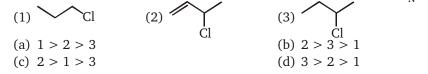
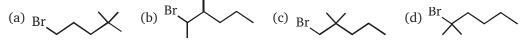
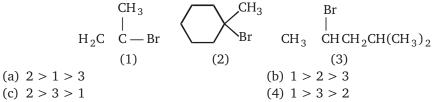
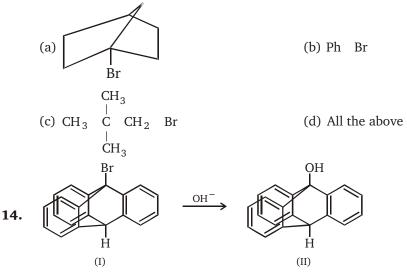

ALKYL HALIDES

Substitution Reactions $(S_{N^1}, S_{N^2}, S_{N^i})$

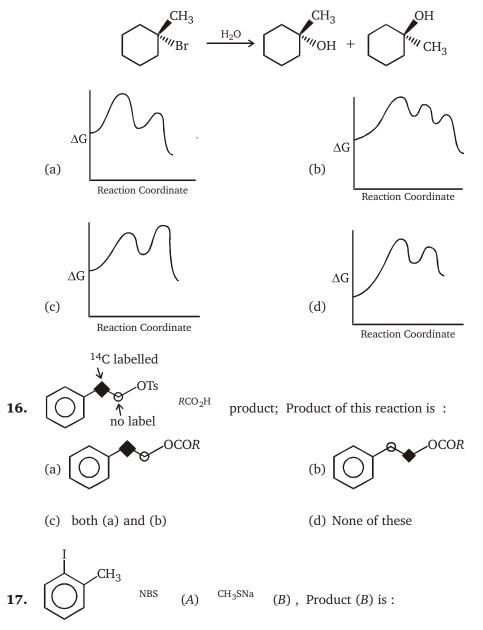


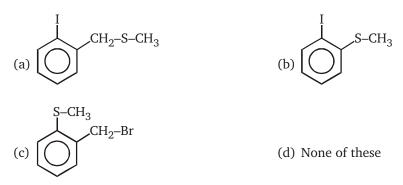

8. Which of the following alkyl halide undergo rearrangement in S_{N^1} reaction ?

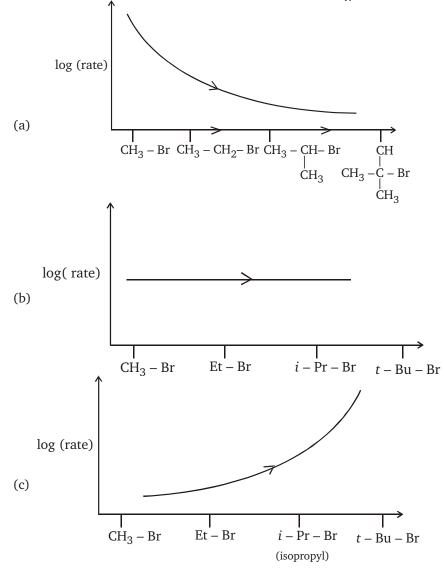

9. Arrange the following three chlorides in decreasing order towards S_{N^1} reactivity.

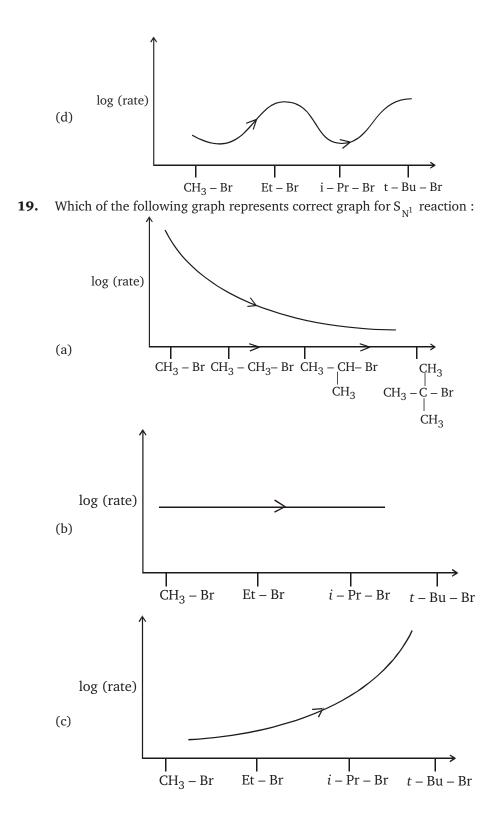

10. Which compound undergoes nucleophilic substitution with NaCN at the fastest rate ?

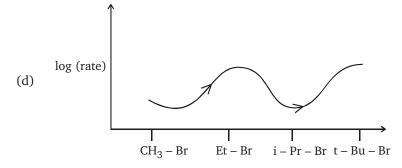
11. Rank the following in order of decreasing rate of solvolysis with aqueous ethanol (fastest slowest)

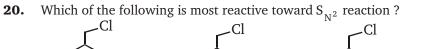


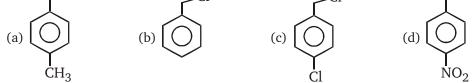

- **12.** The reaction of 4-bromobenzyl chloride with sodium cyanide in ethanol leads to the formation of :
 - (a) 4-bromobenzyl cyanide
- (b) 4-cyanobenzyl chloride
- (c) 4-cyanobenzyl cyanide (d) 4-bromo-2-cyanobenzyl chloride
- 13. Which of the following reactant will not favour nucleophilic substitution reaction ?

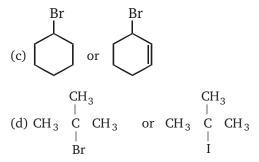

Conversion of I to II:


- (a) takes place by $\rm S_{N^1}$ (c) takes place both by $\rm S_{N^1}$ and $\rm S_{N^2}$
- (b) takes place by S_{N²}(d) does not take place
- Which is the correct reaction coordinate diagram for the following solvolysis reaction ? 15.



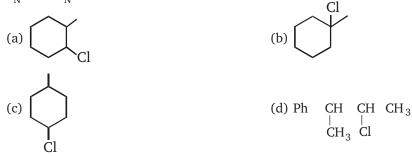




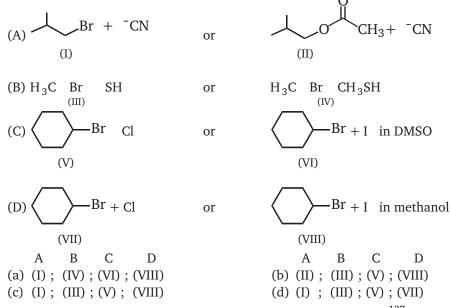


21. Among the given pairs, in which pair first compound reacts faster than second compound in S_{N^1} reaction ?

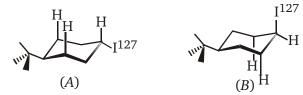
Cl


(a)
$$CH_3 CH_2 CH_2 CH_2 Br \text{ or } CH_3 CH_2 CH_2 CH_3$$

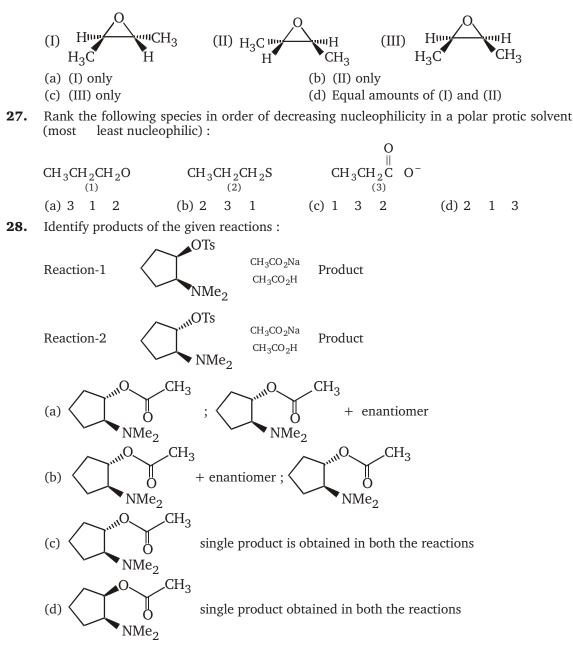
 Br
(b) $CH_3 CH_2 CH_2 CH_2 Or CH_3 CH CH_3$
 Br
(b) $CH_3 CH_2 CH_2 CH_2 Or CH_3 CH CH_3$
 Br
(c) $CH_3 CH CH_3$
 $CH_3 CH CH_3$

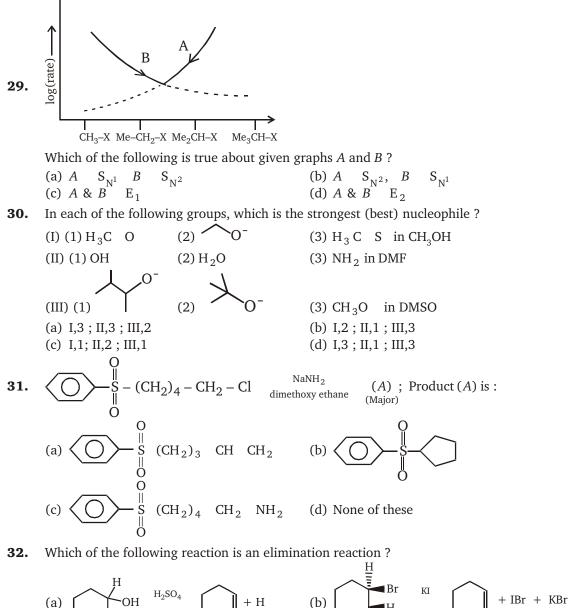

22. What is the major product of the following reaction ?

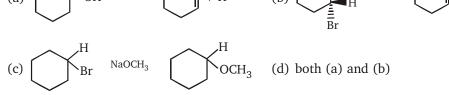
 H_2C CH CH₂ OH HBr_{excess} Product


 ${\rm S}_{{\rm N}^1}$ and ${\rm S}_{{\rm N}^2}$ products are same with (excluding stereoisomer) : 23.

Consider the nucleophilic attacks given below. Select in each pair that shows the greater S_{N^2} 24. reaction rate.

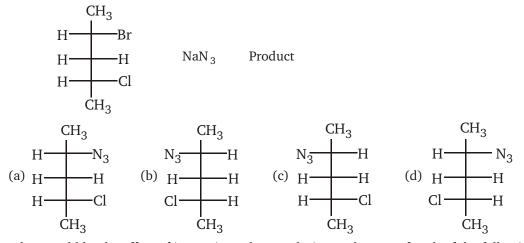



Which of the two stereoisomers of 4-t-butylcyclohexyl iodide ($^{127}\mathrm{I}$) will undergo $\mathrm{S}_{\mathrm{N}^2}$ 25. substitution with ¹²⁸I faster, and why ?



- (a) A will react faster because it is the more stable of the two isomers
- (b) A will react faster because it will yield a more stable product, and the transition state for both reactions is of the same energy
- (c) A will react faster because the approach of 128 I can depart unhindered.

- (d) *B* will react faster because it is less stable than *A*, and the transition state for both reactions is of the same energy
- **26.** (*Z*)-2-Butene reacts with Br_2/H_2O . The resulting bromohydrin when treated with methoxide in methanol undergoes an intramolecular S_{N^2} reaction. Taking into consideration the stereochemical consequences of the reaction mechanism involved, choose the final product(s) of these transformations.

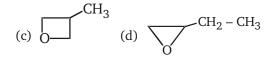


33.
$$\bigcup_{O} CH_2 - Cl \xrightarrow{CH_3ONa} Product$$

Which of the following products can be obtained from above reaction ?

(a)
$$\bigcirc CH_2 - OCH_3$$
 (b) $\bigcirc CH_3O$ (c) $\bigcirc CH_3$ (d) All of these

34. What is the principal product of the following reaction ?


35. What would be the effect of increasing solvent polarity on the rate of each of the following reactions ? (Nu neutral nucleophile)

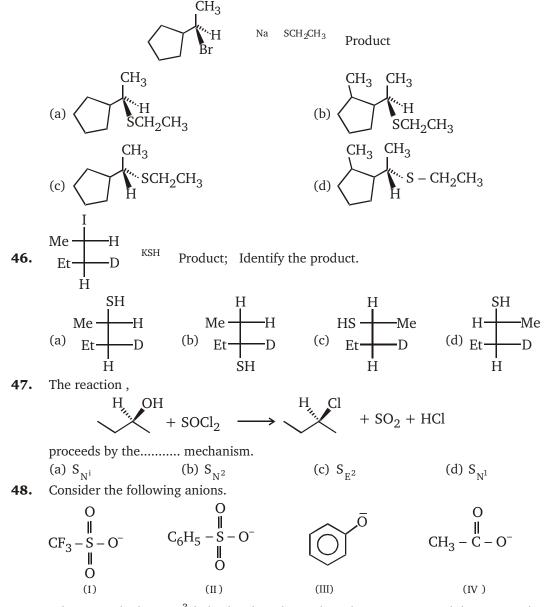
(A) Nu <i>R L</i>	Nu R L		
(a) increases	(b) decreases	(c) constant	(d) can not be predicted
(B) <i>R L R</i>	:L		
(a) increases	(b) decreases	(c) constant	(d) cannot predict
Which of the followi	ng is most reactive tow	ard S_{N^2} reaction ?	

- (a) $CH_2 CH CH_2 Cl$ (b) $Ph CH_2 Cl$ (c) Me - O Cl (d) $Ph CH_2 Cl$ $\parallel O CH_2 Cl$
- **37.** 4-chloro-1-butanol + NaOH (*B*) Product (*B*) of the above reaction is :

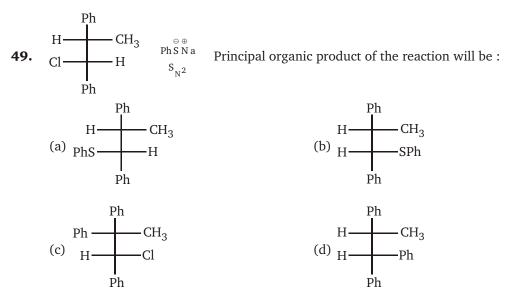
36.

- 38. In the given pairs of alkyl-halide, in which pair the first compound is more reactive than second compound toward S_{N^2} reaction ?

 - (a) $(CH_3)_2CHBr$ or CH_3 CH_2 CH_2 Br (b) CH_3 CH_2 CH_2 Br or CH_3 CH_2 CH_2 I
 - (c) Ph Br or CH_3 CH_2 CH_2 Br
 - (d) CH_2 CH CH_2 Cl or H_2C CH Cl
- 39. In the given pair of reaction in which pair the second reaction is more reactive than first toward S_{N^2} reaction ?
 - (a) $CH_3 CH_2 Cl CH_3 CH_2 O^-$ Et O Et (or) CH₂ CH₂ Cl CH₃ CH₂ OH Et O Et (b) CH₃ CH₂ Cl EtO Et O Et (or) $CH_3 CH_2 Cl EtS^- CH_3 CH_2 S Et$ (c) Et Cl CH_3O Et O CH_3 (or) (1m)(2m) Et Cl CH₃O Et O CH₃ (2m) (1m) (d) Et Br Ph₃P Et PPh₃ (or) Et Br Ph₃N E NPh₃
- 40. Among the following pair of reactions in which pair the second reaction is more reactive than first in S_{N^1} reaction ?

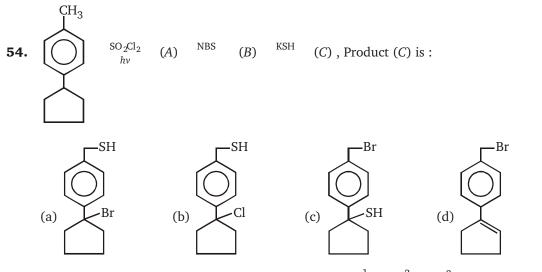

(a) $Me_3CCl H_2O$ Me₃COH (or) Me_3CBr H_2O Me₃COH (b) $Me_3CCl CH_3OH Me_3C - OCH_3$ (or) $Me_3C - Cl + H_2O$ Me₃C-OH

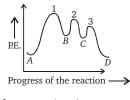
- (c) $Me_3CCl H_2O$ (or) $Me_3CCl H_2O$ (1M) (2M)
- (d) All of these
- Which is a true statement concerning the transition state of an $S_{_{\rm N}}{}^2$ reaction ? 41.
 - (a) Closely resembles a carbocation intermediate
 - (b) The electrophile is responsible for the reaction
 - (c) Lower is energy than the starting materials
 - (d) Involves both the nucleophile and electrophile
- Increasing the concentration of a nucleophile in a typical S_{N^2} reaction by a factor of 10 will **42**. cause the reaction rate to :
 - (a) increase by a factor of 10
- (b) increase by a factor of 10^2 (d) remain about the same
- Decreasing the concentration of an electrophile in a typical S_{N^2} reaction by a factor of 3 will 43. cause the reaction ratio to :
 - (a) increase by a factor of 3

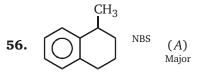

(c) decrease by a factor of 10

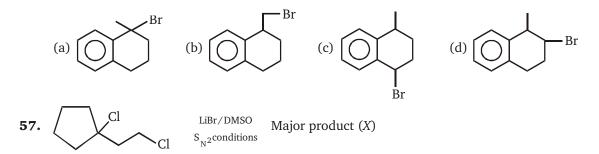
- (b) increase by a factor of 3^2
- (c) decrease by a factor of 3
- (d) remain about the same

- **44.** Increasing the concentration of an electrophile in a typical S_{N^2} reaction by a factor of 3 and the concentration of the nucleophile by a factor of 3 will change the reaction rate to :
 - (a) increase by a factor of 6
- (b) increase by a factor of 9
- (c) decrease by a factor of 3
- (d) remain about the same
- 45. Consider the following reaction and select the best choice that represents the reaction.

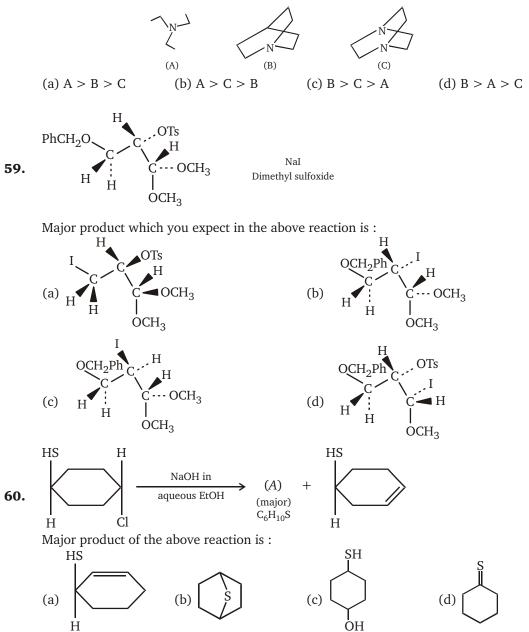

When attached to sp^3 -hybridized carbon, their leaving group ability in nucleophilic substitution reaction decreases in the order : (a) I > II > III > IV (b) I > II > IV > III (c) IV > I > II > II > II > II > I > I

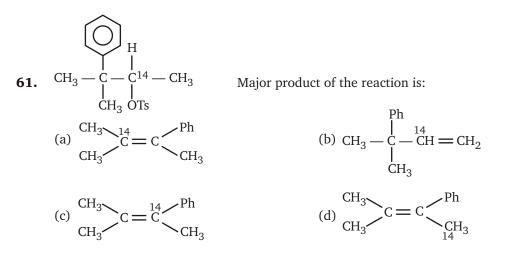

- **50.** Reaction of *R*-2-butanol with *p*-toluenesulphonyl chloride in pyridine followed by reaction with LiBr gives:
 - (a) *R*-2-butyl bromide (b) *S*-2-butyl tosylate
 - (c) *R*-2-butyl tosylate (d) *S*-2-butyl bromide
- **51.** The compound which undergoes S_{N^1} reaction most rapidly is :


- **52.** Addition of KI accelerates the hydrolysis of primary alkyl halides because :
 - (a) KI is soluble in organic solvents
 - (b) the iodide ion is a weak base and a poor leaving group
 - (c) the iodide ion is a strong base
 - (d) the iodide ion is a powerful nucleophile as well as a good leaving group
- **53.** Which of the following phrases are not correctly associated with S_{N^1} reaction ?
 - (1) Rearrangement is possible
 - (2) Rate is affected by polarity of solvent
 - (3) The strength of the nucleophile is important in determining rate
 - (4) The reactivity series is tertiary > secondary > primary
 - (5) Proceeds with complete inversion of configuration
 - (a) 3, 5 (b) 5 only
 - (c) 2, 3, 5 (d) 3 only

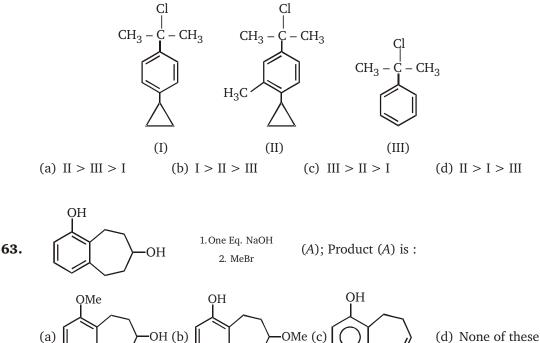

55. Energy profile diagram for an exothermic reaction, $A = \begin{bmatrix} 1 & B \end{bmatrix} = \begin{bmatrix} 2 & C \end{bmatrix} = \begin{bmatrix} 3 & D \end{bmatrix}$, is given below.

The rate determining step of the reaction is : (a) A = B (b) B = C (c) C = D (d) can not predict

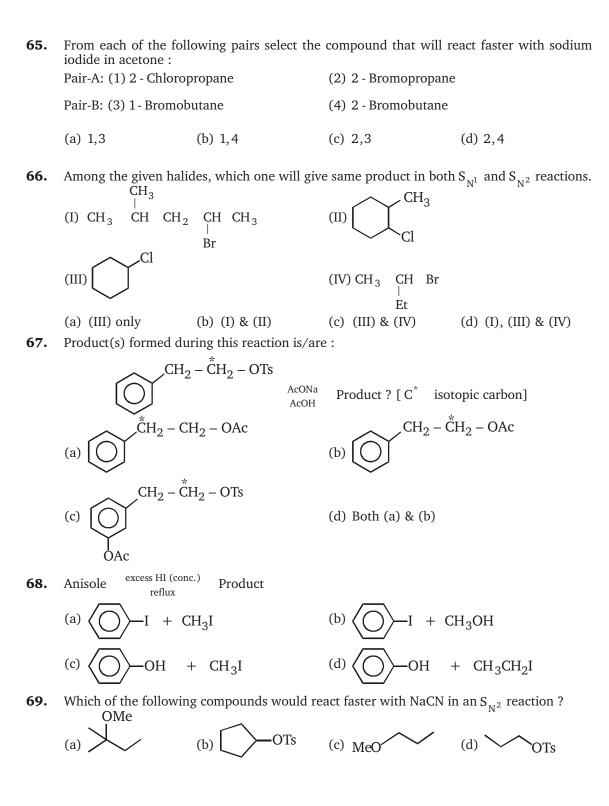

Major product (A) is :

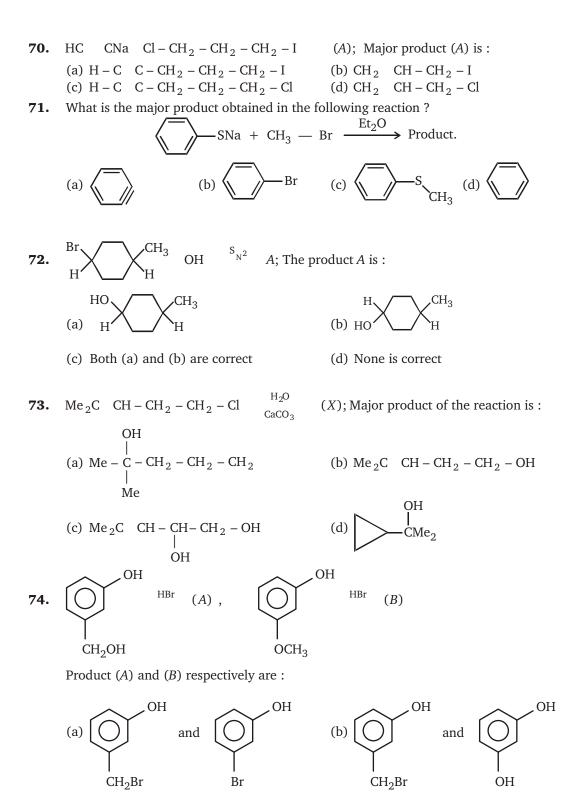


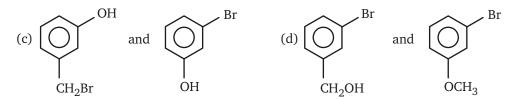
The product *X* is :

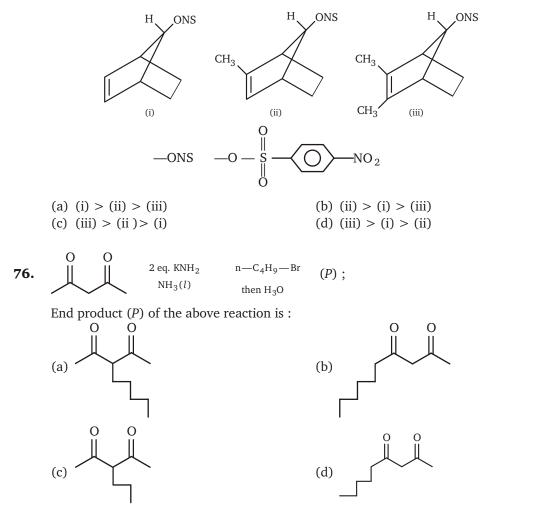


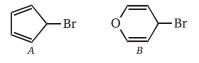
58. Relative rate of reaction of the following amine with methyl iodide is:





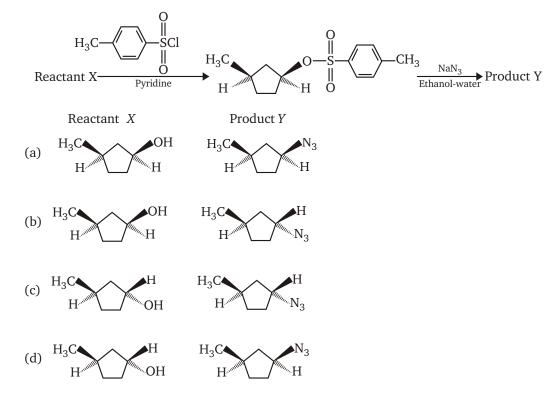

62. The decreasing order of reactivity of the compounds given below towards solvolysis under identical conditions is :


- **64.** (*R*)-2-octyl tosylate is solvolyzed in water under ideal S_{N^1} conditions. The product(s) will be:
 - (a) *R*-2-octanol and *S*-2-octanol in a 1 : 1 ratio
 - (b) R-2-octanol and S-2-octanol in a 1.5 : 1 ratio
 - (c) R-2-octanol only
 - (d) S-2-octanol only

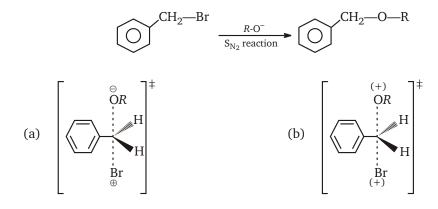


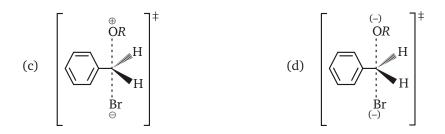
75. Relative rate of reaction with H_2O .

77. Which of the following statements is correct regarding the rate of hydrolysis of the compounds (*A*) and (*B*) by S_{N^1} reaction ?

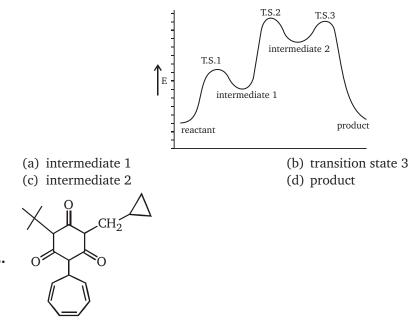


(a) A reacts faster than B


- (b) B reacts faster than A
- (c) Both *A* and *B* reacts at the same rate


(d) Neither A nor B reacts

Transition state of given S_{N_2} is : 79.

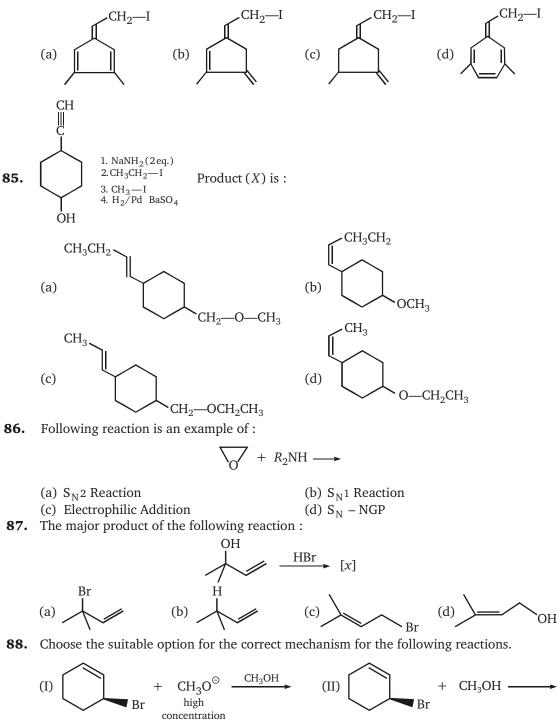


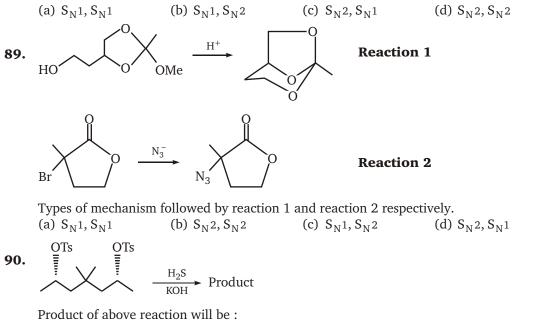
80. $C_6H_{13}Br$ OH $C_6H_{13}OH$ Br is an example of:

(a) Nucleophilic addition

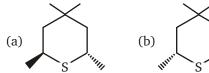
(b) Nucleophilic substitution

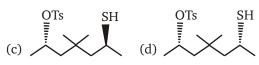
- (c) Electrophilic addition
- (e) Free radical substitution
- (d) Electrophilic substitution
- 81. Transition state 2 is structurally most likely as :


82.


x Number of aromatic compound obtained when above compound undergo complete acidic hydrolysis.

(a) 1 (b) 2 (c) 3 (d) 4


- 83. $S_N 1$ and $S_N 2$ reactions are
 - (a) Both stereospecific
 - (b) Both stereoselective
 - (c) Stereoselective and stereospecific respectively
 - (d) Stereospecific and stereoselective respectively


Most reactive compound toward S_{N^1} is : 84.

¹11

	ANSWERS — LEVEL 1														
1.	(a)	2.	(b)	3.	(c)	4.	(a)	5.	(b)	6.	(b)	7.	(b)	8.	(d)
9.	(b)	10.	(a)	11.	(c)	12.	(a)	13.	(d)	14.	(d)	15.	(b)	16.	(c)
17.	(a)	18.	(a)	19.	(c)	20.	(d)	21.	(b)	22.	(a)	23.	(c)	24.	(c)
25.	(d)	26.	(d)	27.	(d)	28.	(a)	29.	(a)	30.	(d)	31.	(b)	32.	(d)
33.	(d)	34.	(c)	35.	A(a)	35.	B(b)	36.	(d)	37.	(b)	38.	(d)	39.	(b)
40.	(d)	41.	(d)	42.	(a)	43.	(c)	44.	(b)	45.	(c)	46.	(d)	47.	(a)
48.	(b)	49.	(b)	50.	(d)	51.	(b)	52.	(d)	53.	(a)	54.	(b)	55.	(a)
56.	(a)	57.	(b)	58.	(c)	59.	(c)	60.	(b)	61.	(c)	62.	(d)	63.	(a)
64.	(b)	65.	(c)	66.	(d)	67.	(d)	68.	(c)	69.	(d)	70.	(c)	71.	(c)
72.	(b)	73.	(d)	74.	(b)	75.	(c)	76.	(d)	77.	(b)	78.	(b)	79.	(d)
80.	(b)	81.	(c)	82.	(b)	83.	(b,c)	84.	(d)	85.	(b)	86.	(a)	87.	(c)
88.	(c)	89.	(c)	90.	(b)										

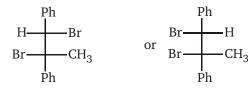
- 1. **Statement-1**: Nucleophilicity order in polar-protic solvent is I < Br < Cl < F **Statement-2**: Due to bigger size of I it is less solvated in polar-protic solvent.
 - (a) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (b) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
 - (c) Statement-1 is true, statement-2 is false.
 - (d) Statement-1 is false, statement-2 is true.
- 2. Statement 1 : CH₃ CH₂ Cl Nal Acetone CH₃ CH₂ I NaCl

Statement- 2: Acetone is polar-protic solvent and solubility order of sodium halides decreases dramatically in order NaI > NaBr > NaCl. The last being virtually insoluble in this solvent and a 1° and 2° chloro alkane in acetone is completely driven to the side of Iodoalkane by the precipitation reaction.

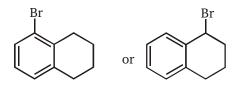
- (a) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for statement-1.
- (b) Statement-1 is true, Statement-2 is true and Statement-2 is Not the correct explanation for statement-1.

Br

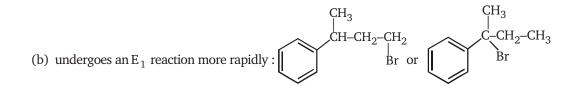
- (c) Statement-1 is true, Statement-2 is false.
- (d) Statement-1 is false, Statement-2 is true.
- **3.** Encircle whichever of the following :
 - (a) is the stronger nucleophile (aprotic solvent) : F or I
 - (b) is the stronger nucleophile (protic solvent) : F or I
 - (c) is the stronger base : F or I
 - (d) is the stronger nucleophile (protic solvent) : NH_3 or NH_2NH_2
 - (e) is the better leaving group : CH_3COO or CH_3SO_3
- **4.** Encircle whichever of the following :

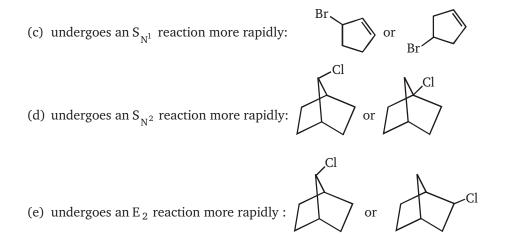

(a) undergoes an S_{N^2} reaction more rapidly, CH_3 Br or CH_3 CH CH_3

(b) undergoes an S_{N^1} reaction more rapidly, CH_3 Br or CH_3 CH_3 CH_3


(c) undergoes an E₂ reaction to give (Z)-1,2-diphenylpropene : PhH C = C PhH C = C Ph

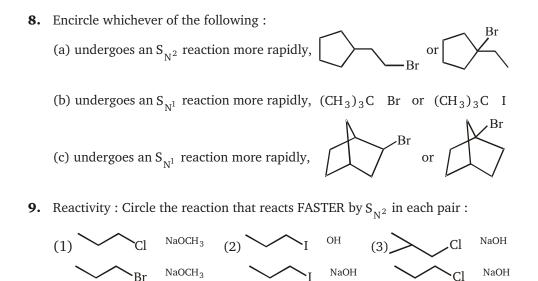
 $\begin{array}{cccc}
Ph & Ph & Ph \\
H & Br & Br & H \\
H & CH_3 & Or & H & CH_3 \\
Ph & Ph & Ph \\
\end{array}$


(d) reacts with NaI to give (Z)-1,2-diphenylpropene :

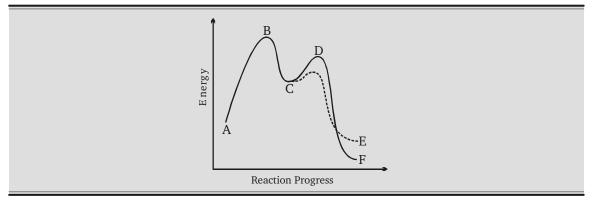


(e) undergoes an \boldsymbol{S}_{N^1} reaction more rapidly,

Encircle whichever of the following :
(a) undergoes an S_{N²} reaction more rapidly : CH₂-Br or Br



6. Match the column :


	Alkyl halide		Relative rate (S _{N1})		Relative rate (S _{N2})	
(a)	CH ₃ – Br	(p)	1	(w)	1200	
(b)	$CH_3 CH_2 - Br$	(q)	1.05	(x)	40	
(c)	CH ₃ CH Br CH ₃	(r)	11	(y)	16	
(d)	$\begin{array}{c} \operatorname{CH}_3\\ \\ \operatorname{CH}_3 & \operatorname{C} & \operatorname{Br}\\ \\ \operatorname{CH}_3 \end{array}$	(s)	1,200000	(z)	1	

7. Matrix :

	Column (I)	Column (II)			
	Compound	Type of reaction			
(a)	CI	(p)	S_{N^1} reaction can take place		
(b)		(q)	$S_{N^2}^{}$ reaction can take place		
(c)	CI	(r)	S _{N¹} is not possible		
(d)		(s)	$S_{N^2}^{}$ is not possible		

10. Consider the potential energy diagram given below

- (X) Name the positions A-D
- (Y) Answer the following questions .

(i) Both reaction pathways are :	EXOTHERMIC	or	ENDOT	THERMIC
(ii) Which step is the rate determining st	ep (RDS) ?	В	or	D
(iii) Which product is most stable ?		Е	or	F
	11 .		. 1.	1

- (iv) In accordance with Hammonds postulate, exothermic reactions tend to have(a) early transition states that are reactant like
 - (b) late transition states that are reactant-like
 - (c) early transition states that are product-like
 - (d) late transition states that are product-like.

A. Br	NaI in acetone 25 C		
(a) S _{N¹}	(b) S _{N²}	(c) E ₁	(d) E ₂
B. Cl	NaOCH ₃ in methanol 50 C		
(a) S _{N1}	(b) S _{N²}	(c) E ₁	(d) E ₂
c.	NaOCH ₃ in methanol 25 C		
(a) S _{N1}	(b) S _{N²}	(c) E ₁	(d) E ₂
D. (CH ₃) ₃ C OH	HBr 48% in H ₂ O 25 C		
(a) S _{N¹}	(b) S _{N²}	(c) E ₁	(d) E ₂
E. (CH ₃) ₂ CH Br	NaCN in ethanol 25 C		
(a) S _{N1}	(b) S _{N²}	(c) E ₁	(d) E ₂
$\mathbf{F.} \overset{\mathrm{H}}{} \overset{\mathrm{H}}{\underset{\mathrm{Br}}} Br$	NaCN in ethanol 25 C		
(a) S _{N¹}	(b) S _{N²}	(c) E ₁	(d) E ₂
G. (CH ₃) ₂ CHCH ₂ C	CH ₂ OH HBr 48% 50		
(a) S _{N1}	(b) S _{N²}	(c) E ₁	(d) E ₂

11.	Select whether the following combinations of reactants will react by substitution (S_{N^1} or S_{N^2}
	mechanism), elimination (E_1 or E_2 mechanism)

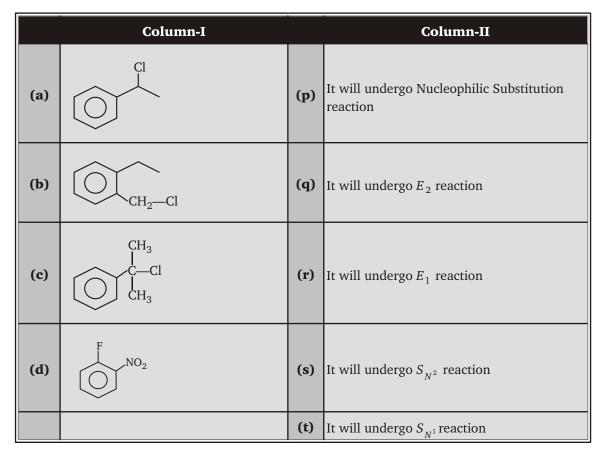
12. Examine the ten structural formulas shown in fig. & select that satisfy each of the following conditions. Write one or more (a through j) in each answer box.

(a)	Br	(b)	$\begin{array}{c} CH_{3} \\ \\ H_{3}C - C - Cl \\ \\ CH_{3} \end{array}$	(c)	CH ₂ - Br
(d)	CH ₃ I	(e)	CH ₂ - Br	(f)	Cl
(g)	$\begin{array}{c} CH_{3} \\ \\ H_{3}C - C - CH_{2} - Cl \\ \\ CH_{3} \end{array}$	(h)	$\begin{array}{c} {}^{\mathrm{H_2C}} \sim {}^{\mathrm{CH_2} - \mathrm{Cl}} \\ \\ {}^{\mathrm{CH_3}} \end{array}$	(i)	Br
(j)	Cl				

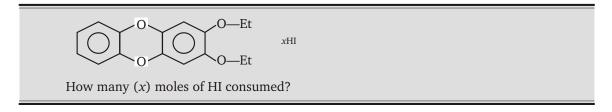
- A. Which compounds give an S_{N^2} substitution reaction on treatment with alcoholic NaSH ?
- **B.** Which compounds give an E $_2$ elimination reaction on treatment with alcoholic KOH ?
- C. Which compounds do not react under either of the previous reaction conditions ?

IS. Select which	reaction from the following reaction pairs will occur faster.
	PART - 1
Reaction A	$ \begin{array}{c} I \\ $
Reaction B	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	PART - 2
Reaction C	Cl CH ₃ NaI DMSO CH ₃
Reaction D	CH ₂ Cl NaI DMSO
	PART - 3
Reaction E	I H NaCl DMSO
Reaction F	I H EtOH H Cl H
	PART - 4
Reaction G	$ \begin{array}{c} $
Reaction H	$ \begin{array}{c} $

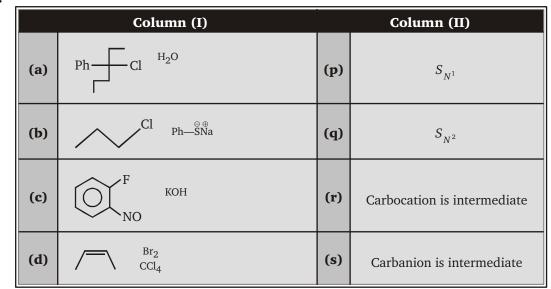
13. Select which reaction from the following reaction pairs will occur faster.


	PART - 5
Reaction I	$\begin{array}{c c} CH_2-Cl & CH_2-I \\ \hline \\ NaI & O \\ acetone \end{array}$
Reaction J	$ \begin{array}{c c} Br & I \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ CH_3 & CH_3 \end{array} $

14. Tick your answer in the given box.


	Alkyl Halide	2-D Structure		Expect S _{N2} (at a reasonable rate)		
(a)	1-Bromobutane	Br		Yes No		
(b)	1- Chlorobutane	Cl		Yes No		
(c)	2-Bromobutane	Br		Yes No		
(d)	2-Chlorobutane	Cl		Yes No		
(e)	2-Chloro-2-methyl propane	Cl		Yes No		

(f)	Bromocyclohexane	Br		Yes
(1)	Bromocyclohexane			No
(g)		Br		Yes
	Bromobenzene			No
(h)	Benzyl bromide	Genzyl bromide		Yes
		\bigcirc		No
(i)	1-Bromo-2,2-dimethyl propane	Br		Yes
				No
	Bicyclo compound	Br		Yes
(j)				No
(1-)	1-bromotriptycene	Br		Yes
(k)				No


15. Match the column

16.

17.

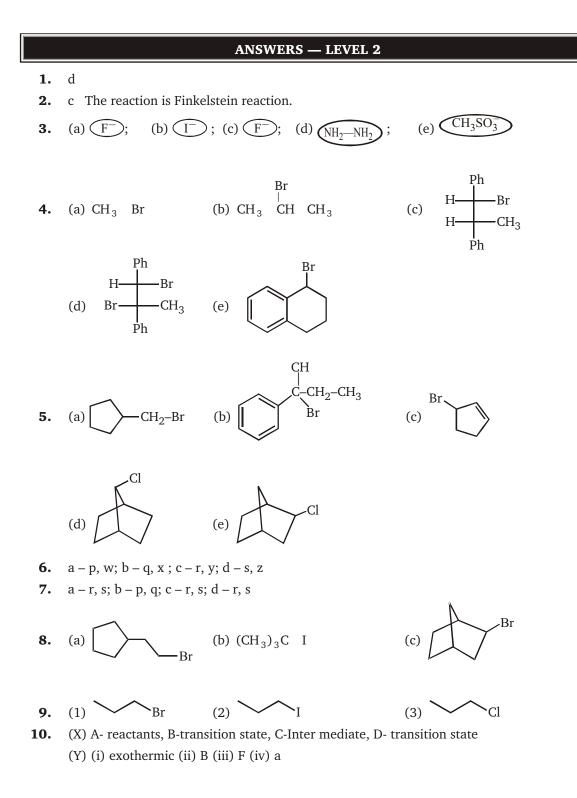
18.

Column (I)		Column (II)	
	(Reaction sequence)		(Reagent required)
(a)	$\rightarrow 0^{\ominus} \rightarrow 0^{\text{Et}}$	(p)	EtO [⊖]
(b)	\rightarrow Br \succ	(q)	EtBr
(c)	\rightarrow \rightarrow OEt	(r)	EtOH∕H [⊕]
(d)	Et - Cl	(s)	Et–Cl/Na ether

19. Choose the one compound within each set that meets the indicated criterion :

Column (I)			Column (II)	
(a)	The compound that reacts with alcoholic KOH to liberate Halide ion through substitution reaction.	(p)	O ₂ N F CH ₃	
(b)	The compound that cannot be prepared by a Williamson ether synthesis.	(q)	OC ₂ H ₅	
(c)	The compound that gives an acidic solution when allowed to stand in aqueous ethanol.	(r)		
(d)	The ether that cleaves more rapidly in HI.	(s)	$\overset{Br}{\overbrace{\overset{L}{\leftarrow}}}_{CH_3}^{Br}$	

20. Comprehension


The first demonstration of the stereochemistry of the S_N^2 reaction was carried out in 1935 by Prof. E.D. Hughes and his colleagues at the University of London. They allowed (R)-2-iodooctane to react with radioactive iodide ion (*I–).

$$\begin{array}{c} CH_{3}CH(CH_{2})_{5}CH_{3} + *I^{-} & \longrightarrow \\ | \\ I \\ 2 \text{-iodooctane} \\ \end{array} \begin{array}{c} CH_{3}CH(CH_{2})_{5}CH_{3} + I^{-} \\ | \\ *I \\ 2 \text{-iodooctane} \\ (radioactive) \end{array}$$

The rate of substitution (rate constant K_s) was determined by measuring the rate of incorporation of radioactivity into the alkyl halide. The rate of loss of optical activity from the alkyl halide (rate constant K_{o}) was also determined under the same conditions. What ratio K_o / K_s is predicted for each of the following stereochemical scenarios :

A. For inversion reaction : (b) $\frac{K_o}{K_s}$ 1 (c) $\frac{K_o}{K_s}$ 1 (d) can not be predicted (a) $\frac{K_o}{K_s}$ 1

- **B.** For equal amounts of both retention and inversion ? (a) $\frac{K_o}{K_s}$ 1 (b) $\frac{K_o}{K_s}$ 1 (c) $\frac{K_o}{K_s}$ 1 (d) can not be predicted

11. A - b; B - b; C - d; D - a; E - b; F - b; G - b**12.** A – c, d, e, f, h; B – b, c, f, i; C – a, g, j 13. Part – 1 2 3 4 5 Reaction-А D Е G Ι 14. Yes – a, f, b, d, h, с, No– e, j, k g, i, 15. a–p, q, r, s, t; b–p,s,t; c–p, q, r t; d–p 16. 2 **17.** a - p, r; b - q; c - s; d - ra-q; b-p; c-r; d-q18. **19.** a – p; b – r; c – s; d – s **20.** A – c; B – a