}$
 $16 + OB^{2} = 25 \Rightarrow OB^{2} = 25-16 = 9$
 $OB = \sqrt{9} = 3$

90. c)
$$40^0$$
 (180-100=80 $\angle OAB = \frac{80}{2} = 40^0$)

In the figure
$$\angle AOB + \angle OAB + \angle OBA = 180^{\circ}$$
 OA = OB (Radii)
 $100 + 2\angle OAB = 180$ $\therefore \angle OAB = \angle OBA$
 $2\angle OAB = 180 - 100 = 80$
 $\angle OAB = \frac{80}{2} = 40^{\circ}$

91. d) 90^0 (Theorem: The tangent at any point of a circle is perpendicular to the radius through the point of centres)

92. c) 2 (In figure PA and PB are tangents drawn from the external point P)

93. c) 180° (Angle between radii + Angle between tangents = 180°)

$$\angle APB = 180^{\circ}$$

$$\therefore \quad \angle APO = \frac{80}{2} = 40^{\circ}$$

In figure
$$\angle POA = 50^{\circ}$$

i.
$$\angle PAO$$
) = 90° (Theorem)

$$\angle POA + \angle PAO) + \angle APO = 180^{\circ}$$

$$50^0 + 90^0 + \angle APO = 180^0$$

$$140 + \angle APO = 180^{0} \Rightarrow \angle APO = 180 - 140 = 40$$

$$\angle AOP = \angle APO(OA = PA)$$

$$\angle OAP + \angle AOP + \angle APO = 180^{\circ}$$

$$90 + 2 \angle AOP = 180$$

$$2\angle AOP = 180-90=90 \Longrightarrow \angle AOP = \frac{90}{2} = 45^{\circ}$$

$$\angle PQR=60^0 \Rightarrow \angle PRQ=60^0$$
 (base angles) $\Rightarrow \angle QPR=60^0$ (3rd angle of triangle)

$$\therefore$$
 QR = 9cm (\triangle PQR equilateral triangle)

00. c) parallel (As showing the figure)

01. c) 90⁰(Angle in a semi circle is right angle)

102. c) 55°(In figure PQ= PR(The tangents drawn to a circle from an external point are equal)

$$\underline{PQR} + \angle \underline{PRQ} = 180 - 70 \ (\angle QPR = 70^0)$$

$$2 \angle PQR = 110 (\angle PQR = \angle PRQ)$$

$$\angle PQR = \frac{110}{2} = 55^{\circ}$$

$$AD = AB + DE$$

(The tangents drawn to a circle from

$$AD = 3 + 4 = 7cm$$

an external point are equal)

TF = TR (Tangents drawn from exterior point to the smallest circle are

105. c) PQ (The largest chord of the circle is Diameter)

Unit 5: Constructions

- **106.** a) 3:2 (3 points on **AD** and 2 points on **BC**)
- **107.** d) 4:3(Draw a figure and locate the point)

- **108.** a) 3:4
- **109.** b) 3:4(3 points on **A**Cand 4 points on BD)
- **110.** c) 8 (3+5=8)
- **111.** b) $\frac{3}{4}$ (Joined A₄ & B : Denominator=4 parallel line drawn from A₃: Numerator= $3 \div \frac{3}{4}$)
- **112.** d) 120^{0} (Angle between the radii + Angle between tangents = 180^{0} \therefore Angle between the radii = 180-60=120)
- **113.** b) 3:4 (Total 7 points on AX. Parallel line drawn from **3rd point to** A₇B and there are 4 points after A₃.)
- **114.** c) 80^{0} (Angle between the radii + Angle between tangents = 180^{0} \therefore Angle between the radii = 180-100=80)
- 115. a) 1 (In figure, We can draw only one tangent PQ through A)

116. b) 3 cm, 3.6cm BD= $\frac{3}{5}$ AB= $\frac{3}{5}$ x 5 =3cm

$$DE = \frac{3}{5}AC = \frac{3}{5} \times 6 = \frac{18}{5} = 3.6cm$$

- 117. c) 0 (Observe the figure, we annot draw any tangents from S)
- **118.** a) 10cm, 7.5cm BD= $\frac{5}{2}$ BC= $\frac{5}{2}$ x 4=10cm BE= $\frac{5}{2}$ AB= $\frac{5}{2}$ x 3= $\frac{15}{2}$ =7.5cm

Unit 6: Coordinate Geometry

- 119. b) 3 units (The distance from the x axis to its point is the Y Co-ordinate)
- **120.** d) (2, 0) (The y-coordinate of the point on the x-axis is 0(Zero))

121. c)
$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

122. a)
$$\left(\frac{x_2+x_3}{2}, \frac{y_2+y_3}{2}\right)$$

- 123. c) 5 Units (The distance from the y axis to its point is the xcoordinate)
- **124.** a) (0.0)

125. c)
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

- 126. a) $\sqrt{x^2 + y^2}$
- 127. a) $\frac{1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]$
- 128. c) 5 Units $(\sqrt{x^2 + y^2}) = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$ (Application of Pythagoras Theorem) (We can also interpret that 3,4,5 are Pythagorian Triplets)

129. b)
$$(2,5) \left[\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) = \left(\frac{1+3}{2}, \frac{4+6}{2} \right) = \left(\frac{4}{2}, \frac{10}{2} \right) = (2,5) \right]$$

- 130. d) $\sqrt{p^2 + q^2}$
- 131. a) 5 Units $(\sqrt{x^2 + y^2} = \sqrt{4^2 + (-3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5$ (Application of Pythagoras Theorem) (We can also interpret that 3,4,5 are Pythagorean Triplets)
- 132. a) 13 Units $(\sqrt{x^2 + y^2} = \sqrt{12^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13$ (We can also interpret that 5,12,13 are Pythagorean Triplets)
- 133. b) 3 Units, 5 Units (The distance from the y-axis to the point is its x coordinate)1. (The distance from the x-axis to the point is its y coordinate)
- 134. b) 4 Units $(\sqrt{x^2 + y^2} = \sqrt{0^2 + 4^2} = \sqrt{0 + 16} = \sqrt{16} = 4$ (The point along the y-axis is the distance from the origin to the y coordinate)
- a) 4 Units (The distance from the y-axis to the point is its x coordinate)
 (Distance is written positively though the coordinate is negative)
- 136. b) 5 Units $(d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$ $d = \sqrt{(6 - 2)^2 + (6 - 3)^2}$ $d = \sqrt{(4)^2 + (3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5$ Units)
- **137.** b) (x,0)
- 138. c) (0,0) (The point where the x axis and y axis meet is the origin point)

139. a) 0 (Zero)

140. d) 0 (Zero)

141. a) $\left(\frac{m_1x_2+m_2x_1}{m_1+m_2}, \frac{m_1y_2+m_2y_1}{m_1+m_2}\right)$

142. a) (2,0) (The y coordinate of each point on the x axis is 0(zero))

143. b) (0,-4) (The x coordinate of each point on the y axis is 0(zero))

144. b) (-5,2) $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2} = (x,y)$

$$\frac{5+a}{2} = 0 \text{ and } \frac{-2+\omega b}{2} = 0$$

 \implies 5+a =0 and -2+b =0

 \Rightarrow a= -5 and b=2

145. b) 0 $\frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$ (A(2,3) B(4,k) C(6,-3))

$$\frac{1}{2}[2(k-(-3))+4(-3-3)+6(3-k)]=0$$

$$\frac{1}{2}[2(k+3)) + 4(-6) + 6(3-k)] = 0$$

$$\frac{1}{2}[2k+6-24+18-6k]=0$$

$$\frac{1}{2}[-4k] = 0 \Rightarrow 4k = 0 \Rightarrow k = 0$$

146. b) a=b $\frac{1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]=0$ [A(1,1) B(0,0) C(a,b)]

$$\frac{1}{2}[1(0-b) + 0(b-1) + a(1-0)]$$

$$\frac{1}{2}[-b+0+a]=0$$

$$-b+a=0 \Rightarrow a=b$$

147. c) 5 units (Pythagoras Theorem in triangle PTQ)

Unit 7: Quadratic Equations

148. a) 9 (If roots are equal
$$b^2 - 4ac = 0$$
 Here $a=1$, $b=6$, $c=k$

$$6^2 - 4(1)(k) = 0$$

$$36-4k=0 \Rightarrow 36=4k \Rightarrow k = \frac{36}{4} = 9)$$

149. b)
$$ax^2+bx+c=0$$

150. b)
$$-1 (x-2=0 \Rightarrow x=2 \text{ Similarly } x+1=0 \Rightarrow x=-1)$$

151. a)
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

152. b)
$$\pm 4$$
[If roots are equal $b^2 - 4ac = 0$ ($x^2 - kx + 4 = 0$ QO $a=1$, $b=-k$, $c=4$) $(-k)^2 - 4(1)(4) = 0$ $k^2 - 16 = 0 \Rightarrow k^2 = 16 \Rightarrow k = \sqrt{16} + 4$]

153. d) 1
$$[x^2 + 5x + 6 = 0$$
 හළු a=1, b=5, c=8

Discriminant = $b^2 - 4ac = 5^2 - 4(1)(6)$

$$= 25 - 24 = 1$$

155. b) 1,2
$$((x-1)(x-2)=0 \Rightarrow x-1=0 \text{ or } x-2=0$$

 $x=1 \text{ or } x=2)$

156. b)
$$b^2 - 4ac$$

157. b)
$$x^2 + x - 30 = 0$$
 $(x(x+1) = 30)$
 $x^2 + x = 30 \Rightarrow x^2 + x - 30 = 0$

- **158.** b) Greater than Zero or equal to Zero
- 159. a) less than Zero
- **160.** c) equal to zero

162. b)
$$(0.6) (x^2 - 6x = 0)$$

 $x(x-6)=0$
 $x=0 \text{ or } x-6=0 \Rightarrow x=6)$

163. a)
$$\pm 5$$
 $(x+4)(x-4) = 9((a+b)(a-b) = a^2-b^2$ $x^2 - (4)^2 = 9$ $x^2 - 16 = 9$

$$x^2 = 16 + 9 = 25$$

$$x = \sqrt{25} \pm 5$$

164. d)
$$x^2 - x - 2 = 0$$
 (Quadratic Equation= x^2 –(sum of the roots) $x +$ product of the roots =0 $x^2 - [2+(-1)]x + 2(-1) = 0$

$$x^2 - (2-1)x - 2 = 0$$

$$x^2 - 1x - 2 = 0 \Rightarrow x^2 - x - 2 = 0$$

165. a)
$$\frac{1}{3}$$
 [If roots are equal, $b^2 - 4ac = 0(kx^2 + 2x + 3 = 0 \text{ Here a=k, b=2, c=3})$

$$(2)^2 - 4(k)(3) = 0$$

$$4 - 12k = 0 \Rightarrow 4 = 12k \Rightarrow k = \frac{4}{12} = \frac{1}{3}$$

166. d) 65
$$(2x^2 - x - 8 = 0 \text{ Here a=2, b=-1, c=-8})$$

Discriminant =
$$b^2 - 4ac = (-1)^2 - 4(2)(-8)$$

$$= 1 + 64 = 65$$

169. d)
$$-6(2x^2+kx+4=0$$
 (Substituting x=2)

$$2(2)^2 + k(2) + 4 = 0$$

$$2(4) + 2k + 4 = 0$$

$$8 + 2k + 4 = 0$$

$$2k + 12 = 0 \Rightarrow 2k = -12 \Rightarrow k = \frac{-12}{2} = -6$$
)

170. c)
$$x^2-3x-2=0$$

171. a)
$$\frac{2}{3}$$
 $(3x - 2) = 0 \Rightarrow 3x = 2 \Rightarrow x = \frac{2}{3}$)

172. b)
$$2x^2-20x+5=0$$
 $(2x^2-5(4x-1)=0$
 $2x^2-20x+5=0)$

173. b) Distinct real roots (Discriminant =
$$b^2 - 4ac$$
 [2 $x^2 - x - 3 = 0$ here a=2, b=-1, c=-3] = $(-1)^2 - 4(2)(-3)$

$$= 1 + 24 = 25 > 0$$

- 174. b) $x^2+(x+2)^2=164$ (x and (x+2) are two consecutive even numbers)
- **175.** c) $x^2+(x+2)^2=130$ (x and (x+2) are two consecutive odd numbers)

Unit 8: Introduction to Trigonometry

176. c)
$$\frac{3}{4}$$
(sin 60° X cos 30°) $\frac{\sqrt{3}}{3}$ X $\frac{\sqrt{3}}{3} = \frac{\sqrt{3}^2}{4} = \frac{3}{4}$)

177. a)
$$\cos\theta$$
 (Complementary angle)

179. b)
$$0 (\tan \theta - \cot(90^0 - \theta)) [\cot(90^0 - \theta) = \tan \theta (\text{Complimentary angle})]$$

$$\Rightarrow \tan \theta - \tan \theta = 0)$$

180. b)
$$1 \quad (\angle A = \angle C \& \bot B = 90^{0} \Rightarrow \angle A = \angle C = 45^{0} \Rightarrow, BC = AB = 10 \text{ cm}$$

 $\tan A = \frac{BC}{AB} = \frac{10}{10} = 1 \text{ or } \tan 45^{0} = 1$

181. d)
$$\frac{15}{8}$$
 ($15 \cot A = 8$
 $\cot A = \frac{8}{15} \Rightarrow \tan A = \frac{15}{8}$ (reciprocal ratio)

182. a)
$$30^0 (\sqrt{3} \tan \theta = 1 \Rightarrow \tan \theta = \frac{1}{\sqrt{3}} \Rightarrow \theta = 30^0)$$

183. c)
$$2 (\tan 45^0 + \cot 45^0 = 1 + 1 = 2)$$

184. a)
$$\frac{1}{\sqrt{3}} \left(\cot (90^{\circ} - 30^{\circ}) = \tan 30^{\circ} = \frac{1}{\sqrt{3}} \operatorname{orcot} (90^{\circ} - 30^{\circ}) = \cot 60^{\circ} = \frac{1}{\tan 60} = \frac{1}{\sqrt{3}} \right)$$

185. b)
$$\frac{8}{5} (\sin \alpha + \cos \theta = \frac{4}{5} + \frac{4}{5} = \frac{8}{5})$$

186. c) 1
$$\left(\frac{\sin 80^{0}}{\cos 10^{0}} = \frac{\sin 80^{0}}{\sin (90-10)^{0}} = \frac{\sin 80^{0}}{\sin 80^{0}} = 1\right)$$

187. c)
$$45^{0}(3 \tan \theta = 3 \Rightarrow \tan \theta = \frac{3}{3} \Rightarrow \tan \theta = 1 \Rightarrow \theta = 45^{0})$$

188. b) 1
$$(\cos^2\theta + \frac{\cos^2(90^0 - \theta)}{\cos^2\theta + \sin^2\theta} = 1)$$

189. a)
$$\sin^2\theta[(1+\cos\theta)(1-\cos\theta)=(1)^2-\cos^2\theta=1-\cos^2\theta=\sin^2\theta]$$

190. b)
$$10\text{cm} (\bot Y = 90^{\circ}, \angle Z = 30^{\circ} \text{ and } XY = 5\text{cm} \text{ sinz} = \frac{opposite \ side}{hypotenuse} = \frac{xY}{XZ}$$

$$\sin 30^0 = \frac{5}{XZ}$$

$$\frac{1}{2} = \frac{5}{XZ} \Rightarrow XZ = 5X2 = 10cm$$

191. c)
$$72^{0}$$
 ($\sin 18^{0} = \cos A$,
 $=\cos(90^{0}-18^{0}) = \cos A$
 $=\cos 72^{0} = \cos A \Rightarrow \angle A = 72^{0}$)

192. d)
$$\frac{5}{3}$$
 (5 sin A = 3
 $\sin A = \frac{3}{5} \Rightarrow \csc A = \frac{5}{3}$)

193. c)
$$\frac{12}{5}$$
 (tan A = $\frac{Opposite\ side}{Adjacent\ side} = \frac{BC}{BA} = \frac{12}{5}$

194. a)
$$\cot^2 A$$
 $\left(\frac{1-\sin^2 A}{1-\cos^2 A} = \frac{\cos^2 A}{\sin^2 A} = \frac{\cos^$

$$\cot^2\!A\)$$
 Hypotenuse

Adjacent side

195. c)
$$\frac{AC}{BC}$$
 $(SinB = \frac{Opposite\ side}{hypotenuse} = \frac{AC}{BC})$

196. c) 0
$$(\cos^2 17^0 - \sin^2 73^0 \cos^2 17^0 - \cos^2 (90^0 - 73^0) \cos^2 17^0 - \cos^2 17^0 = 0$$
)

197. b) 1
$$(\tan 10^{0} \text{ X} \tan 80^{0} \tan 10^{0} \text{ X} \cot (90^{0}-80^{0}) \tan 10^{0} \text{ X} \cot 10^{0}$$

$$tan10^{\circ}X \frac{1}{tan10^{\circ}} = 1$$

198. a)
$$0 \left(\frac{1-\tan^2 45}{1+\tan^2 45} = \frac{1-(1)^2}{1+(1)^2} = \frac{1-1}{1+1} = \frac{0}{1} = 0 \right)$$

199. b)
$$1 \left(\frac{\tan 55^{\circ}}{\cot 35^{\circ}} = \frac{\tan 55^{\circ}}{(\tan (90^{\circ} - 35^{\circ})} = \frac{\tan 55^{\circ}}{\tan 55^{\circ}} = 1 \right)$$

200. d)
$$\frac{5}{12}$$
 (Cot A = $\frac{Adjacent\ side}{Opposite\ side} = \frac{5}{12}$ ಅಥವಾ $\tan A = \frac{Opposite\ side}{Adjacent\ side} = \frac{12}{5}$: Cot A = $\frac{5}{12}$)

201. d)
$$90^{0}$$
 $(\sin \alpha = \frac{1}{2} \Longrightarrow \alpha = 30^{0} \& \cos \beta = \frac{1}{2} \Longrightarrow \beta = 60^{0} : \alpha + \beta = 30^{0} + 60^{0} = 90^{0})$

202. c)
$$\tan 30^{\circ}$$

203. a)
$$10 (10\sin^2\theta + 10\cos^2\theta = 10(\sin^2\theta + \cos^2\theta \ 0 = 10(1) = 10$$

204. c)
$$0 (\cos 48^{\circ} - \sin 42^{\circ} \cos 48^{\circ} - \cos (90^{\circ} - 42^{\circ}) \cos 48^{\circ} - \cos 48^{\circ} = 0)$$

206. c) 1
$$\left(\frac{\cos ec\ 31^0}{\sec 59^0} = \frac{\sec (90^0 - 31^0)}{\sec 59^0} = \frac{\sec 59^0}{\sec 59^0} = 1\right)$$

207. b)
$$\frac{3}{4} (\sin^2 60^0 = (\frac{\sqrt{3}}{2})^2 = \frac{3}{4})$$

209. b)
$$1 + \tan^2 A$$

211. d)
$$\cos 0^0$$

212. a)
$$1 (\sin 30^0 + \cos 60^0 = \frac{1}{2} + \frac{1}{2} = 1)$$

213. b)
$$\frac{5}{11}$$
 (5 sec A = 11
Sec A = $\frac{11}{5}$ \Rightarrow Cos A = $\frac{5}{11}$

214. a)
$$\frac{12}{13}$$
 ($\cos (90^0 - \theta) = \sin \theta = \frac{Opposite.side}{hypotenues} = \frac{12}{13}$)

215. b)
$$60^0$$
 $2\cos\theta = 1 \Rightarrow \cos\theta = \frac{1}{2} \Rightarrow \theta = 60^0$

216. b)
$$45^0 \sqrt{2} \cos \theta = 1 \Rightarrow \cos \theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = 45$$

217. d)
$$30^0$$
 $\sqrt{3} \tan \theta = 1 \Rightarrow \tan \theta = \frac{1}{\sqrt{3}} \Rightarrow \theta = 30^0$

218. b)
$$\frac{4}{5}$$
 $\sin (90^{\circ}-A) = \cos A = \frac{adjacent}{hypotenues} = \frac{4}{5}$

219. c) 1
$$\cos A + \cos^2 A = 1$$

 $\Rightarrow \cos A = 1 - \cos^2 A = \sin^2 A -----(1)$
 $= \cos A + \sin^4 A = \sin^2 A + (\sin^2 A)^2$
 $= \cos A + \cos^2 A = 1$

220. b)
$$5\sqrt{3}$$
 cm $\angle A = 90^{\circ}$

$$\sin 60^{\circ} = \frac{opposite}{hypotenues} = \frac{oA}{10}$$

$$\Rightarrow \frac{\sqrt{3}}{2} = \frac{oA}{10} \Rightarrow OA = \frac{\sqrt{3}}{2} X 10 = 5\sqrt{3}$$

Unit 9 : Some applications of Trigonometry

221. c)
$$60^{0}$$
 $(\tan\theta = \frac{Opp.side}{Adj.side} = \frac{4\sqrt{3}}{4} = \sqrt{3} \Rightarrow \theta = 60^{0}$

222. c)
$$30\text{m}$$
 ($\tan 45^{\circ} = \frac{Opp.side}{Adj.side} = \frac{AC}{BC}$

$$1 = \frac{AC}{30} \Rightarrow AC = 30m$$

(Note: If angle is 45⁰ then opposite side and adjacent sides are equal)

223. b)
$$30^{0}$$
(Alternate angles)

224. b)
$$30^{0} (\operatorname{Sin C} = \frac{Opp.side}{Hypo.} = \frac{AB}{AC} = \frac{5}{10} = \frac{1}{2}$$

 $\operatorname{Sin C} = = \frac{1}{2} \Rightarrow \angle C = 30^{0}$

225. c) 15m (If angle is 45⁰ then opposite side and adjacent sides are equal)

$$\tan 45^0 = \frac{Opp.side}{Adj.side} = \frac{AC}{BC}$$

$$1 = \frac{15}{BC} \Rightarrow BC = 15m$$

226. a)
$$30^{0} \left(\frac{\text{Height of the pole}}{\text{length of the shadow}} \right) = \frac{\text{Opp.side}}{\text{Adi.side}} = \frac{1}{\sqrt{3}} = \tan \theta \Rightarrow \theta = 30^{0}$$

227. b)
$$20\sqrt{3}$$
m ($\tan 60^0 = \frac{Opp.side}{Adj.side} = \frac{AB}{BC}$

$$\sqrt{3} = \frac{AB}{30}$$

$$\Rightarrow 20\sqrt{3} = AB$$

228. a)
$$30^{0} (\frac{Height \ of \ the \ pole}{length \ of \ the \ shadow} = \frac{Opp.side}{Adj.side} = \frac{2}{2\sqrt{3}} \Rightarrow \theta = 30^{0}$$

 $\Rightarrow \tan\theta = \frac{1}{\sqrt{3}} \Rightarrow \theta = 30^{0}$

229. b) 45^{0} (If opposite side and adjacent sides are equalthenangle is 45^{0})

$$(\tan\theta = \frac{Opp.side}{Adj.side} = 1 = \Rightarrow \theta = 45^{\circ}$$

230. d)
$$\frac{100}{\sqrt{3}}$$
m($\tan 30^0 = \frac{Opp.side}{Adj.side} = \frac{AB}{BC}$
 $\frac{1}{\sqrt{3}} = \frac{AB}{100}$
 $\Rightarrow \frac{100}{\sqrt{3}} = AB(\frac{100X\sqrt{3}}{\sqrt{3}Y\sqrt{2}}) = \frac{100\sqrt{3}}{3}$

231. c) 45° (If opposite side and adjacent sides are equalthen angle is 45°)

$$(\tan\theta = \frac{opp.side}{Adj.side} = \frac{15}{15} = 1 \Rightarrow \theta = 45^{\circ})$$

232. b)
$$50\sqrt{3}$$
 Sin $60^{\circ} = \frac{Opp.side}{Hypo.}$ m
$$\frac{\sqrt{3}}{2} = \frac{75}{AC} \Rightarrow AC = \frac{75X2}{\sqrt{3}} = \frac{150}{\sqrt{3}} = \frac{150X\sqrt{3}}{\sqrt{3}X\sqrt{3}} = \frac{150X\sqrt{3}}{3} = 50\sqrt{3}$$

233. b) $75\sqrt{3}$ m ($\angle C = 30^{\circ}$ (Alternate angle)

$$\tan 30^0 = \frac{Opp.side}{Adj.side} = \frac{AB}{BC} = \frac{75}{BC}$$

$$\frac{1}{\sqrt{3}} = \frac{75}{BC} \Rightarrow BC = 75\sqrt{3}$$

234. d)
$$16m (\cos 60^{\circ} = \frac{Adj.side}{Hypo} = \frac{BC}{AC}$$

 $\frac{1}{2} = \frac{8}{AC} \Rightarrow AC = 8x2 = 16m$)

236. a)
$$50\sqrt{3} \text{ m}(\tan 30^{0} = \frac{opp.side}{Adj.side} = \frac{AB}{BC} = \frac{50}{BC}$$

$$\frac{1}{\sqrt{3}} = \frac{50}{BC} \Rightarrow BC = 50\sqrt{3})$$

Unit 10: Statistics

(Middle number of 14 and 16 is Median)

Median =
$$\frac{14+16}{2} = \frac{30}{2} = 15$$
)

239. b) 17.5 (Mid point=
$$\frac{10+25}{2} = \frac{35}{2} = 17.5$$
)

240. d) 3(Mean=
$$\frac{1+2+3+4+5}{5} = \frac{15}{5} = 3$$
)

242. a) 20 (Mean
$$\bar{X} = \frac{\sum f_i x_i}{\sum f_i} = \frac{400}{20} = 20$$
)

244. b) 5.6(Mean=
$$\frac{\text{Sum of first five prime numbers}}{5} = \frac{2+3+5+7+11}{5} = \frac{28}{5} = 5.6$$
)

$$Mode = 3(15) - 2(16) = 45-32 = 13$$

249. b)
$$35 \text{ (Mean } = \frac{50+20}{2} = \frac{70}{2} = 35)$$

251. c) 1 (Mean =
$$10 = \frac{11+8+9+12+x}{5}$$

$$10x5 = 40 + x$$

$$\Rightarrow 50 = 40 + x \Rightarrow x = 50 - 40 = 10$$

$$12 = 3(Median) - 2(24)$$

$$12 = 3(Median) - 48$$

$$12 + 48 = 3$$
(Median)

$$60 = 3(Median) \Rightarrow Median = \frac{60}{3} = 20$$

255. b) 5 (Mean=
$$\frac{1+3+5+7+9}{5} = \frac{25}{5} = 5$$
)

257. c)
$$1 + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right] h$$

259. d)
$$x > 8$$
 (The class interval which has maximum frequency is modal class)

261. b)
$$(30-40)(\frac{n}{2} = \frac{60}{2} = \text{Class interval which has 30th})$$

262. a)
$$1 + \left[\frac{\frac{n}{2} - C_f}{f} \right] h$$

264. c) 55 (Mean =
$$42 = \frac{27+30+45+60+35+x}{6}$$

 $42x6 = 197+x$
 $\Rightarrow 252=197+x \Rightarrow x = 252-197 = 55$

Unit 11: Surface area and Volumes

265. d) 100m^3 (Volume of cone= $\frac{1}{3}$ Volume of Cylinder= $\frac{1}{3}$ X 300 =100)

266. c) 616cm^2 (Surface area of = $4\pi \text{r}^2$

$$=4x\frac{22}{3}$$
 x 7x/ = 4x22x7= 616

267. c)
$$\pi(r_1 + r_2)$$
l

268. b)
$$2 \pi r(r+h)$$

269. c)
$$\frac{4}{3}\pi r^3$$

270. a)
$$l^2 = h^2 + r^2$$

271. c)
$$\sqrt{h^2 + r^2}$$

272. a) 36 cm^2 (Volume of Cube $a^3 = 27 \Rightarrow a = 3$

:Lateral Surface Area of Cube= $4a^2$ = 4x3x3=36)

273. b)
$$\frac{4}{3}\pi r^3 = \frac{1}{3}\pi R^2 h$$

274. d) 192 cm² (Curved Surface Area of Cylinder = $\frac{2\pi r}{h}$ = $\frac{24}{x}$ x8 = 192)

275. c) 6cm (
$$12x6x3 = 216 = a^3 \Rightarrow a = \sqrt[3]{216} = 6$$
)

276. c)
$$\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1r_2)$$

277. c) 220cm^2 (Curved Surface Area of Cone = πrl

$$=\frac{22}{4}$$
 x/1x10= 220)

278. b)
$$\frac{4}{3}\pi R^3 = \pi r^2 h$$

279. b) 15cm(Volume of Cone = Volume of Cylinder)

$$\frac{1}{3}$$
 x h₁ = 5 \Rightarrow h₁= 15

280. b) 4:3

$$R^3: r^3 = 64:27$$

R:
$$r = \sqrt[8]{64}$$
 : $\sqrt[8]{27} = 4:3$

i.
$$\frac{1}{3}\pi R^2 h = \frac{4}{3}\pi r^3 (h=r)$$

ii.
$$\frac{1}{3}\pi R^2 r = \frac{4}{3}\pi r^3$$
 (Cancellation of $\frac{1}{3}$ mand r of LHS and RHS)

iii.
$$\frac{1}{3}\pi R^2 = \frac{4}{3}\pi r^2$$

iv.
$$R^2 = 4r^2 \Rightarrow r = \sqrt{4r^2} = 2r$$

282. b)
$$3\pi r^2$$

284. c)
$$2\pi r^2 + \pi r l$$
 (Total Surface Area of Toy

$$r^2$$
: $R^2 = 4^2$: $5^2 = 16:25$

$$^{4}_{8}\Pi R^{3}: ^{4}_{7}\Pi r^{3}=27:8$$

$$R^3: r^3 = 27:8$$

$$R: r = \sqrt[8]{27} : \sqrt[8]{8} = 3:2$$

288. b)
$$\frac{1}{3}\pi H(R^2+r^2+Rr)+\pi r^2h$$

289. d) 8(No. of balls=
$$\frac{\text{Volume of } 4\text{cm} radius}{\text{Volume of } 2\text{cm } radius}$$

$$=\frac{\frac{4}{3}\pi R^3}{\frac{4}{3}\pi r^3} = \frac{R^3}{r^3} = \frac{4^3}{2^3} = \frac{64}{8} = 8$$

291. a)
$$2X2\pi r^2 + 2\pi rh$$

292. b)
$$\pi r(r+1)$$

293. b)
$$\frac{2}{3}\pi r^3$$

294. a)
$$\frac{2}{3}\pi r^3 + \frac{1}{3}\pi r^2 h$$

296. d)
$$77\text{cm}^2(4\pi r^2 = 154 \implies 2\pi r^2 = \frac{154}{2} = 77)$$

297. d)
$$308 \text{ cm}^2 (2\pi r^2 = 2x \frac{22}{7} \times 7 \times 7 = 308)$$

298. c)
$$462 \text{ cm}^2 (3\pi r^2 = 3x \frac{22}{7} \times 7 \times 7 = 462)$$

299. d)
$$440 \text{ cm}^2$$
 $(2\pi \text{rh} = 2x \frac{22}{7} \times 7 \times 10 = 440)$

300. b) $2\pi rh$ (Pipe means lateral surface area)

301. c)
$$1960\pi$$
 cm³(2π r = 88

$$\Rightarrow 2x \frac{22}{7} \times r = 88 \Rightarrow r = \frac{88 \times 7}{2 \times 22} = 14$$

: Volume= $\pi r^2 h = \pi \times 14 \times 14 \times 10 = 1960\pi$

302. b)
$$35\pi \text{ cm}^2 (2\pi r = 22 \Rightarrow 2x \frac{22}{7} \text{ x } r = 22 \Rightarrow r = \frac{7}{2}$$
 $2\pi r \text{xh} = 22 \text{ x } 5 = 110$ vi. $2\pi r \text{h} = 2x\pi \text{ x } \frac{7}{2} \text{x } 5 = 35 \pi$ $110 \text{ x } \frac{\pi}{\pi} = 110 \text{ x } \pi \text{ x } \frac{7}{22} = 35 \pi$

303. b) $\pi(r_1 + r_2) l + \pi r_1^2 + \pi r_2^2$ (lateral surface area of frustum of cone)