

Functional Groups

FUNCTIONAL GROUPS

In organic chemistry, functional groups are specific groups of atoms or bonds within molecules that are responsible for the characteristic chemical reactions of those molecules. The same functional group will undergo the same or similar chemical reaction(s) regardless of the size of the molecule it is a part of.

Combining the names of functional groups with the names of the parent alkanes generates a powerful systematic nomenclature for naming organic compounds.

TABLE OF COMMON FUNCTIONAL GROUPS

S.N.	Chemical class	Group	Formula	Structural Formula	Prefix	Suffix	Example
1.	Alkane	Alkyl	R(CH ₂) _n H	\mathbb{R}	alkyl	-ane	H H H H H H H Ethane
2.	alkene	alkenyl	R ₂ C CR ₂	R_1 R_3 R_2 R_4	alkenyl-	-ene	H C=CH
3.	Alkyne	Alkynyl	RC CR	R—C C—R	alkynyl-	-yne	H — C ≡ C — H Acetylene (Ethyne)

S.N.	Chemical class	Group	Formula	Structural Formula	Prefix	Suffix	Example
4.	Benzene derivative	Phenyl	RC ₆ H ₅ (RPh)	R—	phenyl-	-benzene	Cumene (2-phenylpropane)
5.	Toluene derivative	Benzyl	RCH ₂ C ₆ H ₅ (R—Ph)	R	benzyl-	1-(substituent) toluene	Benzyl bromide (α-Bromotoluene)
6.	haloalkane	halo	RX	R—X	halo-	alkyl halide	CI Chloroethane (Ethylchloride)
7.	Alcohol	Hydroxyl	ROH	R—0 H	hydroxy-	-ol	H H H H H H H H H H H H H H H H H H H
8.	Ketone	Carbonyl	RCOR	R R'	-oyl-(-COR) or OXO or keto	-one	O CI Acetyl chloride (Ethanoyl chloride)
9.	Aldehyde	Aldehyde	RCHO	RH	formyl-(—COH)	-al	O H Acetaldehyde
10.	Acyl halide	Haloformyl	RCOX	O R X	carbonofluoridoyl- carbonochloridoyl- carbonobromidoyl- carbonoiodidoyl-	-oyl halide	O CI Acyl chloride (Ethanoyl chloride)
11.	Carbonate	Carbonate ester	ROCOOR	R_1 O R_2	(alkoxycarbonyl) oxy-	alkyl carbonate	CI O CI CI CI Triphosgene (bis(trichloromethyl) carbonate)
12.	Carboxylate	Carboxylate	RCOO	R O R	carboxy-	-oate	O O Na * Sodium acetate (Sodium ethanoate)

S.N.	Chemical class	Group	Formula	Structural Formula	Prefix	Suffix	Example
13.	Carboxylic acid	Carboxyl	RCOOH	O R OH	carboxy-	-oic acid	O OH Acetic acid (Ethanoic acid)
14.	Ester	Ester	RCOOR	O OR'	alkanoyloxy- or alkoxycarbonyl	alkyl alkanoate	Ethyl butyrate (Ethyl butanoate)
15.	Hydropero- xide	Hydroperoxy	ROOH	0-0. _{ini} H	hydroperoxy-	alkyl hydroperoxi de	OH tert-Butyl hydroperoxide
16.	Ether	Ether	ROR	R R'	alkoxy-	alkyl ether	Diethyl ether (Ethoxyethane)
17.	Hemiacetal	Hemiacetal	RCH(OR) (OH)	R ¹ O OH OH	alkoxy-ol	-one alkyl hemiacetal	
18.	Hemiketal	Hemiketal	RC(OR)(OH)R	RO OH R'	alkoxy-ol	-one alkyl hemiketal	
19.	Acetal	Acetal	RCH(OR)(OR)	H R—C—OR OR"	dialkoxy-	-al dialkyl acetal	
20.	Orthoester	Orthoester	RC(OR)(OR) (OR)	OR R — C — OR OR	trialkoxy-		
21.	Heterocycle	Methylenedioxy	ROCOR	O R O R'	methylene- dioxy-	-dioxole	1,2-
22.	Amide	Carboxamide	RCONR ₂	O R" N R'' R'	Carboxamido- or carbamoyl-	-amide	Methylenedioxybenzene (1,3-Benzodioxole) O NH ₂ Acetamide (Ethanamide)

S.N.	Chemical class	Group	Formula	Structural Formula	Prefix	Suffix	Example
23.	Amines	Primary amine	RNH ₂	R H	amino-	-amine	H H C N H H H H Methylamine (Methanamine)
24.	Amines	Secondary amine	R ₂ NH	R-N R'	amino-	-amine	Dimethylamine
25.	Amines	Tertiary amine	R ₃ N	R-N R'	amino-	-amine	N Trimethylamine
26.	Amines	4 ammonium ion	R ₄ N	R_4 R_1 R_2 R_3	ammonio-	-ammonium	Choline OH
27.	Imine	Primary ketimine	RC(NH)R	R' H			
28.	Imine	Secondary ketimine	RC(NR)R	R R'			
29.	Imide	Imide	(RCO) ₂ NR	$0 \xrightarrow{R} 0$ $R \qquad R$	imido-	imide	NH Succinimide (Pyrrolidine-2,5-dione)
30.	Azide	Azide	RN ₃	R N N N N N	azido-	alkyl azide	Phenyl azide (Azidobenzene)
31.	Azo compound	Azo (Diimide)	RN ₂ R	R N=N R'	azo-	-diazene	Methyl orange (p-dimethylamino-azobenzenesulfonic acid)

S.N.	Chemical class	Group	Formula	Structural Formula	Prefix	Suffix	Example
32.	Cyanates	Cyanate	ROCN	R C N	Cyanato-	alkyl cyanate	H ₃ C C N Methyl cyanate
33.	Cyanates	Isocyanate	RNCO	R C O	isocyanato-	alkyl isocyanate	H ₃ C C O
34.	Nitrate	Nitrate	RONO ₂	R 0 N+ 0-	nitrooxy-, nitroxy-	alkyl nitrate	O - N - O - O - O - O - O - O - O - O - O
35.	Nitrile	Nitrile	RCN	κ— ≡ Ν	cyano-	alkanenitrile alkyl cyanide	N Benzonitrile (Phenyl cyanide)
36.	Isonitrile	Isonitrile	RNC	$R-N^{\dagger} \equiv C^{-}$	isocyano-	alkaneisonitri le alkyl isocyanide	H ₃ C — N ⁺ ≡ C [−] Methyl isocyanide
37.	Nitrite	Nitroxooxy	RONO	$R \longrightarrow N \longrightarrow 0$	nitrosooxy-	alkyl nitrite	Isoamyl nitrite (3-methyl- 1- nitrosoxybutane)
38.	Nitro compound	Nitro	RNO ₂	R-N ⁺ 0 ⁻	nitro-		H O H C N O Nitromethane
39.	Nitroso	RNO	R−N ₀	nitroso-(Nitrosyl-)			Nitrosobenzene
40.	Thiol	Sulfhydryl	RSH	R-S_H	sulfanyl-(-SH)	-thiol	SH Ethanethiol
41.	Sulfide (Thioether)	Sulfide	RSR	R S R'	substituent sulfanyl- (-SSR)	di(substituent) sulfide	S CH ₃ (Methylsulfanyl) methane (prefix) or Dimethyl sulfide (sulfix)
42.	Disulfide	Disulfide	RSSR	R S R'	substituent disulfanyl- (-SSR)	di(substituent) dissulfide	H ₃ C S CH ₃ (Methyldisulfanyl) methane (prefix) or Dimethyl disulfide (sulfix)

S.N.	Chemical class	Group	Formula	Structural Formula	Prefix	Suffix	Example
43.	Sulfoxide	Sulfinyl	RSOR	0 	-sulfinyl-(-SOR)	di(substituent) sulfoxide	O H ₃ C S CH ₃ (Methanesulfinyl) methane (prefix) or Dimethyl sulfoxide (suffix)
44.	Sulfone	Sulfonyl	RSO ₂ R	O O R'	-sulfonyl- (-SO ₂ R)	di(substituent) sulfone	(Methanesulfonyl) methane (prefix) or Dimethyl sulfone (suffix)
45.	Sulfinic acid	Sulfino	RSO ₂ H	O 	sulfino- (-SO ₂ H)	-sulfinic acid	HO S NH ₂
46.	Sulfonic acid	Sulfo	RSO ₃ H	O O R OH	sulfo- (-SO ₃ H)	-sulfonic acid	O O O O O O O O O O O O O O O O O O O
47.	Thiocyanate	Thiocyanate	RSCN	R C N	thiocyanato- (-SCN)	substituent thiocyanate	S C N Phenyl thiocyanate
48.	Isothio- cyanate	Isothiocyanate	RNCS	R C s	isothiocyanato- (-NCS)	substituent isothiocyan ate	N C S Allyl isothiocyanate
49.	Thione	Carbonothioyl	RCSR	s C R'	-thioyl- (-CSR) or sulfanylidene- (=S)	-thione	Diphenylmethanethione (Thiobenzophenone)

IDENTIFY FUNCTIONAL GROUPS

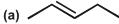
Solved Example

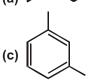
▶ Classify each of the following compounds. the possible classifications are as follows :

alcohol ketone carboxylic acid ether aldehyde alkene

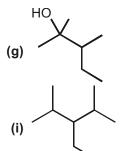
(a) $\mathrm{CH_2CH_2CHO}$ (b) $\mathrm{CH_3CH_2CH(OH)CH_3}$

 $\text{(c)} \ \ \mathsf{CH_3}\mathsf{COCH_2}\mathsf{CH_3} \qquad \qquad \text{(d)} \ \ \mathsf{CH_3} - \mathsf{CH_2}\mathsf{OCH_2}\mathsf{CH_6}$

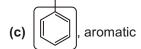

- Sol. (a) aldehyde
- (b) alcohol
- (c) ketone
- (d) ether

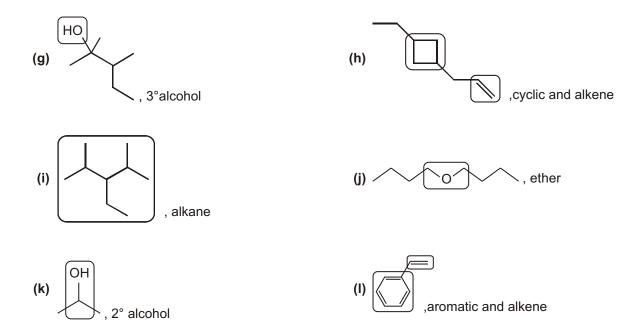

- (e) carboxylic acid
- (f) ether, alkene
- (g) ketone, alkene
- (h) aldehyde

(i) alcohol


Solved Example

▶ For each molecule circle and name the functional group. If the functional group is an alcohol identify it as a primary (1°), secondary (2°), or tertiary (3°) alcohol. Some molecules will have more than one functional group; in those case circle and name all functional groups present. Functional groups: Alkane, alkene, alkyne, cyclic, aromatic, alcohol, ether.

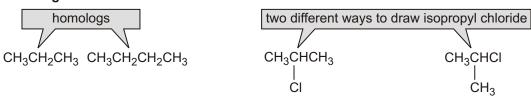



(e) CH₃CH₂OH

Ans. (a) , alkene

(e) CH_3CH_2OH or H_3C-CH_2-OH , 1 Alcohol

Solved Example


▶ The discovery of penicillin in 1928 marked the beginning of what has been called the "golden age of chemotherapy," in which previously life-threatening bacterial infections were transformed into little more than a source of discomfort. For those who are allergic to penicillin, a variety of antibiotics, including tetracycline, are available. Identify the numerous functional groups in the tetracycline molecule.

Sol. The compound contains an aromatic ring fused to three six-membered rings. It is also an alcohol and phenol (with five — OH groups), a ketone (with C — Ogroups at the bottom of the second and fourth rings), an amine [the — N(CH₃)₂ substituent at the top of the fourth ring], and an amide (the — CONH₂ group at the bottom right-hand corner of the fourth ring.)

HOMOLOGS

The family of alkanes shown in the table is an example of a homologous series. A **homologous series** (homos is Greek for "the same as") is a family of compounds in which each member differs from the one before it in the series by **one methylene** (CH₂) **group**. The members of a homologous series are called

homologs

Solved Example

- ▶ Many naturally occurring compounds contain more than one functional group. Identify the functional groups in the following compounds:
 - (a) Penicillin G is a naturally occurring antibiotic.
 - (b) Dopamine is the neurotransmitter that is deficient in Parkinson's disease.
 - (c) Capsaicin gives the fiery taste to chili peppers.
 - **(d)** Thyroxine is the principal thyroid hormone.
 - (e) Testosterone is a male sex hormone.

$$\begin{array}{c|c} I & NH_2 \\ I & CH_2-CH-COOH \\ \hline thyroxine-T_4 \end{array}$$

OH

- Sol. (a) Penicillin-G: Carboxylic acid, thioether, amide
 - (b) Dopamine: Amine, aromatic alcohol (Phenol)
 - (c) Capsaicin: Phenol, ether, amide, alkene
 - (d) Thyroxine: Aryl iodide, phenol, ether, amine, carboxylic acid
 - (e) Testosterone: Alcohol, ketone, alkene

EXERCISE

SINGLE CHOICE QUESTIONS

1. Functional group not present in given compound is/are?

- (A) Alcohol
- (B) Ketone
- (C) Carboxylic acid
- (D) Amide

2. Present functional group is:

- (A) ketone
- (B) ester
- (C) ether
- (D) alcohol

3. Present functional group is/ are:

- (A) ketone
- (B) ester
- (C) ether
- (D) A and B both

- 4. What is the lowest molecular weight possible for Ester?
 - (A) 30

- (B) 46
- (C) 56
- (D) 60
- 5. Which of the following compounds belong to the same homologous series?
 - (1) 1-chloropropene (A) (1) and (2) only
- (2) 1-chloropropane (B) (1) and (3) only
- (3) 2-chlorobutane
- (C) (2) and (3) only
- (D) (1), (2) and (3)
- 6. Pyrethrum flowers contain a natural insecticide called pyrethrin. Pyrethrin has the following structure:

Which of the following functional groups are present in pyrethrin?

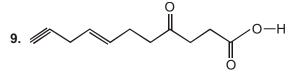
(1) Carbon-carbon double bond

(2) Ester group

- (3) Ketone group
- (A) (1) and (2) only
- (B) (1) and (3) only
- (C) (2) and (3) only
- (D) (1), (2) and (3)

7. Consider the following compound:

Which of the following functional groups does it contain?


- (1) Carboxyl group (A) (1) and (2) only
- (2) Carbonyl group (B) (1) and (3) only
- (3) Amide group

(C) (2) and (3) only

- (D) (1), (2) and (3)

- 8. Which of the following statements is/are correct?
 - (1) Two organic compounds with the same general formula must belong to the same homologous series.

- (2) Two organic compounds with main functional groups the same must belong to the same homologous series.
- (3) Two organic compounds with the molecular mass differing by 14 must belong to the same homologous series.
- (A) (1) only
- (B) (2) only
- (C) (1) and (3) only
- (D) (2) and (3) only

Number of Functional group in above compound is

(A) 3

(B) 4

(C) 5

(D) 6

10. The functional groups in Cortisone are :

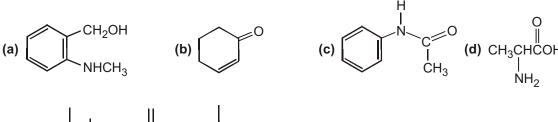
(A) Ether, alkene, alcohol

(B) Alcohol, ketone, alkene

(C) Alcohol, ketone, amine

(D) Ether, amine ketone

How many types of functional groups are present in given compound.


(A) 6

- (B) 5
- (C) 4

(D) 7

UNSOLVED EXAMPLE

1. Locate and identify the functional groups in the following molecules.

2. Met-enkephalin, an endorphin, serves as natural pain reliever that changes or removes the perception of nerve signals. Label all of the functional groups present in Met-enkephalin.

$$H_2N$$
 H_2N
 H_3
 H_4
 H_5
 H_6
 H_6
 H_7
 H_8
 $H_$

- 3. x Types of functional group
 - y Double bond equivalent

Value of $(x \ y)$ in given compound is :

4. Which compound can be classified as an ester as well as a Ketone?

WORK SHEET

(A) 7

1. For each molecule circle and name the functional group. If the functional group is an amine identify it as a primary (1°), secondary (2°), or tertiary (3°) amine. some molecules will have more than one functional group; in those case circle and name all functional groups present. functional groups: Aldehyde, ketone, carboxylic acid, ester, amide, amine.

(i)
$$\stackrel{\mathsf{NH}_2}{\longleftarrow}$$
 (i) $\stackrel{\mathsf{NH}_2}{\longleftarrow}$ (i) $\stackrel{\mathsf{NH}_2}{\longleftarrow}$ (ii) $\stackrel{\mathsf{NH}_2}{\longleftarrow}$ (ii) $\stackrel{\mathsf{NH}_2}{\longleftarrow}$ (iii) $\stackrel{\mathsf{NH}_2}{\longleftarrow}$ (iii) $\stackrel{\mathsf{NH}_2}{\longleftarrow}$ (iii) $\stackrel{\mathsf{NH}_2}{\longleftarrow}$ (iii) $\stackrel{\mathsf{NH}_2}{\longleftarrow}$ (iii) $\stackrel{\mathsf{NH}_2}{\longleftarrow}$ (iv) $\stackrel{\mathsf{NH}_2}{\longleftarrow}$ (iv) $\stackrel{\mathsf{NH}_2}{\longleftarrow}$ (iv) $\stackrel{\mathsf{NH}_2}{\longleftarrow}$ (iv) $\stackrel{\mathsf{NH}_2}{\longleftarrow}$ (vi) $\stackrel{\mathsf{NH}_2}{\longleftarrow}$

SUBJECTIVE TYPE QUESTIONS

1. Suggest at least six different structures that would fit the formula C₄H₇NO. Make good realistic diagrams of each one and identify which functional groups(s) are present.

Purpose of the Problem

The identification and naming of functional groups is more important than the naming of compounds. This was your chance to experiment with different functional groups as well as different carbon skeletons.

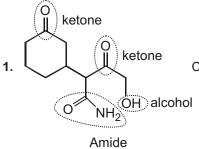
Suggested solution

You will have found the carbonyl and amino groups very useful, but did you also use alkenes and alkynes, rings, ethers, alcohols, and cyanides? Here are twelve possibilities but there are many more. The functional group names in brackets are alternatives. Some you will not have known. You need not to have classify the alcohols and amines.

alcohol, nitrile (cyanide)

primary alcohol, nitrile (cyanide)

imine, ether (isoxazoine)

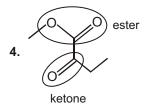

alkene, primary amide

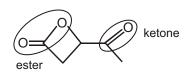
Answers

Single Choice Questions

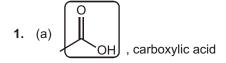
- **1.** (C)
- **2.** (C)
- **3.** (D)
- **4.** (D)
- **5**. (C)
- **6.** (D)
- **7.** (B)
- 8. (B)

- **9**. (B)
- **10**. (B)
- **11.** (B)

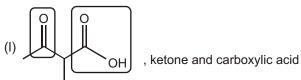


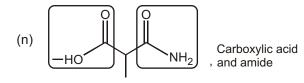

Carboxylic acid is not present

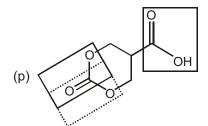
Unsolved Example


- 1. (a) alcohol, amine
- (b) ketone, alkene
- (c) amide

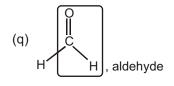
- (d) carboxylic acid, amine
- (e) ketone,alkene
- (f) acyl halide, alkyne

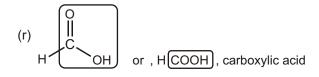



Work Sheet



(f)
$$CH_3$$
 COOH or H_3C C OH , carboxylic acid





, 2 esters and 1 carboxylic acid

