CHAPTER-6 APPLICATIONS OF DERIVATIVES

Topic-1

Rate of Change of Bodies

Concept covered: Interpretation of dy/dx as a rate measure

Revision Notes

► Interpretation of $\frac{dy}{dx}$ as a rate measure :

If two variables x and y are varying with respect to another variables say t, i.e., if x = f(t) and y = g(t), then by the Chain Rule, we have

$$\frac{dy}{dx} = \frac{dy \, / \, dt}{dx \, / \, dt} \, , \ \frac{dx}{dt} \neq 0$$

Thus, the rate of change of y with respect to x can be calculated by using the rate of change of y and that of x both with respect to t.

Also, if y is a function of x and they are related as y = f(x) then, $f'(\alpha)$, *i.e.*, represents the rate of change of y with respect to x at the instant when $x = \alpha$.

Topic-2

Tangents and Normals

Concepts covered: Slope of a line, equation of tangent, equation of normal, acute angle between two curves

Revision Notes

> Slope or gradient of a line :

If a line makes an angle θ with the positive direction of X-axis in anti-clockwise direction, then $\tan \theta$ is called the slope or gradient of the line. [Note that θ is taken as positive or negative accordingly as it is measured in anti-clockwise (*i.e.*, from positive direction of X-axis to the positive direction of Y-axis) or clockwise direction respectively.]

> Pictorial representation of tangent and normal:

> Facts about the slope of a line :

(i) If a line is parallel to X-axis (or perpendicular to Y-axis), then its slope is 0 (zero) or $\frac{dy}{dx} = 0$.

- (ii) If a line is parallel to Y-axis (or perpendicular to X-axis), then its slope is $\frac{1}{0}$, i.e., not defined or $\frac{dx}{du} = 0$.
- (iii) If two lines are perpendicular, then product of their slopes equals 1, i.e., $m_1 \times m_2 = -1$. Whereas, for two parallel lines, their slopes are equal, i.e., $m_1 = m_2$. (Here in both the cases m_1 and m_2 represent the slopes of respective lines).
- \triangleright Equation of tangent at (x_1, y_1) :
- $(y-y_1) = m_T(x-x_1)$, where m_T is the slope of tangent such that $m_T = \left\lfloor \frac{dy}{dx} \right\rfloor_{at(x_1,y_1)}$ \triangleright Equation of Normal at (x_1,y_1) :

$$(y-y_1) = m_N(x-x_1)$$
, where m_N is the slope of such that $m_N = \frac{-1}{\left[\frac{dy}{dx}\right]_{at(x_1,y_1)}}$

Note that $m_T \times m_N = -1$, which is obvious because tangent and normal are perpendicular to each other. In other words, the tangent and normal lines are inclined at right angle on each other.

 \triangleright Acute angle between the two curves whose slopes m_1 and m_2 are known :

$$\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 \cdot m_2} \right| \quad \Rightarrow \quad \theta = \tan^{-1} \left| \frac{m_2 - m_1}{1 + m_1 \cdot m_2} \right|$$

It is absolutely sufficient to find one angle (generally the acute angle) between the two curves. Other angle between the curves is given by $\pi - \theta$.

Note that if the curves cut orthogonally (i.e., they cut each other at right angles), then it means $m_1 \times m_2 = -1$, where m_1 and m_2 represent the slopes of the tangent of curves at the intersection point.

- Finding the slope of a line ax + by + c = 0:
 - **Step 1:** Express the given line in the standard slope-intercept form y = mx + c, i.e., $y = \left(-\frac{a}{b}\right)x \frac{c}{b}$
 - **Step 2:** By comparing to the standard form y = mx + c, we can conclude $-\frac{a}{b}$ is the slope of given line ax + by + c = 0.

Increasing / Decreasing Functions Concepts covered: Increasing functions, Decreasing functions

Revision Notes

- A function f(x) is said to be an increasing function in [a, b], if as x increases, f(x) also increases, i.e., if α , $\beta \in [a, b]$ and $\alpha > \beta \Rightarrow f(\alpha) > f(\beta)$.
- If $f'(x) \ge 0$ lies in (a, b), then f(x) is an increasing function in [a, b], provided f(x) is continuous at x = a and x = b. A function f(x) is said to be a decreasing function in [a, b], if as x increase, f(x) decreases, i.e., if α , $\beta \in [a, b]$ and $\alpha > \beta \Rightarrow f(\alpha) < f(\beta)$.

If $f'(x) \le 0$ lies in (a, b), then f(x) is a decreasing function in [a, b], provided f(x) is continuous at x = a and x = b. (i) A function f(x) is a constant function in [a, b], if f'(x) = 0 for each $x \in (a, b)$.

(ii) By monotonic function f(x) in interval I, we mean that f is either only increasing in I or only decreasing in I. Finding the intervals of increasing and/or decreasing function:

Algorithm

Step 1 : Consider the function y = f(x).

Step 2: Find f'(x). Step 3: Put f'(x) = 0 and solve to get the critical point(s).

Step 4: The value(s) of x for which f'(x) > 0, f(x) is increasing and the value(s) of x for which f'(x) < 0, f(x) is decreasing.

Mnemonics

Concept: Increasing and Decreasing Function

Mnemonics: Moving Immense Organs Insert Outdoor Extreme Operations

Interpretation:

Topic-4

Maxima and Minima

Concepts covered: Stationary points, absolute maxima/minima, local maxima/minima, first derivative test and second derivative test and application problems based on maxima/minima.

Revision Notes

> Understanding maxima and minima :

Consider y = f(x) be a well defined function on an interval I, then

- (a) f is said to have a maximum value in I, if there exists a point c in I such that f(c) > f(x), for all $x \in I$. The value corresponding to f(c) is called the maximum value of f in I and the point c is called the **point of maximum value of f** in I.
- (b) f is said to have a minimum value in I, if there exists a point c in I such that f(c) < f(x), for all $x \in I$. The value corresponding to f(c) is called the minimum value of f in I and the point c is called the **point of minimum value of** f in I.
- (c) f is said to have an extreme value in I, if there exists a point c in I such that f(c) is either a maximum value or a minimum value of f in I.

The value f(c) in this case, is called an extreme value of f in I and the point c called an **extreme point**.

- \triangleright Let f be a real valued function and also take a point c from its domain. Then
 - (i) c is called a point of **local maxima** if there exists a number h > 0 such that f(c) > f(x), for all x in (c h, c + h). The value f(c) is called the **local maximum value of** f.
 - (ii) c is called a point of **local minima** if there exists a number h > 0 such that f(c) < f(x), for all x in (c h, c + h). The value f(c) is called the **local minimum value** of f.

> Critical points:

It is a point c (say) in the domain of a function f(x) at which either f'(x) vanishes, i.e., f'(c) = 0 or f is not differentiable.

First Derivative Test :

Consider y = f(x) be a well defined function on an open interval I. Now procedure have been mentioned in the following algorithm :

Step 1 : Find
$$\frac{dy}{dx}$$
.

- **Step 2 :** Find the critical point(s) or stationary point(s) by putting $\frac{dy}{dx} = 0$. Suppose $c \in I$ (where I is the interval) be any critical point and f be continuous at this point c. Then we may have the following situations :
 - $\frac{dy}{dx}$ changes sign from **positive to negative** as x increases through c, then the function attains a **local** maximum at x = c.
 - $\frac{dy}{dx}$ changes sign from **negative to positive** as x increases through c, then the function attains a **local**

minimum at x = c.

> Second Derivative Test :

Consider y = f(x) be a well defined function on an open interval I and twice differentiable at a point c in the interval. Then we observe that :

- x = c is a point of local maxima if f'(c) = 0 and f''(c) < 0The value f(c) is called the local maximum value of f.
- x = c is a point of local minima if f'(c) = 0 and f''(c) > 0The value f(c) is called the local minimum value of f.

This test fails if f'(c) = 0 and f''(c) = 0. In such a case, we use **first derivative test** as discussed in the above.

> Absolute maxima and absolute minima:

If f is a continuous function on a **closed interval** I, then f has the absolute maximum value and f attains it atleast once in I. Also f has the absolute minimum value and the function attains it atleast once in I.

Algorithm

- **Step 1 :** Find all the critical points of f in the given interval, *i.e.*, find all the points x where either f'(x) = 0 or f is not differentiable.
- **Step 2:** Take the end points of the given interval.
- **Step 3**: At all these points (*i.e.*, the points found in Step 1 and Step 2) calculate the values of *f*.
- **Step 4 :** Identify the maximum and minimum value of *f* out of the values calculated in Step 3. This maximum value will be the **absolute maximum value** of *f* and the minimum value will be the **absolute minimum value** of the function *f*.

Absolute maximum value is also called as **global maximum value** or **greatest value**. Similarly, absolute minimum value is called as **global minimum value** or the **least value**.