ELECTROCHEMISTRY

DPP - 04 CLASS - 12th TOPIC - NCERT QUESTIONS

- **Q.1** Can you store copper sulphate solutions in a zinc pot ?
- Q.2 Consult the table on standard electrode potentials and suggest three substances that can

oxidise Fe2+ ions under suitable conditions.

Q.3 Higher the oxidation potential more easily it is oxidized and hence greater is the reducing power.

Thus, increasing order of reducing power will be

Ag<Hg<Cr<Mg<K.

SOLUTION

ELECTROCHEMISTRY

(CHEMISTRY)

DPP – 04 CLASS – 12th TOPIC – NCERT QUESTIONS

Sol.1 : Zn being more reactive than Cu, displaces Cu

from CuSO₄ solution as follows: Zn (s) + CuSO₄ (aq) - > ZnSO₄(ag)+Cu (s)

In terms of EMF, we have

Zn | Zn²⁺ || Cu²+ | Cu

 $E^{\circ}_{cell} = E^{\circ}_{Cu^2+} / Cu - E^{\circ}_{Zn2+}/Zn$

= 0.34 V - (-0.76 V)

= 1.10V

As E° cell is positive, reaction takes place, i.e., Zn reacts with copper and hence, we cannot store

CuSO₄, solution in zinc pot.

Sol.2 The oxidation of Fe2+ ions to Fe3+ ions proceeds as follows:

 $Fe^{2+} \rightarrow {}^{3+}+e^{-}$; E° ox = -0.77 V

Only those substances can oxidise Fe²+ ions to Fe³+ ions which can accept electrons released

during oxidation or are placed above iron in electrochemical series. These are: $Cl_2(g)$, $Br_2(g)$

and
$$\operatorname{Cr}_2 0 \frac{2}{7}$$
 ons (in the acidic medium).

Sol.3 Given the standard electrode potentials, $K^+/K=-2$. 93 V, $Ag^+/Ag = 0.80$ V, $Hg^{2+}/Hg = 0.79$ V,

 $Mg2^{+}/Mg=-2.37V$, $Cr^{3+}/Cr=0.74V$.

Arrange these metals in their increasing order of reducing power.