कोड नं. Code No. 55/ परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें। Candidates must write the Q.P. Code on the title page of the answer-book. निर्धारित समय : 3 घण्टे Time allowed: 3 hours न (सैद्धान्तिक) PHYSICS (Theory) अधिकतम अंक : 70 Maximum Marks: 70 # नोट / NOTE - कृपया जाँच कर लें कि इस प्रश्न-पत्र में मृद्रित पृष्ठ 23 हैं। (I) - Please check that this question paper contains 23 printed pages. - कृपया जाँच कर लें कि इस प्रश्न-पत्र में 33 प्रश्न हैं। (II) Please check that this question paper contains 33 questions. - (III) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पुष्ठ पर लिखें। Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate. - कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य लिखें। Please write down the serial number of the question in the answer-book at the given place before attempting it. - इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे (V) किया जाएगा । 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे । - 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period. 55/1/1 Page 1 of 24 P.T.O. ## सामान्य निर्देश: # निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए: - (i) इस प्रश्न-पत्र में 33 प्रश्न हैं। **सभी** प्रश्न **अनिवार्य** हैं। - (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है खण्ड-**क, ख, ग, घ** तथा **ङ**। - (iii) **खण्ड क** में प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है। - (iv) **खण्ड ख** में प्रश्न संख्या 17 से 21 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 2 अंकों का है। - (v) **खण्ड ग** में प्रश्न संख्या 22 से 28 तक लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 3 अंकों का है। - (vi) **खण्ड घ** में प्रश्न संख्या **29** तथा **30** केस अध्ययन–आधारित प्रश्न हैं। प्रत्येक प्रश्न **4** अंकों का है। - (vii) **खण्ड ङ** में प्रश्न संख्या 31 से 33 तक दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है। - (viii)प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड-**क** के अतिरिक्त अन्य खण्डों के कुछ प्रश्नों में आंतरिक विकल्प दिया गया है। - (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए एक अलग प्रश्न-पत्र है। - (x) कैल्कुलेटर का उपयोग **वर्जित** है। जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं : $$c=3\times10^8~\text{m/s}$$ $h=6.63\times10^{-34}~\text{Js}$ $e=1.6\times10^{-19}~\text{C}$ $\mu_0=4\pi\times10^{-7}~\text{T m A}^{-1}$ $\epsilon_0=8.854\times10^{-12}~\text{C}^2~\text{N}^{-1}~\text{m}^{-2}$ $\frac{1}{4\pi\epsilon_0}=9\times10^9~\text{N m}^2~\text{C}^{-2}$ इलेक्ट्रॉन का द्रव्यमान $(m_e)=9.1\times10^{-31}~\text{kg}.$ न्यूट्रॉन का द्रव्यमान $=1.675\times10^{-27}~\text{kg}.$ प्रोटॉन का द्रव्यमान $=1.673\times10^{-27}~\text{kg}.$ आवोगाद्रो संख्या $=6.023\times10^{23}~\text{y}$ ति ग्राम मोल बोल्ट्रज़मान नियतांक $=1.38\times10^{-23}~\text{JK}^{-1}$ General Instructions: ## Read the following instructions very carefully and follow them: - (i) This question paper contains 33 questions. All questions are compulsory. - (ii) Question paper is divided into FIVE sections Sections A, B, C, D and E. - (iii) In Section A: Question numbers 1 to 16 are Multiple Choice (MCQ) type questions. Each question carries 1 mark. - (iv) In Section B: Question numbers 17 to 21 are Very Short Answer (VSA) type questions. Each question carries 2 marks. - (v) In Section C: Question numbers 22 to 28 are Short Answer (SA) type questions. Each question carries 3 marks. - (vi) In Section D: Question numbers 29 & 30 are Case Study-Based questions. Each question carries 4 marks. - (vii) In Section E: Question numbers 31 to 33 are Long Answer (LA) type questions. Each question carries 5 marks. - (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the Sections except Section A. - (ix) Kindly note that there is a separate question paper for Visually Impaired candidates. - (x) Use of calculators is NOT allowed. You may use the following values of physical constants wherever necessary: $$c = 3 \times 10^8 \text{ m/s}$$ $$h = 6.63 \times 10^{-34} \, Js$$ $$e = 1.6 \times 10^{-19} \text{ C}$$ $$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$ $$\varepsilon_0 = 8.854 \times 10^{-12} \ \mathrm{C^2 \ N^{-1} \ m^{-2}}$$ $$\frac{1}{4\pi\epsilon_0}$$ = 9 × 10⁹ N m² C⁻² Mass of electron (m_e) = 9.1×10^{-31} kg. Mass of neutron = 1.675×10^{-27} kg. Mass of proton = 1.673×10^{-27} kg. Avogadro's number = 6.023×10^{23} per gram mole Boltzmann's constant = $1.38 \times 10^{-23} \, \mathrm{JK^{-1}}$ 1. आरेख में दो बिन्दु आवेशों के बीच कार्यरत कूलॉम बल (F) का $\frac{1}{r^2}$ के साथ विचरण दर्शाया गया है । यहाँ ${\bf r}$ दो आवेशों $({\bf q}_{1,}\;{\bf q}_{2})$ और $({\bf q}_{2},\;{\bf q}_{3})$ के बीच पृथकन है । यदि ${\bf q}_{2}$ धनात्मक है तथा इसका परिमाण निम्नतम है तब ${\bf q}_{1},\;{\bf q}_{2}$ और ${\bf q}_{3}$ के परिमाण इस प्रकार हैं कि : (A) $q_2 < q_3 < q_1$ $(B) \quad \mathbf{q}_3 < \mathbf{q}_1 < \mathbf{q}_2$ 1 1 1 1 1 (C) $q_1 < q_2 < q_3$ - (D) $q_2 < q_1 < q_3$ - 2. दो तार P और Q समान पदार्थ के बने हैं । तार P की तुलना में तार Q का व्यास दो गुना तथा लम्बाई आधी है । यदि तार P का प्रतिरोध R है, तो तार Q का प्रतिरोध होगा - (A) R (B) $\frac{R}{2}$ (C) $\frac{R}{8}$ - (D) 2R - 3. किसी तार का $1~\mathrm{cm}$ लम्बा कोई खण्ड x-अक्ष के अनुदिश रखा है तथा $+\mathrm{x}$ दिशा के अनुदिश इस तार से धारा $0.5~\mathrm{A}$ प्रवाहित हो रही है । इस प्रदेश में किसी चुम्बकीय क्षेत्र $\overrightarrow{B} = (0.4~\mathrm{mT})~\hat{\mathrm{j}} + (0.6~\mathrm{mT})~\hat{\mathrm{k}}$ को अनुप्रयुक्त किया गया है । इस तार के खण्ड पर कार्यरत बल है - - (A) $(2\hat{j} + 3\hat{k}) \text{ mN}$ (B) $(-3\hat{j} + 2\hat{k}) \mu N$ (C) $(6\hat{j} + 4\hat{k}) \text{ mN}$ - (D) $(-4\hat{j} + 6\hat{k}) \mu N$ - 4. किसी कुण्डली में 100 फेरे हैं, जिनमें प्रत्येक का क्षेत्रफल $0.05~{\rm m}^2$ है तथा इसका कुल प्रतिरोध $1.5~\Omega$ है। इस कुण्डली को किसी क्षण पर $90~{\rm mT}$ के चुम्बकीय क्षेत्र में इसके अक्ष को क्षेत्र के समान्तर रखते हुए धँसाया गया है। उसी क्षण इस कुण्डली में प्रेरित आवेश है - (A) 3.0 mC (B) 0.30 C (C) 0.45 C - (D) 1.5 C - 5. आपको $0.016~\mathrm{H}$ प्रेरकत्व की $0.81~\mathrm{m}$ लम्बी और $0.02~\mathrm{m}$ त्रिज्या की वायु से भरी परिनालिका की अभिकल्पना करनी है। इस परिनालिका में फेरों की संख्या होनी चाहिए - (A) 2592 (B) 2866 (C) 2976 (D) 3140 55/1/1 ### SECTION - A Figure shows variation of Coulomb force (F) acting between two point 1. charges with $\frac{1}{r^2}$, r being the separation between the two charges (q_{1, q_2}) and (q_2, q_3) . If q_2 is positive and least in magnitude, then the magnitudes of \mathbf{q}_1 , \mathbf{q}_2 and \mathbf{q}_3 are such that (A) $q_2 < q_3 < q_1$ (B) $q_3 < q_1 < q_2$ (D) $q_2 < q_1 < q_3$ 1 1 1 1 1 (C) $q_1 < q_2 < q_3$ - Two wires P and Q are made of the same material. The wire Q has twice 2. the diameter and half the length as that of wire P. If the resistance of wire P is R, the resistance of the wire Q will be - (A) (C) - (D) 2R - 3. A 1 cm segment of a wire lying along x-axis carries current of 0.5 A along +x direction. A magnetic field $\overrightarrow{B} = (0.4 \text{ mT}) \hat{j} + (0.6 \text{ mT}) \hat{k}$ is switched on, in the region. The force acting on the segment is - (A) $(2\hat{j} + 3\hat{k}) \text{ mN}$ (C) $(6\hat{j} + 4\hat{k}) \text{ mN}$ - (B) $(-3\hat{j} + 2\hat{k}) \mu N$ (D) $(-4\hat{j} + 6\hat{k}) \mu N$ - A coil has 100 turns, each of area 0.05 m^2 and total resistance 1.5Ω . It is 4. inserted at an instant in a magnetic field of 90 mT, with its axis parallel to the field. The charge induced in the coil at that instant is: - (A) $3.0~\mathrm{mC}$ (B) 0.30 C (C) 0.45 C - (D) 1.5 C - You are required to design an air-filled solenoid of inductance 0.016 H 5. having a length 0.81 m and radius 0.02 m. The number of turns in the solenoid should be - (A) 2592 (B) 2866 2976 (C) (D) 3140 1 1 1 1 - 6. किसी परिपथ पर वोल्टता $v=v_0\sin\omega t$ अनुप्रयुक्त करने पर उस परिपथ में धारा $i=i_0\sin(\omega t+\phi)$ प्रवाहित होती है। एक चक्र में इस परिपथ में औसत शक्ति खपत है— - (A) शून्य (B) $i_0 v_0 \cos \phi$ $\text{(C)}\quad \frac{i_0\;\nu_0}{2}$ - (D) $\frac{i_0 v_0}{2} \cos \phi$ - 7. दिए गए आरेख में विद्युत-चुम्बकीय तरंगों की तरंगदैर्ध्य और उनसे संबद्ध फोटॉनों की ऊर्जा के बीच संबंध दर्शाया गया है। इस आरेख में अंकित तीन बिन्दु P, Q और R क्रमश: किसके तदनुरूपी हो सकते हैं? - (A) X-किरणें, सूक्ष्म तरंगें, UV विकिरण - (B) X-किरणें, UV विकिरण, सूक्ष्म तरंगें - (C) UV विकिरण, सूक्ष्म तरंगें, X-किरणें - (D) सूक्ष्म तरंगें, UV विकिरण, X-किरणें - 8. किसी बीकर में ऊँचाई H तक पानी (अपवर्तनांक $\frac{4}{3}$) भरा है। इसकी तली पर कोई सिक्का रखा है। अभिलम्ब दिशा के निकट के अनुदिश देखने पर इस सिक्के की गहराई होगी - (A) $\frac{H}{4}$ $(B) \quad \frac{3H}{4}$ (C) H - (D) $\frac{4H}{3}$ - 9. किसी प्रकाश विद्युत प्रयोग में किसी धातु के पृष्ठ के लिए आपितत विकिरणों की आवृत्ति ν के साथ निरोधी विभव V_0 के विचरण की माप का ग्राफ खींचा गया है। मान लीजिए इस प्रकार प्राप्त सरल रेखीय ग्राफ की ढाल m है। तब किसी इलेक्ट्रॉन पर आवेश का मान होगा (h प्लांक नियतांक है।) - (A) mh (B) $\frac{m}{h}$ (C) $\frac{h}{m}$ (D) $\frac{1}{mh}$ - 6. A voltage $v = v_0 \sin \omega t$ applied to a circuit drives a current $i = i_0 \sin (\omega t + \phi)$ in the circuit. The average power consumed in the circuit over a cycle is - (A) Zero (B) $i_0 v_0 \cos \phi$ 1 1 1 1 (C) $\frac{i_0 \, v_0}{2}$ - (D) $\frac{i_0 v_0}{2} \cos \phi$ - 7. The given diagram exhibits the relationship between the wavelength of the electromagnetic waves and
the energy of photon associated with them. The three points P, Q and R marked on the diagram may correspond respectively to: - (A) X-rays, microwaves, UV radiation - (B) X-rays, UV radiation, microwaves - (C) UV radiation, microwaves, X-rays - (D) Microwaves, UV radiation, X-rays - 8. A beaker is filled with water (refractive index $\frac{4}{3}$) upto a height H. A coin is placed at its bottom. The depth of the coin, when viewed along the near normal direction, will be - (A) $\frac{H}{4}$ (B) $\frac{3H}{4}$ (C) H - (D) $\frac{4H}{3}$ - 9. The stopping potential V_0 measured in a photoelectric experiment for a metal surface is plotted against frequency ν of the incident radiation. Let m be the slope of the straight line so obtained. Then the value of charge of an electron is given by (h is the Planck's constant.) - (A) mh (B) $\frac{m}{h}$ (C) $\frac{h}{m}$ (D) $\frac{1}{mh}$ ~ 1 1 1 1 - 10. मान लीजिए समान चाल से गतिमान किसी इलेक्ट्रॉन, किसी प्रोटॉन और किसी ड्यूटेरॉन से संबद्ध तरंगदैर्ध्य क्रमश: $\lambda_{ m e}$, $\lambda_{ m p}$ तथा $\lambda_{ m d}$ हैं। तब इन तरंगदैर्ध्यों के बीच सही संबंध है - - (A) $\lambda_d > \lambda_p > \lambda_e$ (B) $\lambda_e > \lambda_p > \lambda_d$ (C) $\lambda_p > \lambda_e > \lambda_d$ - (D) $\lambda_e = \lambda_p = \lambda_d$ - 11. नीचे दिया गया कौन सा आरेख द्रव्यमान संख्या के फलन के रूप में बंधन-ऊर्जा प्रति न्यूक्लियॉन के वक्र की सही आकृति का निरूपण करता है ? - 12. जब कोई p-n संधि डायोड अग्रदिशिक बायसित होता है तो - (A) रोधिका की ऊँचाई और हासी स्तर की चौड़ाई दोनों में वृद्धि होती है। - (B) रोधिका की ऊँचाई में वृद्धि तथा हासी स्तर की चौड़ाई में कमी होती है। - (C) रोधिका की ऊँचाई और हासी स्तर की चौड़ाई दोनों में कमी होती है। - (D) रोधिका की ऊँचाई में कमी तथा हासी स्तर की चौड़ाई में वृद्धि होती है। - नोट: प्रश्न संख्या 13 से 16 में दो कथन दिए गए हैं एक को अभिकथन (A) तथा दूसरे को कारण (R) लेबल किया गया है। इन प्रश्नों के सही उत्तरों का नीचे दिए कोड (A), (B), (C) और (D) में से चयन कीजिए: - (A) अभिकथन (A) और कारण (R) दोनों सत्य हैं और कारण (R), अभिकथन (A) की सही व्याख्या है। - (B) अभिकथन (A) और कारण (R) दोनों सत्य हैं, परंतु कारण (R), अभिकथन (A) की सही व्याख्या नहीं है। - (C) अभिकथन (A) सत्य है, परन्तु कारण (R) असत्य है। - (D) अभिकथन (A) और कारण (R) दोनों ही असत्य हैं। - 13. **अभिकथन (A) :** जब कोई अधिक फेरों की संख्या वाली कुण्डली का परिपथ बन्द होता है, तो उसके अन्दर की ओर किसी चुम्बक को गति कराना कठिन होता है। - कारण (R) : चुम्बक की गित के कारण कुण्डली जिसका परिपथ बंद है, में प्रेरित धारा की दिशा इस प्रकार होती है कि वह चुम्बक की गित का विरोध करती है। 10. Let λ_e , λ_p and λ_d be the wavelengths associated with an electron, a proton and a deuteron, all moving with the same speed. Then the correct relation between them is 1 (A) $\lambda_d > \lambda_p > \lambda_e$ (B) $\lambda_e > \lambda_p > \lambda_d$ (C) $\lambda_p > \lambda_e > \lambda_d$ - (D) $\lambda_e^e = \lambda_p^p = \lambda_d^e$ - 11. Which of the following figures correctly represent the shape of curve of binding energy per nucleon as a function of mass number ? 1 1 1 (B) (D) - 12. When a p-n junction diode is forward biased - (A) the barrier height and the depletion layer width both increase. - (B) the barrier height increases and the depletion layer width decreases. - (C) the barrier height and the depletion layer width both decrease. - (D) the barrier height decreases and the depletion layer width increases. **Note:** Question numbers **13** to **16** are Assertion (A) and Reason (R) type questions. Two statements are given – one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (A), (B), (C) and (D) as given below: - (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A). - (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of Assertion (A). - (C) Assertion (A) is true, but Reason (R) is false. - (D) Assertion (A) is false and Reason (R) is also false. - 13. **Assertion (A):** It is difficult to move a magnet into a coil of large number of turns when the circuit of the coil is closed. - Reason (R) : The direction of induced current in a coil with its circuit closed, due to motion of a magnet, is such that it opposes the cause. ~ 1 $\mathbf{2}$ 2 14. **अभिकथन (A) :** किसी गैल्वेनोमीटर में विक्षेपण उससे प्रवाहित धारा के अनुक्रमानुपाती होता है। **1** कारण (R) : किसी गैल्वेनोमीटर की कुण्डली एकसमान त्रिज्य चुम्बकीय क्षेत्र में निलंबित होती है। 15. **अभिकथन (A) :** हम किसी p-प्रकार के अर्धचालक के किसी स्लैब को किसी n-प्रकार के अर्धचालक के किसी स्लैब से भौतिक रूप से जोड़कर किसी p-n संधि डायोड की रचना नहीं कर सकते हैं। **कारण (R)** : किसी p-प्रकार के अर्धचालक में $\eta_{\rm e} >> \eta_{\rm h}$ होता है जबिक n-प्रकार के अर्धचालक में $\eta_{\rm h} >> \eta_{\rm e}$ होता है । 16. अभिकथन (A): हाइड्रोजन परमाणु में किसी स्थिर कक्षा में परिक्रमण करते किसी इलेक्ट्रॉन की स्थितिज ऊर्जा धनात्मक होती है। कारण (R): किसी आवेशित कण की कुल ऊर्जा सदैव ही धनात्मक होती है। #### खण्ड – ख 17. आन्तरिक प्रतिरोध 'r' तथा ${ m emf~`E'}$ की कोई बैटरी किसी धारा नियंत्रक से संयोजित है। जब बैटरी से 2A धारा ली जाती है तो धारा–नियंत्रक के सिरों पर विभवान्तर 5V होता है। 4A धारा लिए जाने पर यह विभवान्तर 4V हो जाता है। 'E' और 'r' के मान परिकलित कीजिए। 18. (a) विवर्तन के किसी प्रयोग में झिरी को $600~\mathrm{nm}$ तरंगदैर्ध्य के प्रकाश द्वारा प्रदीप्त किया गया है। विवर्तन पैटर्न का पहला निम्निष्ठ $\theta=30^\circ$ पर पड़ता है। झिरी की चौड़ाई परिकलित कीजिए। - (b) यंग के किसी द्विझिरी प्रयोग में दो प्रकाश तरंगें, जिनमें प्रत्येक की तीव्रता I_o है, पर्दे के उस बिन्दु पर व्यतिकरण करती हैं जिस पर पथान्तर $\frac{\lambda}{8}$ है। इस बिन्दु पर तीव्रता ज्ञात कीजिए। - 19. कोई पारदर्शी ठोस बेलनाकार छड़ (अपवर्तनांक $\frac{2}{\sqrt{3}}$) वायु में स्थित है। इसके किसी फलक पर आपितत कोई प्रकाश किरण आरेख में दर्शाए अनुसार छड़ के पृष्ठ के अनुदिश गमन करती है। कोण ' θ ' परिकलित कीजिए। 20. सिद्ध कीजिए कि हाइड्रोजन परमाणु के बोर मॉडल में ${f n}$ वीं कक्षा में परिक्रमण करते किसी इलेक्ट्रॉन का आवर्तकाल ${f n}^3$ के आनुपातिक होता है। $\mathbf{2}$ 2 | 14. | Assertion (A) | : | The | deflection | in | a | galvanometer | is | directly | |-----|---------------|---|-------|----------------|-------|------|-----------------|-------|----------| | | | | propo | rtional to the | e cur | rent | passing through | h it. | | : The coil of a galvanometer is suspended in a uniform Reason (R) radial magnetic field. 1 1 1 2 2 2 **Assertion (A):** We cannot form a p-n junction diode by taking a slab of a p-type semiconductor and physically joining it to another slab of a n-type semiconductor. : In a p-type semiconductor $\eta_e >> \eta_h$ while in a n-type Reason (R) semiconductor $\eta_{\rm h} >> \eta_{\rm e}$. 16. Assertion (A): The potential energy of an electron revolving in any stationary orbit in a hydrogen atom is positive. Reason (R) : The total energy of a charged particle is always positive. ### SECTION - B - A battery of emf E and internal resistance r is connected to a rheostat. When a current of 2A is dawn from the battery, the potential difference across the rheostat is 5V. The potential difference becomes 4V when a current of 4A is drawn from the battery. Calculate the value of E and r. - 18. (a) In a diffraction experiment, the slit is illuminated by light of wavelength 600 nm. The first minimum of the pattern falls at $\theta = 30^{\circ}$. Calculate the width of the slit. - In a Young's double-slit experiment, two light waves, each of (b) intensity I_0 , interfere at a point, having a path difference $\frac{\lambda}{8}$ on the screen. Find the intensity at this point. - 19. A transparent solid cylindrical rod (refractive index $\frac{2}{\sqrt{3}}$) is kept in air. A ray of light incident on its face travels along the surface of the rod, as shown in figure. Calculate the angle θ . 20. Prove that, in Bohr model of hydrogen atom, the time period of revolution of an electron in nth orbit is proportional to n³. 21. किसी p-प्रकार के Si-अर्धचालक को औसतन एक अपिमश्रक परमाणु प्रति $5 imes 10^7$ सिलिकॉन परमाणु द्वारा अपिमश्रित (मादित) करके बनाया गया है। यदि नमूने में सिलिकॉन परमाणुओं का संख्या घनत्व $5 imes 10^{28}$ परमाणु प्रति घनमीटर है, तो मादन (अपिमश्रण) द्वारा नमूने में प्रति घन सेन्टीमीटर निर्मित होलों (विवरों) की संख्या ज्ञात कीजिए। इस प्रकार के अपिमश्रक का एक उदाहरण भी दीजिए। $\mathbf{2}$ 3 3 3 3 #### खण्ड – ग - 22. (a) 3V और 6V की दो बैटरियाँ, जिनके आन्तरिक प्रतिरोध क्रमश: $0.2~\Omega$ और $0.4~\Omega$ हैं, पार्श्व में संयोजित हैं। यह संयोजन $4~\Omega$ के किसी प्रतिरोधक से संयोजित है। ज्ञात कीजिए: - (i) संयोजन का तुल्य emf - (ii) संयोजन का तुल्य आन्तरिक प्रतिरोध - (iii) संयोजन से ली गयी धारा #### अथवा - (b) (i) लम्बाई l का कोई चालक emf E के किसी आदर्श सेल के सिरों से संयोजित है । सेल से संयोजित रखते हुए इस चालक को धीरे-धीरे खींचकर इसकी लम्बाई को 2l किया गया है । यदि प्रारम्भिक और अंतिम प्रतिरोध के मान R और R' तथा अपवाह वेग के प्रारम्भिक और अन्तिम मान v_{d} और v_{d} ' हैं, तो (i) R' और R तथा (ii) v_{d} ' और v_{d} के बीच संबंध ज्ञात कीजिए । - (ii) जब किसी चालक में इलेक्ट्रॉनों का अपवाह निम्न से उच्च विभव की ओर होता है, तब इसका क्या यह अर्थ है कि चालक के सभी 'मुक्त इलेक्ट्रॉन' एक ही दिशा में गतिमान हैं ? - 23. बायो-सावर्ट नियम का उपयोग करके किसी वृत्ताकार धारावाही पाश के कारण उसके अक्ष के किसी बिन्दु पर चुम्बकीय क्षेत्र (B) के लिए व्यंजक उत्पन्न करके फिर उसे पाश के केन्द्र के लिए रूपान्तरित कीजिए। - 24. (a) यह दर्शाइए कि प्रेरकत्व L की किसी कुण्डली में धारा I निर्मित करने के लिए आवश्यक ऊर्जा $rac{1}{2}\,LI^2$ होती है । - (b) किसी वायु भरी धारावाही परिनालिका के चुम्बकीय क्षेत्र के प्रकरण पर विचार करते हुए यह दर्शाइए कि किसी चुम्बकीय क्षेत्र B का चुम्बकीय ऊर्जा घनत्व $\frac{B^2}{2\mu_0}$ होता है। - 25. (a) किसी समान्तर पट्टिका संधारित्र को किसी ac स्रोत द्वारा आवेशित किया गया है। यदि दर्शाइए कि चालन धारा (I_c) और विस्थापन धारा (I_d) के योग का मान परिपथ के प्रत्येक बिन्दु पर समान होता है। - (b) क्या उपरोक्त प्रकरण (a) में किरखोफ का पहला नियम
(संधि नियम) संधारित्र की प्रत्येक पट्टिका पर वैध है ? व्याख्या कीजिए। 55/1/1 21. A p-type Si semiconductor is made by doping an average of one dopant atom per 5×10^7 silicon atoms. If the number density of silicon atoms in the specimen is 5×10^{28} atoms m⁻³, find the number of holes created per cubic centimetre in the specimen due to doping. Also give one example of such dopants. 2 3 3 3 3 SECTION - C - 22. (a) Two batteries of emf's 3V & 6V and internal resistances 0.2 Ω & 0.4 Ω are connected in parallel. This combination is connected to a 4 Ω resistor. Find : - (i) the equivalent emf of the combination - (ii) the equivalent internal resistance of the combination - (iii) the current drawn from the combination OR - (b) (i) A conductor of length l is connected across an ideal cell of emf E. Keeping the cell connected, the length of the conductor is increased to 2l by gradually stretching it. If R and R' are initial and final values of resistance and v_d and v_d ' are initial and final values of drift velocity, find the relation between (i) R' and R and (ii) v_d ' and v_d . - (ii) When electrons drift in a conductor from lower to higher potential, does it mean that all the 'free electrons' of the conductor are moving in the same direction? - 23. Using Biot-Savart law, derive expression for the magnetic field (\overrightarrow{B}) due to a circular current carrying loop at a point on its axis and hence at its centre. 24. (a) Show that the energy required to build up the current I in a coil of inductance L is $\frac{1}{2}$ LI². - (b) Considering the case of magnetic field produced by air-filled current carrying solenoid, show that the magnetic energy density of a magnetic field B is $\frac{B^2}{2\mu_0}$. - 25. (a) A parallel plate capacitor is charged by an ac source. Show that the sum of conduction current (I_c) and the displacement current (I_d) has the same value at all points of the circuit. - (b) In case (a) above, is Kirchhoff's first rule (junction rule) valid at each plate of the capacitor? Explain. 55/1/1 Page 13 of 24 P.T.O. 3 3 - (a) किसी धातु के पृष्ठ पर एकवर्णी प्रकाश के आपतित होने पर सभी फोटोइलेक्ट्रॉन समान गतिज ऊर्जा से निष्कासित नहीं होते हैं। - (b) प्रकरण (a) में विभिन्न तीव्रताओं के लिए संतृप्त धारा भिन्न होती है। - (c) यदि तीव्रता को समान रखते हुए किसी धातु के पृष्ठ पर आपितत प्रकाश की तरंगदैर्ध्य में वृद्धि करते जाएँ तो फोटोइलेक्ट्रॉनों का किसी निश्चित तरंगदैर्ध्य पर उस धातु के पृष्ठ से उत्सर्जन रुक जाता है। - 27. (a) किसी नाभिक की 'द्रव्यमान क्षति' और 'बन्धन ऊर्जा' की परिभाषा लिखिए । बंधन ऊर्जा प्रति न्यूक्लिऑन के आधार पर 'विखण्डन प्रक्रम' का वर्णन कीजिए । - (b) किसी ड्यूटेरॉन में एक प्रोटॉन और एक न्यूट्रॉन है तथा उसका द्रव्यमान 2.013553~u है । इसके लिए द्रव्यमान क्षित u में तथा इसकी ऊर्जा तुल्य MeV में पिरकिलत कीजिए । $(m_p=1.007277~u;\,m_n=1.008665~u,\,1u=931.5~MeV/c^2)$ - 28. (a) किसी p-n संधि डायोड के V-I अभिलाक्षणिकों का अध्ययन करने के लिए परिपथ व्यवस्था खींचिए। $oldsymbol{3}$ - (b) किसी डायोड के अभिलाक्षणिकों की आकृति दर्शाइए। - (c) इन अभिलाक्षणिकों से जो दो सूचनाएँ आपको प्राप्त हो सकती हैं उनका उल्लेख कीजिए। ### खण्ड – घ प्रश्न संख्या **29** तथा **30** केस-अध्ययन आधारित प्रश्न हैं । निम्न पैराग्राफों को पढ़े तथा नीचे दिए गए प्रश्नों के उत्तर दें । 29. $4 \times 1 = 4$ चित्र में दर्शाए गए आंरख, जिसे RC श्रेणी परिपथ कहते हैं, के किसी परिपथ में कोई संधारित्र C, प्रतिरोध R का प्रतिरोधक तथा $\operatorname{emf} V$ की कोई आदर्श बैटरी संयोजित है । $(S_2$ को खुला रखते हुए) कुंजी S_1 को बन्द करने पर परिपथ पूर्ण हो जाता है तथा तुरन्त संधारित्र की पट्टिकाओं और बैटरी के टिर्मिनलों के बीच आवेश का प्रवाह आरंभ हो जाता है । संधारित्र पर आवेश में वृद्धि होती है परिणामस्वरूप संधारित्र के सिरों पर विभवान्तर V_c (= \mathbf{q}/\mathbf{C}) में समय के साथ वृद्धि होती है । जब यह विभवान्तर बैटरी के सिरों के बीच विभवान्तर के बराबर हो जाता है, तो संधारित्र पूर्णरूपेण आवेशित हो जाता है ($\mathbf{Q} = V\mathbf{C}$) । इस आवेशन प्रक्रिया की अविध में संधारित्र पर आवेश \mathbf{q} में समय के साथ परिवर्तन होता है जिसे इस प्रकार निरूपित किया जाता है — $$q = Q[1 - e^{-t/RC}]$$ इस व्यंजक का अवकलन तथा $\frac{\mathrm{d}}{\mathrm{d}x}$ ($\mathrm{e}^{\mathrm{m}x}$) = $\mathrm{me}^{\mathrm{m}x}$ का उपयोग करके आवेशन धारा प्राप्त की जा सकती है। उस प्रकरण पर विचार कीजिए जिसमें $\mathrm{R}=20~\mathrm{k}\Omega$, $\mathrm{C}=500~\mathrm{\mu F}$ तथा $V=10~\mathrm{V}$ Answer the following giving reason: (a) All the photo electrons do not eject with the same kinetic energy when monochromatic light is incident on a metal surface. 3 3 3 (b) The saturation current in case (a) is different for different intensity. (c) If one goes on increasing the wavelength of light incident on a metal surface, keeping its intensity constant, emission of photo electrons stop at a certain wavelength for this metal. 27. (a) Define 'Mass defect' and 'Binding energy' of a nucleus. Describe 'Fission process' on the basis of binding energy per nucleon. (b) A deuteron contains a proton and a neutron and has a mass of 2.013553 u. Calculate the mass defect for it in u and its energy equivalence in MeV. (m_p = 1.007277 u, m_n = 1.008665 u, 1u = 931.5 $\rm MeV/c^2$) 28. (a) Draw circuit arrangement for studying V-I characteristics of a p-n junction diode. (b) Show the shape of the characteristics of a diode. (c) Mention two information that you can get from these characteristics. ### SECTION - D Question numbers **29** and **30** are case study based questions. Read the following paragraphs and answer the questions that follow. 29. A circuit consisting of a capacitor C, a resistor of resistance R and an ideal battery of emf V, as shown in figure is known as RC series circuit. $4 \times 1 = 4$ As soon as the circuit is completed by closing key S_1 (keeping S_2 open) charges begin to flow between the capacitor plates and the battery terminals. The charge on the capacitor increases and consequently the potential difference V_c (= q/C) across the capacitor also increases with time. When this potential difference equals the potential difference across the battery, the capacitor is fully charged (Q = VC). During this process of charging, the charge q on the capacitor changes with time t as $q = Q[1 - e^{-t/RC}]$ The charging current can be obtained by differentiating it and using $\frac{d}{dx}(e^{mx}) = me^{mx}$. Consider the case when $R = 20 \text{ k}\Omega$, $C = 500 \mu\text{F}$ and V = 10 V. - (i) जब कुंजी \mathbf{S}_1 बन्द तथा \mathbf{S}_2 खुली है तब संधारित्र पर अंतिम आवेश है - (A) 5 μC (B) 5 mC (C) 25 mC - (D) 0.1 C - (ii) पर्याप्त समय के लिए कुंजी S_1 बन्द तथा S_2 खुली रहती है । अब S_2 को बन्द तथा S_1 को खोल दिया गया है । संधारित्र पर अंतिम आवेश क्या है ? - (A) शून्य (B) 5 mC (C) 2.5 mC - (D) 5 μC - (iii) RC के लिए विमीय सूत्र है - - (A) $[M L^2 T^{-3} A^{-2}]$ - (B) $[M^0 L^0 T^{-1} A^0]$ - (C) $[M^{-1} L^{-2} T^4 A^2]$ - (D) $[M^0 L^0 T A^0]$ - (iv) कुंजी \mathbf{S}_1 बन्द तथा \mathbf{S}_2 खुली है । 5 सेकण्ड के पश्चात प्रतिरोधक से प्रवाहित धारा है - (A) $\frac{1}{2\sqrt{e}}$ mA - (B) \sqrt{e} mA - (C) $\frac{1}{\sqrt{e}}$ mA - (D) $\frac{1}{2e}$ mA #### अथवा - (iv) कुंजी \mathbf{S}_1 बन्द तथा \mathbf{S}_2 खुली है । प्रतिरोधक में आवेशन धारा का आरम्भिक मान है - (A) 5 mA (B) 0.5 mA (C) 2 mA - (D) 1 mA - 30. एक पतला लेंस दो पृष्ठों से घिरा ऐसा पारदर्शी प्रकाशिक माध्यम होता है जिसका कम से कम एक पृष्ठ अवश्य ही गोलीय होना चाहिए । एकल गोलीय पृष्ठ के लिए प्रतिबिम्ब बनने के लिए सूत्र का अनुप्रयोग हम किन्हीं दो पृष्ठों के निकाय पर क्रमिक रूप से करके पतले लेंसों के लिए लेंस मेकर सूत्र तथा उसके पश्चात लेंस सूत्र प्राप्त कर सकते हैं । किसी लेंस के दो फोकस बिन्दु होते हैं जिन्हें "प्रथम फोकस बिन्दु" तथा 'द्वितीय फोकस बिन्दु' कहते हैं और इनमें एक लेंस के एक ओर तथा दूसरा लेंस के दूसरी ओर होता $4 \times 1 = 4$ - (i) The final charge on the capacitor, when key S_1 is closed and S_2 is open, is - (A) 5 μC (B) 5 mC (C) 25 mC - (D) 0.1 C - (ii) For sufficient time the key S_1 is closed and S_2 is open. Now key S_2 is closed and S_1 is open. What is the final charge on the capacitor? - (A) Zero (B) 5 mC - (C) 2.5 mC - (D) 5 μC - (iii) The dimensional formula for RC is - (A) $[M L^2 T^{-3} A^{-2}]$ - (B) $[M^0 L^0 T^{-1} A^0]$ - (C) $[M^{-1} L^{-2} T^4 A^2]$ - (D) $[M^0 L^0 T A^0]$ - (iv) The key \mathbf{S}_1 is closed and \mathbf{S}_2 is open. The value of current in the resistor after 5 seconds, is - (A) $\frac{1}{2\sqrt{e}}$ mA - (B) \sqrt{e} mA - (C) $\frac{1}{\sqrt{e}}$ mA - (D) $\frac{1}{2e}$ mA OR - (iv) The key \mathbf{S}_1 is closed and \mathbf{S}_2 is open. The initial value of charging current in the resistor, is - (A) 5 mA (B) 0.5 mA (C) 2 mA - (D) 1 mA - 30. A thin lens is a transparent optical medium bounded by two surfaces, at least one of which should be spherical. Applying the formula for image formation by a single spherical surface successively at the two surfaces of a lens, one can obtain the 'lens maker formula' and then the 'lens formula'. A lens has two foci called 'first focal point' and 'second focal point' of the lens, one on each side. $4 \times 1 = 4$ आरेख में दर्शायी व्यवस्था पर विचार कीजिए। एक काला ऊर्ध्वाधर तीर तथा एक गोले वाली मोटी क्षैतिज रेखा काँच के एक प्लेट पर पेन्ट किए गये हैं। यह बिम्ब की भाँति कार्य करता है। जब इस प्लेट को प्रदीप्त किया जाता है तो पर्दे पर इसका वास्तविक प्रतिबिम्ब बनता है। निम्नलिखित में से कौन पर्दे पर बने प्रतिबिम्ब का सही निरूपण करता है? - (ii) नीचे दिया गया कौन सा कथन गलत है ? - (A) उत्तल दर्पण के लिए आवर्धन सदैव ऋणात्मक होता है। - (B) किसी दर्पण द्वारा बने सभी आभासी प्रतिबिम्बों के लिए आवर्धन धनात्मक होता है। - (C) अवतल लेंस के लिए आवर्धन सदैव धनात्मक होता है। - (D) वास्तविक और उलटे प्रतिबिम्बों के लिए आवर्धन सदैव ऋणात्मक होता है। - (iii) फोकस दूरी f के किसी उत्तल लेंस को उसके मुख्य अक्ष के लम्बवत दो समान भागों में काटा गया है। इसके प्रत्येक भाग की फोकस दूरी होगी - (A) f (B) 2 f (C) $\frac{\mathbf{f}}{2}$ (D) $\frac{f}{4}$ #### अथवा - (iii) यदि उपरोक्त प्रकरण (i) में बिम्ब लेंस से $20~\mathrm{cm}$ दूरी पर
तथा पर्दा बिम्ब से $50~\mathrm{cm}$ की दूरी पर है तो उपयोग किए गए लेंस की फोकस दूरी है - (A) 10 cm (B) 12 cm (C) 16 cm - (D) 20 cm - (iv) किसी उभयोत्तल लेंस के प्रथम फोकस बिन्दु से बिम्ब की दूरी ${\rm X}_1$ तथा प्रतिबिम्ब की लेंस के द्वितीय फोकस बिन्दु से दूरी ${\rm X}_2$ है, तो लेंस की फोकस दूरी है - $(A) \quad X_1 X_2$ - (B) $\sqrt{X_1 + X_2}$ - (C) $\sqrt{X_1 X_2}$ (D) $\sqrt{\frac{X_2}{X_1}}$ Consider the arrangement shown in figure. A black vertical arrow and a horizontal thick line with a ball are painted on a glass plate. It serves as the object. When the plate is illuminated, its real image is formed on the screen. Which of the following correctly represents the image formed on the screen? - (ii) Which of the following statements is incorrect? - (A) For a convex mirror magnification is always negative. - (B) For all virtual images formed by a mirror magnification is positive. - (C) For a concave lens magnification is always positive. - (D) For real and inverted images, magnification is always negative. - (iii) A convex lens of focal length 'f' is cut into two equal parts perpendicular to the principal axis. The focal length of each part will be: - (A) f (B) 2 f (C) $\frac{f}{2}$ (D) $\frac{f}{4}$ OR - (iii) If an object in case (i) above is 20 cm from the lens and the screen is 50 cm away from the object, the focal length of the lens used is - (A) 10 cm (B) 12 cm (C) 16 cm - (D) 20 cm - (iv) The distance of an object from first focal point of a biconvex lens is X_1 and distance of the image from second focal point is X_2 . The focal length of the lens is - $(A) \quad X_1 X_2$ - (B) $\sqrt{X_1 + X_2}$ - (C) $\sqrt{X_1 X_2}$ (D) $\sqrt{\frac{X_2}{X_1}}$ - 31. (a) (i) $5~\mu C$ और $-1~\mu C$ के दो बिन्दु आवेश क्रमश: (-3~cm,~0,~0) और (3~cm,~0,~0) ि बिन्दुओं पर स्थित हैं । इस प्रदेश में किसी बाह्य विद्युत क्षेत्र $\overrightarrow{E} = \frac{A}{r^2}~\hat{r}$ को अनुप्रयुक्त किया गया है, यहाँ $A = 3 \times 10^5~Vm$ है । इस विद्युत क्षेत्र के कारण निकाय की स्थिर विद्युत ऊर्जा में परिवर्तन परिकलित कीजिए। - (ii) वायु में स्थित दो चालकों के किसी निकाय पर नेट आवेश $+80\mu C$ तथा $-80\mu C$ है जो उनके बीच 16V का विभवान्तर उत्पन्न करता है । 5 - (1) निकाय की धारिता ज्ञात कीजिए। - (2) यदि संधारित्र में वायु के स्थान पर परावैद्युतांक 3 का कोई परावैद्युत माध्यम भर दिया जाए तो दो चालकों के बीच विभवान्तर क्या होगा ? - (3) यदि इन चालकों पर आवेशों को परिवर्तित करके + 160 μC और 160 μC कर दिया जाए तो क्या निकाय की धारिता में कोई परिवर्तन होगा ? अपने उत्तर के लिए कारण दीजिए । #### अथवा - (b) (i) तीन ऐसे धात्विक गोलीय खोल A, B और C पर विचार कीजिए जिनमें प्रत्येक की त्रिज्या R है । प्रत्येक खोल में त्रिज्या R/10 की संकेंद्री धातु की गेंद है । इन गोलीय खोलों को क्रमश: +6q,-4q तथा 14q आवेश दिया गया है । इनके भीतर की गेंदों को भी क्रमश: -2q, +8q और -10q आवेश दिए गए हैं । इन खोलों A, B और C के केन्द्रों से 3R दूरी पर इन खोलों के कारण उत्पन्न विद्युत क्षेत्रों की तुलना कीजिए । - (ii) आरेख में दर्शाए अनुसार 5~cm त्रिज्या के किसी अर्धवृत्त के केन्द्र B पर कोई $-6~\mu C$ आवेश स्थित है। बिन्दु B से 10~cm दूरी पर स्थित बिन्दु D पर कोई अन्य परिमाण में समान परन्तु विजातीय आवेश स्थित है। इस अर्धवृत्त की परिधि के अनुदिश कोई $+5~\mu C$ आवेश बिन्दु C से बिन्दु A ले जाया गया है। आवेश पर किया गया कार्य परिकलित कीजिए। Page 20 of 24 ### SECTION - E 31. (a) (i) Two point charges 5 μ C and -1 μ C are placed at points (-3 cm, 0, 0) and (3 cm, 0, 0) respectively. An external electric field $\overrightarrow{E} = \frac{A}{r^2} \stackrel{\wedge}{r} \text{ where } A = 3 \times 10^5 \text{ Vm is switched on in the region.}$ Calculate the change in electrostatic energy of the system due to the electric field. - (ii) A system of two conductors is placed in air and they have net charge of $+80\mu C$ and $-80\mu C$ which causes a potential difference of 16 V between them. - (1) Find the capacitance of the system. - (2) If the air between the capacitor is replaced by a dielectric medium of dielectric constant 3, what will be the potential difference between the two conductors? - (3) If the charges on two conductors are changed to +160 μ C and -160 μ C, will the capacitance of the system change ? Give reason for your answer. #### OR - (b) (i) Consider three metal spherical shells A, B and C, each of radius R. Each shell is having a concentric metal ball of radius R/10. The spherical shells A, B and C are given charges +6q, -4q, and 14q respectively. Their inner metal balls are also given charges -2q, +8q and -10q respectively. Compare the magnitude of the electric fields due to shells A, B and C at a distance 3R from their centres. - (ii) A charge $-6~\mu C$ is placed at the centre B of a semicircle of radius 5 cm, as shown in the figure. An equal and opposite charge is placed at point D at a distance of 10 cm from B. A charge +5 μC is moved from point 'C' to point 'A' along the circumference. Calculate the work done on the charge. Page 21 of 24 5 32. (a) (i) किसी असमान चुम्बकीय क्षेत्र में वेग $\stackrel{\longrightarrow}{V}$ से गतिमान कोई प्रोटॉन आरेख में दर्शाए अनुसार पथ संरेखित करता है। प्रोटॉन द्वारा चला गया पथ सदैव कागज के तल में ही होता है। बिन्दु P, Q और R के निकट के प्रदेश में चुम्बकीय क्षेत्र की दिशा क्या है ? इन बिन्दुओं पर चुम्बकीय क्षेत्रों के आपेक्षिक परिमाणों के विषय में आप क्या कह सकते हैं ? 5 5 (ii) क्षेत्रफल A का कोई धारावाही वृत्ताकार पाश अपने केन्द्र पर कोई चुम्बकीय क्षेत्र B उत्पन्न करता है । यह दर्शाइए कि पाश का चुम्बकीय आधूर्ण $\dfrac{2BA}{\mu_0}\sqrt{\dfrac{A}{\pi}}$ है । अथवा - (b) (i) किसी एकसमान चुम्बकीय क्षेत्र में निलंबित किसी आयताकार धारा पाश पर कार्यरत बल आघूर्ण के लिए व्यंजक व्युत्पन्न कीजिए। - (ii) किसी एकसमान चुम्बकीय क्षेत्र \overrightarrow{B} में कोई आवेशित कण वेग \overrightarrow{V} से वर्तुल मार्ग पर गमन कर रहा है । इस आवेशित कण को किसी लैंड की चादर से गुजारा जाता है जिसके फलस्वरूप इसकी गित की दिशा में बिना कोई परिवर्तन हुए इसकी गितज ऊर्जा घटकर आधी रह जाती है । इस कण के (1) पथ की त्रिज्या तथा (2) परिक्रमण के आवर्तकाल में क्या परिवर्तन होगा ? - 33. (a) (i) (1) कलासंबद्ध स्रोत क्या होते हैं ? सतत व्यतिकरण पैटर्न का प्रेक्षण करने के लिए इनका होना आवश्यक क्यों है ? (2) दो स्वतंत्र स्रोतों के प्रकाश कलासंबद्ध नहीं होते हैं। व्याख्या कीजिए। - (ii) किसी पर्दे से 1.20 m की दूरी पर एक दूसरे से 0.1 mm दूरी पर दो झिरियाँ व्यवस्थित की गयी हैं । इन झिरियों पर किसी दूरस्थ प्रकाश स्रोत से 600 nm तरंगदैर्ध्य का प्रकाश आपतन कर रहा है। - (1) पर्दे पर निकटवर्ती चमकीली व्यतिकरण फ्रिंजों के बीच कितनी दरी होगी ? - (2) पहली चमकीली फ्रिंज की कोणीय चौड़ाई (अंशों में) ज्ञात कीजिए। अथवा - (b) (i) तरंगाग्र की परिभाषा लिखिए । कोई आपतित समतल तरंग किसी उत्तल लेंस पर आपतन करती है और उससे अपवर्तित हो जाती है । आपतित और अपवर्तित तरंगाग्रों को आरेख खींचकर दर्शाइए । - (ii) किसी दूरस्थ स्रोत से आता कोई प्रकाश पुंज $15 \mathrm{~cm}$ त्रिज्या की किसी काँच (अपवर्तनांक 1.5) की गोल गेंद द्वारा अपवर्तित होता है । किरण आरेख खींचकर बनने वाले अंतिम प्रतिबिम्ब की स्थिति प्राप्त कीजिए । 2. (a) (i) A proton moving with velocity \overrightarrow{V} in a non-uniform magnetic field traces a path as shown in the figure. The path followed by the proton is always in the plane of the paper. What is the direction of the magnetic field in the region near points P, Q and R? What can you say about relative magnitude of magnetic fields at these points? 5 5 (ii) A current carrying circular loop of area A produces a magnetic field B at its centre. Show that the magnetic moment of the loop is $\frac{2 \ BA}{\mu_0} \ \sqrt{\frac{A}{\pi}}$. OR - (b) (i) Derive an expression for the torque acting on a rectangular current loop suspended in a uniform magnetic field. - (ii) A charged particle is moving in a circular path with velocity V in a uniform magnetic field B. It is made to pass through a sheet of lead and as a consequence, it looses one half of its kinetic energy without change in its direction. How will (1) the radius of its path (2) its time period of revolution change? - 33. (a) (i) What are coherent sources? Why are they necessary for observing a sustained interference pattern? (2) Lights from two independent sources are not coherent. Explain. - (ii) Two slits 0.1 mm apart are arranged 1.20 m from a screen. Light of wavelength 600 nm from a distant source is incident on the slits. - (1) How far apart will adjacent bright interference fringes be on the screen? - (2) Find the angular width (in degree) of the first bright fringe. OR - (b) (i) Define a wavefront. An incident plane wave falls on a convex lens and gets refracted through it. Draw a diagram to show the incident and refracted wavefront. - (ii) A beam of light coming from a distant source is refracted by a spherical glass ball (refractive index 1.5) of radius 15 cm. Draw the ray diagram and obtain the position of the final image formed. 55/1/1 **728-1** ## Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination, 2025 SUBJECT NAME PHYSICS (PAPER CODE 55/1/1) # **General Instructions: -** | 1 | You are aware that evaluation is the most important process in the actual and correct | |----|--| | | assessment of the candidates. A small mistake in evaluation may lead to serious problems | | | which may affect the future of the candidates, education system and teaching profession. | | | To avoid mistakes, it is requested that before starting evaluation, you must read and | | | understand the spot evaluation guidelines carefully. | | 2 | "Evaluation policy is a confidential policy as it is related to the confidentiality of the | | | examinations conducted, Evaluation done and several other aspects. Its' leakage to | | | public in any manner could lead to derailment of the examination system and affect | | | the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may |
 | invite action under various rules of the Board and IPC." | | 3 | Evaluation is to be done as per instructions provided in the Marking Scheme. It should not | | 3 | be done according to one's own interpretation or any other consideration. Marking | | | Scheme should be strictly adhered to and religiously followed. However, while | | | evaluating, answers which are based on latest information or knowledge and/or are | | | innovative, they may be assessed for their correctness otherwise and due marks be | | | awarded to them. In class-X, while evaluating two competency-based questions, | | | please try to understand given answer and even if reply is not from marking scheme | | | but correct competency is enumerated by the candidate, due marks should be | | | awarded. | | 4 | The Marking scheme carries only suggested value points for the answers | | | These are in the nature of Guidelines only and do not constitute the complete answer. The | | | students can have their own expression and if the expression is correct, the due marks | | | should be awarded accordingly. | | 5 | The Head-Examiner must go through the first five answer books evaluated by each | | | evaluator on the first day, to ensure that evaluation has been carried out as per the | | | instructions given in the Marking Scheme. If there is any variation, the same should be | | | zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of | | | individual evaluators. | | 6 | Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be | | • | marked. Evaluators will not put right () while evaluating which gives an impression that | | | answer is correct and no marks are awarded. This is most common mistake which | | | evaluators are committing. | | 7 | If a question has parts, please award marks on the right-hand side for each part. Marks | | • | awarded for different parts of the question should then be totaled up and written in the left- | | | hand margin and encircled. This may be followed strictly. | | 8 | If a question does not have any parts, marks must be awarded in the left-hand margin and | | | encircled. This may also be followed strictly. | | 9 | If a student has attempted an extra question, answer of the question deserving more | | | marks should be retained and the other answer scored out with a note "Extra Question". | | 10 | No marks to be deducted for the cumulative effect of an error. It should be penalized only | | | once. | | 11 | A full scale of marks70(example 0 to 80/70/60/50/40/30 marks as given in | | | Question Paper) has to be used. Please do not hesitate to award full marks if the answer | | | deserves it. | |----|---| | 12 | Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper. | | 13 | Ensure that you do not make the following common types of errors committed by the Examiner in the past:- Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. | | 14 | While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks. | | 15 | Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously. | | 16 | The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation" before starting the actual evaluation. | | 17 | Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words. | | 18 | The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme. | | | MARKING SCHEME: PHYSICS(042) | | | | | | |--------------|--|-------|----------------|--|--|--| | Code: 55/1/1 | | | | | | | | Q.No | VALUE POINTS/EXPECTED ANSWERS | Marks | Total
Marks | | | | | | SECTION A | | | | | | | 1 | (A) $q_2 < q_3 < q_1$ | 1 | 1 | | | | | 2 | (C) $\frac{R}{8}$ | 1 | 1 | | | | | 3 | (B) $\left(-3\hat{j}+2\hat{k}\right)\mu N$ | 1 | 1 | | | | | 4 | (B) 0.30 C | 1 | 1 | | | | | 5 | (B) 2866 | 1 | 1 | | | | | 6 | (D) $\frac{i_0 v_0}{2} \cos \phi$ | 1 | 1 | | | | | 7 | (A) X- rays, Micro waves, UV radiation | 1 | 1 | | | | | 8 | (B) $\frac{3H}{4}$ | 1 | 1 | | | | | 9 | (C) $\frac{h}{m}$ | 1 | 1 | | | | | 10 | $(B) \lambda_e > \lambda_p > \lambda_d$ | 1 | 1 | | | | | 11 | $\underbrace{\frac{B.E}{A}}_{56} \longrightarrow A$ | 1 | 1 | | | | | 12 | (C) The barrier height and the depletion layer width both decrease. | 1 | 1 | | | | | 13 | (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A). | 1 | 1 | | | | | 14 | (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A). | 1 | 1 | | | | | 15 | (C) Assertion (A) is true but Reason (R) is false. | 1 | 1 | | | | | 16 | (D) Assertion (A) is false and Reason (R) is also false. | 1 | 1 | | | | | | SECTION - B | | | | | | | 17 | Calculating the value of E 1 Calculating the value of r 1 $E = V + Ir$ | | | | | | | | In first case $E = 5 + 2r$ In second case | 1/2 | | | | | | | E = $4 + 4r$ After solving | 1/2 | | | | | Page **3** of **19** | | E= 6 V | 1/2 | | |----|---|-----|---| | | $r = 0.5 \Omega$ | 1/2 | 2 | | 18 | (a) Calculating the width of the slit 2 | | | | | Condition for Minima $a \sin \theta = n\lambda$ For First Minima n=1 | 1 | | | | $a \sin 30^{\circ} = 600 \times 10^{-9} \mathrm{m}$ | 1/2 | | | | $a \times \frac{1}{2} = 600 \times 10^{-9} \mathrm{m}$ | | | | | $a = 1200 \times 10^{-9} \text{ m}$
= $1.2 \times 10^{-6} \text{ m}$ | 1/2 | | | | OR | | | | | (b) Finding the Intensity 2 | | | | | Phase difference = $\frac{2\pi}{\lambda}$ × path difference | 1/2 | | | | $\Delta \phi = \frac{2\pi}{\lambda} \Delta x$ | | | | | $\therefore \Delta x = \frac{\lambda}{8} (given)$ | | | | | $\Delta \phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{8}$ | | | | | $\Delta \phi = \frac{\pi}{4}$ | 1/2 | | | | $I = I_{\circ} + I_{\circ} + 2\sqrt{I_{\circ}I_{\circ}}\cos\frac{\pi}{4}$ | 1/2 | | | | $=2I_{\circ}+2I_{\circ} imes rac{1}{\sqrt{2}}$ | | | | | $I=2I_{\circ}igg(1+ rac{1}{\sqrt{2}}igg)$ | | | | | $=I_{\circ}(2+\sqrt{2})$ $I=2.414I$ | 1/2 | | | | $I = 3.414 I_{\circ}$ | , 2 | | | | Alternatively | | | | | Phase difference = $\frac{2\pi}{\lambda}$ × path difference | 1/2 | | | | | | | Page 4 of 19 | $\Delta \phi = \frac{2\pi}{\lambda} \Delta x$ $\therefore \Delta x = \frac{\lambda}{8} (given)$ | | | |---|-----|---| | $\Delta \phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{8}$ | 1/2 | | | $\Delta \phi = rac{\pi}{4}$ | | | | $I = 4I_{\circ} \cos^2\left(\frac{\phi}{2}\right)$ | 1/2 | | | $I = 4I_{\circ} \cos^2\left(\frac{\pi}{8}\right)$ | 1/2 | 2 | | Calculating angle θ 2 | | | | $\frac{\eta_{2}}{\theta}$ | | | | For critical Angle $\frac{n_2}{n_1} = \frac{1}{\sin \theta_c}$ | 1/2 | | | $n_1=1 n_2=\frac{2}{\sqrt{3}} \qquad \text{(given)}$ | | | | $\frac{2}{\sqrt{3}} = \frac{1}{\sin \theta_c}$ | | | | $\sin \theta_c = \frac{\sqrt{3}}{2}$ | | | | $\theta_c = 60^{\circ}$ $r = 90 -
\theta_c$ | | | | = 30°
From Snell's law at air rod interface | 1/2 | | | $n_1 \sin i = n_2 \sin r$ | 1/2 | | Page **5** of **19** | | $n_2 = \frac{\sin \theta}{\sin r}$ | | | |----|---|-----|---| | | | | | | | $\frac{2}{\sqrt{3}} = \frac{\sin \theta}{\sin 30^{\circ}}$ $\frac{2}{\sqrt{3}} \times \frac{1}{2} = \sin \theta$ $\frac{1}{\sqrt{3}} = \sin \theta$ | | | | | $\sqrt{3}$ $\sin 30^{\circ}$ 2 1 . | | | | | $\frac{1}{\sqrt{3}} \times \frac{1}{2} = \sin \theta$ | | | | | $\frac{1}{\sqrt{2}} = \sin \theta$ | | | | | $\sqrt{3}$ | 1/ | 2 | | | $\theta = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$ | 1/2 | 2 | | | | | | | 20 | Proving Time period of Revolution ,T α n ³ 2 | | | | | | | | | | $T = \frac{2\pi r}{} \qquad (1)$ | 1/2 | | | | V | | | | | From Bohr's quantization condition nh | | | | | $mvr = \frac{nh}{2\pi}$ | | | | | $v = \frac{nh}{2\pi mr} \qquad (2)$ | 1/2 | | | | From (1) and (2) | | | | | $T = \frac{2\pi r}{(nh/n)}$ | | | | | $1 - \sqrt{2\pi mr}$ | | | | | $T = \frac{2\pi r(2\pi mr)}{nh}$ | | | | | $r = 4\pi^2 mr^2$ | 1/2 | | | | nh | | | | | From $r = \frac{n^2 h^2}{4\pi^2 m ke^2}$ | | | | | $T = \frac{4\pi^2 m}{nh} \left(\frac{n^2 h^2}{4\pi^2 m k e^2} \right)^2$ | | | | | $T = \frac{n^3 h^3}{4\pi^2 m k^2 e^4}$ | | | | | $4\pi^2 mk^2 e^4$ $\Rightarrow T \alpha n^3$ | 1/2 | | | | \Rightarrow T α n° Alternatively | /2 | | | | | | | Page 6 of 19 | | $T = \frac{2\pi r}{r}$ | 1/2 | | |----|--|-----|---| | | $rac{ m v}{r \alpha n^2}$ | 1/2 | | | | and $v\alpha = \frac{1}{2}$ | 1/2 | | | | $ \begin{array}{c} \mathbf{n} \\ \therefore \mathbf{T} \alpha \mathbf{n}^3 \end{array} $ | 1/2 | 2 | | 21 | Finding the number of holes One example 1 dopant atom for 5×10^7 Si atoms and number density of Si atoms = 5×10^{28} $\frac{\text{atoms}}{\text{m}^3}$ (given) No. of holes created per m ³ = $\frac{5 \times 10^{28}}{5 \times 10^7} = 10^{21}$ Number of holes created per cubic centimeter | 1 | | | | $= \frac{10^{21}}{10^{6}} = 10^{15}$ Any one example of dopant - Aluminium / Indium / Gallium $\mathbf{SECTION - C}$ | 1 | 2 | | | | | | | 22 | Finding (i) Equivalent emf of combination (ii) Equivalent internal resistance of combination (iii) Current drawn from combination (i) Page $E_1 = \frac{E_1 r_2 + E_2 r_1}{E_1 r_2}$ | 1/2 | | | | (i) Because $E_{eq} = \frac{E_1 r_2 + E_2 r_1}{r_1 + r_2}$ $E_{eq} = \frac{3 \times 0.4 + 6 \times 0.2}{0.6} = 4 \text{ V}$ | 1/2 | | | | (ii) $r_{eq} = \frac{r_1 r_2}{r_1 + r_2}$ $r_{eq} = \frac{0.2 \times 0.4}{0.2 + 0.4} = 0.133\Omega$ | 1/2 | | | | (iii) $I = \frac{E}{R + r_{eq}}$ $I = \frac{4}{4 + 0.13} = \frac{4}{4.13} A$ | 1/2 | | | | I = 0.9A | | | Page 7 of 19 | | op. | | | |--------------------------|---|-----|----------| | | OR | | | | (b) | (i) Finding the relation (i) between R' and R | | | | | (ii) between v_d and v_d 1 | | | | | (ii) To identify whether all free electrons are moving in the same direction. | | | | | l'=2l | | | | | Al = A'l' = volume of the wire $Al = A'(2l)$ | | | | $\frac{A}{2}$ | A = A' | | | | R = | $= rac{ ho l}{A}$ | 1/2 | | | R' | $=\frac{A}{\rho l'}$ | | | | D' | $= \frac{\rho l'}{A'}$ $\frac{\rho(2l)}{A/2}$ | | | | K = | $\overline{\frac{A}{2}}$ | | | | $\frac{R'}{R} =$ | 4 | 1/2 | | | Alter <i>R'</i> = | natively n^2R | 1/2 | | | n= 2
R'= | | 1/2 | | | | $V_{\rm d} = \frac{\rm eE}{\rm m} \tau$ | 1/2 | | | | | | | | v _d | $=\frac{\mathrm{eV}}{\mathrm{ml}}\tau$ | | | | v _d '= | $\frac{eV}{ml}\tau = \frac{eV}{ml'}\tau$ | | | | $v_{\rm d}$ | $=\frac{l}{l'}=\frac{1}{2}$ | 1/2 | | | v _d (ii) N | | 1 | 3 | | 23 | Derivation for | 1 | <u> </u> | | | Magnetic field on the axis 2 ½ Magnetic field at the centre ½ | | | | | | | | Page 8 of 19 | 24 | | | |---|-----|---| | a) Deriving the expression for energy stored in an inductor. 1 ½ b) Deriving the energy density of magnetic field. 1 ½ | | | | a) Induced emf in an inductor | | | | $\left arepsilon ight = L rac{dI}{dt}$ | 1/2 | | | Rate of work done at any instant | | | | $ rac{dW}{dt} = \left arepsilon ight I$ | 1/2 | | | Total Amount of work done in establishing current I | | | | $W = \int dW = \int_{0}^{1} LIdI$ | | | | Energy required to build up current I is $W = \frac{1}{2} L I^{2}$ | 1/2 | | | b) The Magnetic Energy is $W=U_B=\frac{1}{2}LI^2$ | | | | $= \frac{1}{2} L \left(\frac{B}{n\mu_0} \right)^2 \text{as } B = n \mu_0 I$ | 1/2 | | | Using L= $\mu_0 n^2 A l$ $U_B = \frac{1}{2} \left(\mu_0 n^2 A l \right) \left(\frac{B^2}{{\mu_0}^2 n^2} \right)$ | | | | Energy density = $\frac{U_{\rm B}}{\text{volume}}$ | 1/2 | | | volume $\frac{U_{B}}{\text{volume}} = \frac{1}{2} \times \mu_{0} n^{2} A l \times \frac{B^{2}}{\mu_{0}^{2} n^{2}} \times \frac{1}{A l}$ | | | | | | | | $=\frac{1}{2}\frac{B^2}{\mu_0}$ | 1/2 | 3 | | a) Showing that ($I_c + I_d$) has the same value. b) Explanation of Kirchhoff's first rule at each plate of capacitor. 2 | | | | a) : Total current $I = I_c + I_d$ | | | | outside the capacitor $I_d = 0$ | 1/2 | | | $I_{d} = I_{c}$ $I = I_{c}$ | /2 | | | Inside the capacitor | 1/ | | | $I_c = 0$ | 1/2 | | | | | | Page 10 of 19 | | $\therefore \ \ \mathrm{I} = \mathrm{I_d} = \ \varepsilon_0 \frac{d\phi_{\scriptscriptstyle E}}{dt}$ | 1/2 | | |----|---|-----|---| | | $= \varepsilon_0 \frac{d}{dt} [EA]$ | | | | | $= \varepsilon_0 \frac{d}{dt} \left[\frac{\sigma}{\varepsilon_0} A \right]$ | | | | | $=\frac{\varepsilon_0}{\varepsilon_0}A\frac{d}{dt}\left[\frac{Q}{A}\right]$ | 1/2 | | | | $I = \frac{dQ}{dt} = I_c$ | | | | | Alternatively | | | | | \therefore Total current $I = I_c + I_d$ | | | | | outside the capacitor | | | | | $I_d = 0$ | 1/2 | | | | \therefore $I = I_c$ | | | | | Inside the capacitor | 1/2 | | | | $I_c = 0$ | | | | | $ d\phi$ | | | | | $ ext{I} = ext{I}_{ ext{d}} = arepsilon_0 rac{d\phi_{\scriptscriptstyle E}}{dt}$ | 1/2 | | | | | 12 | | | | $= \ arepsilon_0 rac{d}{dt} \left[rac{Q}{arepsilon_0} ight]$ | | | | | | 1/2 | | | | $I = \frac{dQ}{dt} = I_c$ | | | | | αι | | | | | hence $I_c + I_d$ has the same value at all points of the circuit. | | | | | b) Yes | 1 | | | | Current entering the capacitor is (I_c) and between the plates capacitor is (I_d) | 1 | | | | | | | | | $I_{\rm c} = I_{\rm d}$ | | _ | | 26 | which validates Kirchhoff's junction rule. | | 3 | | 26 | Descent for | | | | | Reason for a) All photoglostrops not having same Kingtic Energy | | | | | a) All photoelectrons not having same Kinetic Energy.b) Having different saturation current for different intensity. | | | | | c) Stopping of emission of photoelectrons at a certain wavelength. | | | | | 5) Stopping of emission of photoelections at a certain wavelength. | | | | | | | | | | a) When monochromatic light is incident on a metal surface then more/less tightly bound | 1 | | | | electrons will emerge with less/more kinetic energy. So all the photoelectrons do not eject | | | | | with same kinetic energy. | | | | | b) Maximum number of photoelectrons ejected per second (saturation current) is directly | | | | | proportional to the Intensity of incident radiation Hence saturation current is different for | 1 | | | | different intensities. | | | | | | | | | | c) when λ increases , ν decreases and energy of incident photon ($h\nu$) also decreases. When $\lambda > \lambda_0$, $\nu < \nu_0$ (threshold frequency) , no photoelectron is ejected. Emission of photoelectrons stop at $\lambda > \lambda_0$. | 1 | 3 | |----|--|---|---| | 27 | | | | | | a) Defining Mass Defect ½ Defining Binding Energy ½ Describing Fission Process ½ b) Calculation of Mass Defect 1 Calculation of Energy ½ | | | | | a) Difference in the mass of the nucleus and its constituents is defined as mass defect. Binding Energy is the energy required to separate the nucleons from the nucleus. In Fission process a heavy nucleus splits into lighter nuclei and energy is released. As a result the Binding Energy per nucleon increases. b) $\Delta m = (m_{p} + m_{n}) - m_{d}$ | 1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ | | | | $\Delta m = (1.007277 + 1.008665) - 2.013553$ $\Delta m = 0.002389 \text{ u}$ Energy released = $\Delta m \times c^2$ Energy released = 0.002389×931.5 = $2.2253 \text{ MeV} \approx 2.22 \text{ MeV}$ | 1/2 | | | 28 | a) Circuit Arrangement for studying V–I characteristics. b) Showing the shape of characteristic curves. c) Two informations from the characteristics | | 3 | | | a) Voltmeter(V) Milliammeter (mA) Switch Circuit diagram for forward characteristics | 1/2 | | Page 13 of 19 | (B) 12 cm
iv) (C) $\sqrt{X_1 X_2}$ | 1 | |
---|---------------------------------|--| | $\frac{\text{SECTION - E}}{\text{SECTION - E}}$ | | | | a) i) Calculating the change in electrostatic energy of the system ii) (1) Finding the capacitance. (2) Finding the potential difference. (3) Answering and Reason 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | (i) $\vec{E} = \frac{3 \times 10^5}{r^2} \hat{r}$ (Given) $dV = -\vec{E} \cdot d\vec{r}$
$V = 3 \times 10^5 / r$
Electrostatic energy of the system in the absence of the field | | | | $U_{\rm i} = \frac{Kq_1q_2}{r_{12}}$ | 1/2 | | | Electrostatic energy in the presence of the field $U_{\rm f} = \frac{Kq_1q_2}{r_{12}} + q_1V(\vec{r}_1) + q_2V(\vec{r}_2)$ $\Delta U = U_{\rm f} - U_{\rm i} = q_1V(\vec{r}_1) + q_2V(\vec{r}_2)$ | 1/2 | | | $\Delta U = \frac{5 \times 10^{-6} \times 3 \times 10^{5}}{3 \times 10^{-2}} - \frac{1 \times 10^{-6} \times 3 \times 10^{5}}{3 \times 10^{-2}}$ | 1/2 | | | =40 J | 1/2 | | | ii) 1) $C = \frac{Q}{V} = \frac{80}{16} = 5\mu F$ | 1 | | | 2) $C' = KC$
= $3 \times 5 \mu F = 15 \mu F$ | 1/2 | | | $V' = \frac{Q}{C'} = \frac{80\mu C}{15\mu F} = 5.33V$ | 1/2 | | | 3) No, The capacitance of the system depends on its geometry. OR | 1/ ₂ 1/ ₂ | | | b) i) Comparing the magnitude of the Electric fields 2 ii) Calculating the work done on the charge 3 | | | | Total charge for A = Total charge for B = Total charge for $C = +4q$ | 1 | | Page 14 of 19 | | Since $Q = 4q$ and $r = 3R$ | 1/ | | |----|--|-----------------|---| | | $E = \frac{k(4q)}{9R^2} = \frac{4kq}{9R^2}$ | 1/2 | | | | | 1/2 | | | | $\therefore E_{A} = E_{B} = E_{c}$ | 72 | | | | ii) $V_c = \left[\frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right]$ | 1 | | | | $ 11\rangle V_c = \left \frac{1}{5 \times 10^{-2}} - \frac{1}{5 \times 10^{-2}} \right $ | 1 | | | | =0 | | | | | | | | | | $V_A = \left\lceil \frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right\rceil$ | | | | | $\begin{bmatrix} A & \begin{bmatrix} 15 \times 10^{-2} & 5 \times 10^{-2} \end{bmatrix} \end{bmatrix}$ | 1/2 | | | | | , , | | | | $k \times 6 \times 10^{-6} \left[1 - 3\right]$ | | | | | $=\frac{k\times 6\times 10^{-6}}{10^{-2}} \left[\frac{1-3}{15}\right]$ | | | | | | | | | | $= -\frac{9 \times 10^9 \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}}$ | | | | | 15×10^{-2} | | | | | $= -7.2 \times 10^5 \mathrm{V}$ | 1/2 | | | | $W = q[V_A - V_c]$ | 1/2 | | | | | | | | | $= 5 \times 10^{-6} \left[-7.2 \times 10^5 - 0 \right]$ | | | | | W = -3.6 J | 1/2 | | | | | | 5 | | 32 | a) | | | | | i) Finding the direction of magnetic field near points P,Q and R $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ | | | | | Conclusion about the relative magnitude of magnetic field. $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ | | | | | ii) Showing the given expression of magnetic moment. | | | | | | | | | | i) Near point P | 17 | | | | Magnetic field is acting into the plane of the paper as Force is acting upwards. | 1/2 | | | | Near point Q | 1/ | | | | Magnetic field is into the plane of paper as force is acting upwards. | 1/2 | | | | Near point R | 1/2 | | | | Magnetic field is acting out of the plane of the paper as \vec{F} is acting downwards. | 72 | | | | Relative Magnitude of the Magnetic field. | | | | 1 | | | i | | 1 | As B $\alpha^{\frac{1}{\alpha}}$ | | | | | As B $\alpha \frac{1}{r}$ | | | | | Therefore, | 1/2 | | | | Therefore, Near point P, magnitude of B is small. | 1/ ₂ | | | | Therefore, Near point P, magnitude of B is small. Near point Q, B is relatively smaller than point P. | 1/2 | | | | Therefore, Near point P, magnitude of B is small. Near point Q, B is relatively smaller than point P. Near point R, B is relatively larger than point P. | | | | | Therefore, Near point P, magnitude of B is small. Near point Q, B is relatively smaller than point P. | 1/2 | | | | Therefore, Near point P, magnitude of B is small. Near point Q, B is relatively smaller than point P. Near point R, B is relatively larger than point P. $(B_Q < B_P < B_R)$ | 1/2 | | | | Therefore, Near point P, magnitude of B is small. Near point Q, B is relatively smaller than point P. Near point R, B is relatively larger than point P. | 1/2 | | | | Therefore, Near point P, magnitude of B is small. Near point Q, B is relatively smaller than point P. Near point R, B is relatively larger than point P. $(B_Q < B_P < B_R)$ | 1/2 | | | $B = \frac{\mu_0 I}{2r} \text{or} I = \frac{2Br}{\mu_0}$ $A = \pi r^2 \qquad r = \sqrt{\frac{A}{\pi}}$ | 1/2 | | |---|-----|--| | $\int B - \frac{1}{2r} \int dr = \frac{1}{\mu_0}$ | | | | $\frac{1}{\sqrt{\Lambda}}$ | | | | $A = \pi r^2$ $r = \sqrt{\frac{A}{r}}$ | 1/2 | | | ee ee π | ., | | | M = IA | 1/2 | | | $=\frac{2Br}{A}$ | | | | μ_0 | | | | $2BA \overline{A}$ | 1/ | | | $=\frac{2BA}{\mu_0}\sqrt{ rac{A}{\pi}}$ | 1/2 | | | | | | | OR | | | | b) i) Deriving the expression for the torque. | | | | ii) 1) Finding the change in radius. | | | | 2) Finding the change in time period of Revolution. 1 | | | | i) | | | | 1 | | | | | | | | | | | | | | | | $a/2 \sin \theta$ | | | | a_1^2 $\mathbf{a}_{\mathbf{m}}$ \mathbf{b} | | | | | 1/2 | | | | | | | | | | | F, | | | | | | | | \vec{F}_1 and \vec{F}_2 are the forces acting on two arms of the rectangular coil having sides a and b. | | | | $\left \vec{F_1} \right = \left \vec{F_2} \right = I b B$ (b = length of the arm) | 1 | | | | | | | Forces constitute a couple. The magnitude of Torque on the loop is – | | | | $\tau = F_1 \frac{a}{2} \sin \theta + F_2 \frac{a}{2} \sin \theta$ | | | | | 1/2 | | | $= I a b B \sin \theta$ | | | | $=IAB\sin\theta$ | 1/2 | | | $ec{ au} = I \! ec{A} \! imes \! ec{B}$ | | | | | 1/2 | # Alternatively $\frac{1}{2}$ If the plane of the current carrying coil marks an angle ∝ with the magnetic field $\vec{F}_{DA} = -\vec{F}_{Bc}$ (cancel each other). $\frac{1}{2}$ Force on the arm DC is into the plane of the paper $\frac{1}{2}$ $|F_{DC}| = IbB$. Force on the arm AB is out of the plane of the paper. $|F_{AB}| = IbB$ $\frac{1}{2}$ Both of them form a couple and Torque acting on the coil is τ =either force ×perpendicular distance between the two forces. $\tau = IbB \times a \cos \alpha$ $= IabB\cos\alpha$ $\frac{1}{2}$ $\tau = IAB\cos\alpha$ Let $\hat{n} =$ outward drawn normal to the plane of the coil. $\theta + \alpha = 90^{\circ}$ $\alpha = 90^{\circ} - \theta$ $\tau = IAB\cos(90 - \theta)$ $= IAB \sin \theta$ $\frac{1}{2}$ $\vec{\tau} = I\vec{A} \times \vec{B}$ ii) 1) $r = \frac{mv}{qB} = \frac{\sqrt{2mK}}{qB}$ $\frac{1}{2}$ $r \quad \alpha \ \sqrt{K}$ $\frac{r'}{r} = \frac{\sqrt{K/2}}{\sqrt{K}} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}$ $r' = \frac{r}{\sqrt{2}}$ Page 17 of 19 | | | ı | T | |----|---|-----------------------------|---| | | 2) $T = \frac{2\pi m}{R}$ | 1./ | | | | qB | 1/2 | | | | Time period does not depend on Kinetic Energy | 1/ | _ | | | ∴ Time period will not change. | 1/2 | 5 | | 22 | | | | | 33 | a) i) 1) Definition of coherent sources. | | | | | Necessity of coherent sources for sustained interference pattern 1 | | | | | 2) Explanation 1 | | | | | ii) 1) Finding distance between adjacent bright fringes. | | | | | 2) Finding angular width | | | | | 2) I maing angular widur | | | | | i) 1) If the above difference between the displacement and displacement and the second of the second | | | | | i) 1) If the phase difference between the displacement produced by each of the wave | 1 | | | | from two sources does not change with time then two sources are said to be coherent. | 1 | | | | Alternatively Two sources are said to be coherent if they emit light continuously of same frequency / | | | | | wavelength and having zero or constant phase difference. | | | | | Coherent sources are required to get constant phase difference. | 1 | | | | 2) Two independent sources will never be coherent because phase difference between | 1 | | | | them will not be constant. | 1 | | | | ii) 1) Distance between adjacent bright fringe = fringe width | _ | | | | | | | | | $\beta = \frac{\lambda D}{d}$ | 1/2 | | | | | | | | | $=\frac{600\times10^{-9}\times1.2}{0.1\times10^{-3}}=7.2\mathrm{mm}$ | 1/2 | | | | | | | | | $\theta = \frac{\lambda}{d}$ | 1/2 | | | | | | | | | $= \frac{600 \times 10^{-9}}{0.1 \times 10^{-3}} = 6 \times 10^{-3} \text{rad} = 0.34^{\circ}$ | | | | | 0.1×10^{-3} | 1/2 | | | | Give full marks if the student writes the answer in radians only. | | | | | OR | | | | | b) i) Definition of wave front. | | | | | Drawing the incident and refracted wave front $\frac{1}{2} + \frac{1}{2}$ | | | | | ii) Drawing the ray diagram | | | | | Obtaining the position of final image 2 | | | | | | | | | | i) A wavefront is a locus of all the points which oscillate in phase. | 1 | | | | | 1 | | | | Incident | | | | | •F | | | | | | $\frac{1}{2} + \frac{1}{2}$ | | | | | | | | | Spherical wavefront | | | | | of radius f | | | | | | | | Page 18 of 19 ## Marking Scheme Strictly Confidential # (For Internal and Restricted use only) Senior School Certificate Examination, 2025 SUBJECT NAME PHYSICS (PAPER CODE 55/1/2) ## **General Instructions: -** | 1 | You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the
future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. | |----|---| | 2 | "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC." | | 3 | Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded. | | 4 | The Marking scheme carries only suggested value points for the answers These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. | | 5 | The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators. | | 6 | Evaluators will mark($$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right ($$) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing. | | 7 | If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly. | | 8 | If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly. | | 9 | If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question". | | 10 | No marks to be deducted for the cumulative effect of an error. It should be penalized only once. | | 11 | A full scale of marks70(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer | | | deserves it. | |----|---| | 12 | Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper. | | 13 | Ensure that you do not make the following common types of errors committed by the Examiner in the past:- Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. | | 14 | While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks. | | 15 | Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously. | | 16 | The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation" before starting the actual evaluation. | | 17 | Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words. | | 18 | The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme. | #### MARKING SCHEME: PHYSICS(042) Code: 55/1/2 Q.No. VALUE POINTS/EXPECTED ANSWERS Marks **Total** Marks **SECTION A** (C) C 1 1 1 (B) Using a wire of same radius and half length. 1 2 1 3 1 (B) $\left(-3\hat{j}+2\hat{k}\right)\mu N$ 1 (C) 2 1 1 4 (B) 2866 5 1 1 1 1 6 (D) $\frac{\mathbf{i}_0 \mathbf{v}_0}{2} \cos \phi$ (B) Speed Wavelength 7 Frequency 1 1 Remains same Decreases Increases 8 1 1 (A) medium '1' and at an angle greater that sin⁻¹ (A) 10¹⁶ 9 1 1 10 (A) 1 1 (C) The barrier height and the depletion layer width both decrease. 11 1 1 12 1 1 (B) $\lambda_e > \lambda_p > \lambda_d$ Assertion (A) is false and Reason (R) is also false. 13 (D) 1 14 Assertion (A) is true but Reason (R) is false. (C) 1 1 Both Assertion (A) and Reason (R) are true and Reason (R) is the correct 1 15 1 explanation of Assertion(A). A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct 16 1 1 explanation of Assertion(A). **SECTION - B** 17 Obtaining Ohm's law from $\vec{E} = \rho \vec{j}$ $1\frac{1}{2}$ Writing the condition $\frac{1}{2}$ $\vec{E} = \rho \vec{j}$ $\frac{V}{1} = \rho \frac{I}{A}$ $\frac{1}{2}$ $\frac{1}{2}$ Page 3 of 18 | | V 1 | | | |----|---|-----|---| | | $\frac{V}{I} = \rho \frac{l}{A} = \text{constant (Ohm's Law)}$ | 1/2 | | | | Condition for non- validity of Ohm's Law High temperature / in semiconductor | 1/2 | 2 | | 18 | (a) Calculating the width of the slit 2 | | | | | Condition for Minima $a \sin \theta = n\lambda$ | 1 | | | | For First Minima n=1
a sin $30^{\circ} = 600 \times 10^{-9}$ m | 1/2 | | | | $a \times \frac{1}{2} = 600 \times 10^{-9} \mathrm{m}$ | | | | | $a = 1200 \times 10^{-9} \text{ m}$
= 1.2 × 10 ⁻⁶ m | 1/2 | | | | OR | | | | | (b) Finding the Intensity 2 | | | | | Phase difference = $\frac{2\pi}{\lambda}$ × path difference | 1/2 | | | | $\Delta \phi = \frac{2\pi}{\lambda} \Delta x$ $\therefore \Delta x = \frac{\lambda}{8} (given)$ | | | | | $\therefore \Delta x = \frac{\lambda}{8} (given)$ | | | | | $\Delta \phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{8}$ | | | | | $\Delta \phi = \frac{\pi}{4}$ | 1/2 | | | | $I = I_{\circ} + I_{\circ} + 2\sqrt{I_{\circ}I_{\circ}}\cos\frac{\pi}{4}$ | 1/2 | | | | $=2I_{\circ}+2I_{\circ} imes rac{1}{\sqrt{2}}$ | | | | | $I=2I_{\circ}igg(1+ rac{1}{\sqrt{2}}igg)$ | | | | | $=I_{\circ}(2+\sqrt{2})$ | 17 | | | | $I = 3.414 I_{\circ}$ | 1/2 | | | | Alternatively | | | | | | | | Page 4 of 18 | | 0 | | | |----
--|---------------------------------|---| | | Phase difference = $\frac{2\pi}{\lambda}$ × path difference | 1/2 | | | | $\Delta \phi = \frac{2\pi}{\lambda} \Delta x$ | | | | | $\therefore \Delta x = \frac{\lambda}{8} \left(given \right)$ | | | | | | | | | | $\Delta \phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{8}$ | | | | | $\Delta\phi= rac{\pi}{4}$ | 1/2 | | | | $I = 4I_{\circ} \cos^{2}\left(\frac{\phi}{2}\right)$ $I = 4I_{\circ} \cos^{2}\left(\frac{\pi}{8}\right)$ | 1/2 | | | | $I = 4I_{\circ} \cos^2\left(\frac{\pi}{8}\right)$ | 1/2 | 2 | | 19 | Finding the position 1½ | | | | | Nature of the Image formed ½ | | | | | Refraction from rarer to denser medium | 1./ | | | | $\frac{n_1}{-u} + \frac{n_2}{v} = \frac{n_2 - n_1}{R}$ | 1/2 | | | | $u = -\frac{R}{2}, n_1 = 1, n_2 = 1.5$ | | | | | $\frac{2}{R} + \frac{1.5}{v} = \frac{1.5-1}{R}$ | 1/2 | | | | | | | | | $\frac{1.5}{v} = \frac{0.5}{R} - \frac{2}{R}$ | | | | | $\frac{1.5}{v} = -\frac{1.5}{R}$ | | | | | v = -R | 1/ ₂ 1/ ₂ | 2 | | 20 | The image is virtual in air at distance R. | 72 | | | 20 | Finding the Angular momentum 2 | | | | | | | | | | $E_n = -\frac{13.6}{n^2}eV$ | 1/2 | | | | $n^2 = \frac{-13.6}{10.00} - 4$ | , 2 | | | | | 1/2 | | | | n=2 Angular momentum | | | | | | | | | | $n^2 = \frac{-13.6}{-3.4} = 4$ $n=2$ | | | Page **5** of **18** | | n la | | | |----|---|-----|----------| | | ${ m L}= rac{nh}{2\pi}$ | 1/2 | | | | $L = \frac{h}{\pi} = \frac{6.63 \times 10^{-34}}{3.14} = 2.11 \times 10^{-34} \text{ Js}$ | 1/2 | 2 | | 21 | π 3.14 | | | | | Finding the number of holes 1 One example 1 | | | | | 1 dopant atom for 5×10^7 Si atoms | | | | | and number density of Si atoms = $5 \times 10^{28} \frac{\text{atoms}}{\text{m}^3}$ (given) | | | | | No. of holes created per m ³ = $\frac{5 \times 10^{28}}{5 \times 10^7} = 10^{21}$ | 1 | | | | Number of holes created per cubic centimeter $= \frac{10^{21}}{10^{6}} = 10^{15}$ | 1 | | | | $= \frac{10^6}{10^6} = 10^4$ Any one example of dopant - Aluminium / Indium / Gallium | 1 | 2 | | | SECTION - C | 1 | <u> </u> | | 22 | Finding (i) Equivalent emf of combination 1 (ii) Equivalent internal resistance of combination 1 (iii) Current drawn from combination 1 For + For | | | | | (i) Because $E_{eq} = \frac{E_1 r_2 + E_2 r_1}{r_1 + r_2}$
$3 \times 0.4 + 6 \times 0.2$ | 1/2 | | | | $E_{eq} = \frac{3 \times 0.4 + 6 \times 0.2}{0.6} = 4 \text{ V}$ | 1/2 | | | | (ii) $r_{eq} = \frac{r_1 r_2}{r_1 + r_2}$ | 1/2 | | | | $r_{eq} = \frac{0.2 \times 0.4}{0.2 + 0.4} = 0.133\Omega$ | 1/2 | | | | (iii) $I = \frac{E}{R + r_{eq}}$ | 1/2 | | | | $I = \frac{4}{4 + 0.13} = \frac{4}{4.13} A$ | 1/2 | | | | I = 0.9A | | | | | OR | | | Page 6 of 18 | (b) | | | | |---------------------------|--|-----|---| | | (i) Finding the relation (i) between R' and R | | | | | (ii) between v_d and v_d 1 | | | | | (ii) To identify whether all free electrons are moving in the same | | | | | direction. 1 | | | | (i) i | l'=2l | | | | | Al = A'l' = volume of the wire | | | | | Al = A'(2l) | | | | $\frac{\Lambda}{2}$ | A' = A' | 1/2 | | | | $=\frac{ ho l}{A}$ | | | | | A_{ij} | | | | R' = | $=\frac{\rho l'}{\Lambda'}$ | | | | D, | $\rho(2l)$ | | | | R' = | $\frac{A}{A}$ | | | | R' | , 2 | 1/2 | | | $\frac{R'}{R} =$ | 4 | | | | | natively | 1/2 | | | R' = | n^2R | 1/2 | | | n= 2
R'= | 4R | ,,, | | | | $\tau_{\rm d} = \frac{\rm eE}{\rm m} \tau$ | 1/2 | | | | d m | | | | | eV | | | | | $=\frac{cv}{ml}\tau$ | | | | v _d '= | $=\frac{\mathrm{eV}}{\mathrm{m}l'}\tau$ | | | | | | 1/2 | | | $\frac{\mathbf{v}_d}{} =$ | $=\frac{l}{l'}=\frac{1}{2}$ | /2 | | | v_d | l 2 | | 2 | | (ii) N | lo | 1 | 3 | | | | | | | | a) Defining magnetic moment 1 | | | | | SI unit of magnetic moment 1/2 | | | | | b) Finding the magnitude of magnetic field 1½ | | | | a) Ma | agnetic moment of a current carrying coil is defined as the product of | 1 | | Page 7 of 18 | | (0) 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (| 1 | 1 | |----|--|-----|---| | | current flowing through the coil and Area of the coil. Alternatively | | | | | $ec{M}=ec{IA}$ | | | | | S.I. unit is Am ² | 1/2 | | | | b) $\tau = \text{NIABsin}\theta$ | | | | | $\tau_1 = 0.12 = 60 \times 2 \times 1.5 \times 10^{-3} \times B \sin \theta$ | | | | | $B\sin\theta = \frac{2}{3}$ | 1/2 | | | | $\tau_2 = 0.05 = 60 \times 2 \times 1.5 \times 10^{-3} \times B \cos\theta$ | | | | | $B\cos\theta = \frac{5}{18}$ | 1/2 | | | | $B = \sqrt{B^2 \sin^2 \theta + B^2 \cos^2 \theta}$ | | | | | $=\sqrt{\left(\frac{2}{3}\right)^2 + \left(\frac{5}{18}\right)^2} = \frac{13}{18} T$ | 1/2 | 3 | | 24 | Deriving the expression for mutual Inductance 2
Showing $M_{21} = M_{12}$ 1 | | | | | N_1 turns N_2 turns | 1/2 | | | | Let N_1 and N_2 be the total number of turns of coils S_1 and S_2 respectively.
When current I_2 is set up in S_2 , flux linkage with solenoid S_1 is – | 17 | | | | $N_1 \phi_1 = M_{12} I_2$ (i)
$N_1 \phi_1 = (n_1 l) (\pi r_1^2) (\mu_0 n_2 I_2)$ | 1/2 | | | | $\begin{aligned} \mathbf{N}_{1}\phi_{1} &= (\mathbf{n}_{1}t)(\mathbf{n}\mathbf{r}_{1}^{2})(\mathbf{\mu}_{0}\mathbf{n}_{2}\mathbf{I}_{2}^{2}) \\ \mathbf{N}_{1}\phi_{1} &= \mathbf{\mu}_{0}\mathbf{n}_{1}\mathbf{n}_{2}\mathbf{n}\mathbf{r}_{1}^{2}t\mathbf{I}_{2} &(\mathbf{i}\mathbf{i}) \end{aligned}$ | 1/2 | | | | From (i) and (ii) | 1/2 | | | | $M_{12} = \mu_0 n_1 n_2 \pi r_1^2 l$ | 7/2 | | Page **8** of **18** | Considering Reverse case, when I_1 current is set up in S_1 , flux linkage with S_2 is – $N_2\phi_2=M_{21}I_1$ (iii) $N_2\phi_2=(n_2l)\left(\pi r_1^2\right)\left(\mu_0n_1I_1\right)$ (iv) From (iii) and (iv) $M_{21}=n_1n_2\pi r_1^2l$ $\therefore M_{12}=M_{21}$ | 3 | |---|---| | $N_{2}\phi_{2} = M_{21}I_{1}(iii)$ $N_{2}\phi_{2} = (n_{2}l)(\pi r_{1}^{2})(\mu_{0}n_{1}I_{1})(iv)$ From (iii) and (iv) $M_{21} = n_{1}n_{2}\pi r_{1}^{2}l$ | 3 | | $N_{2}\phi_{2} = (n_{2}l)(\pi r_{1}^{2})(\mu_{0}n_{1}I_{1}) \qquad(iv)$ From (iii) and (iv) $M_{21} = n_{1}n_{2}\pi r_{1}^{2}l$ | 3 | | $N_{2}\phi_{2} = (n_{2}l)(\pi r_{1}^{2})(\mu_{0}n_{1}l_{1})(iv)$ From (iii) and (iv) $M_{21} = n_{1}n_{2}\pi r_{1}^{2}l$ | 3 | | From (iii) and (iv) $M_{21}=n_1n_2\pi r_1^2 l$ | 3 | | $M_{21} = n_1 n_2 \pi r_1^2 l$ | 3 | | | 3 | | $ \cdot M - M $ | 3 | | | 3 | | 25 | | | a) Showing that $(1_c + 1_d)$ has the same value. | | | b) Explanation of Kirchhoff's first rule at each plate of capacitor. | | | | | | a) : Total current $I = I_c + I_d$ | | | outside the capacitor | | | $I_d = 0$ | | | $: I = I_c$ | | | Inside the capacitor | | | $I_c = 0$ | | | $ Arr$ I = I _d = $arepsilon_0 rac{d\phi_E}{dt}$ | | | | | | $= \varepsilon_0 \frac{d}{dt} [EA] $ $\frac{1}{2}$ | | | | | | $d \sigma_{\Lambda}$ | | | $= \varepsilon_0 \frac{d}{dt} \left[\frac{\sigma}{\varepsilon_0} A \right]$ | | | | | | $= \frac{\varepsilon_0}{\varepsilon_0} A \frac{d}{dt} \left[\frac{Q}{A} \right]$ | | | ε_0 at $\lfloor A \rfloor$ | | | $I = \frac{dQ}{dt} = I_{\rm c}$ | | | | | | Alternatively | | | $\therefore \text{ Total current } I = I_c + I_d$ | | | outside the capacitor | | | $I_d = 0$ | | | $\therefore \mathbf{I} = \mathbf{I}_{\mathbf{c}}$ Incide the conscitor | | | Inside the capacitor $I_c = 0$ $\frac{1}{2}$ | | | $I_c = 0$ | | | $d\phi$ | | | $ ext{I} = ext{I}_{ ext{d}} = arepsilon_0 rac{d\phi_{\scriptscriptstyle E}}{dt}$ | | | | | | $= \varepsilon_0 \frac{d}{dt} \left[\frac{Q}{\varepsilon_0} \right]$ | | | | | | $I = \frac{dQ}{dt} = I_c$ | | | | | | hence $I_c + I_d$ has the same value at all points of the circuit. | | Page 9 of 18 | b) Yes Current entering the capacitor is (I _c) and between the plates capacitor is (I _d) | |
--|---| | $I_c = I_d$ | | | which validates Kirchhoff's junction rule. | 3 | | a) Drawing a plot of frequency(v) as a function of stopping potential (V ₀) 1 Obtaining information from intercept b) Calculating i) the momentum ii) de Broglie wavelength | | | a) Vo leitheath of the properties proper | | | Value of work function can be obtained from intercept.
b) i) $p=\sqrt{2mK}$ | | | $= \sqrt{2 \times 9.1 \times 10^{-31} \times 80 \times 1.6 \times 10^{-19}}$
= 4.8 \times 10^{-24} \text{kg m/s} | | | ii) $\lambda = \frac{h}{p} = \frac{6.63 \times 10^{-34}}{4.8 \times 10^{-25}} = 1.38 \times 10^{-9} \text{m}$ | | | p 4.8×10 ⁻²⁵ 1.55×10 m | 3 | | a) Circuit Arrangement for studying V–I characteristics. b) Showing the shape of characteristic curves. c) Two informations from the characteristics | | | a) | | | Voltmeter(V) p n Milliammeter (mA) Switch | | | Circuit diagram for forward characteristics Page 10 of 18 | | Page **10** of **18** Page 11 of 18 | | | | 1 | |-----|--|-----|---| | | b) $\Delta m = (m_p + m_n) - m_d$ | 1/2 | | | | $\Delta m = (1.007277 + 1.008665) - 2.013553$ | | | | | $\Delta m = 0.002389 u$ | 1/2 | | | | Energy released = $\Delta m \times c^2$ | | | | | Energy released = 0.002389×931.5 | | | | | = 2.2253 MeV ≈2.22 MeV | 1/2 | 3 | | | SECTION - D | | | | 29 | i) (C) | 1 | | | | | 1 | | | | | | | | | | | | | | ii) (A) For a convex mirror magnification is always negative | 1 | | | | iii) (B) 2f | 1 | | | | OR | | | | | (B) 12 cm | | | | | | 1 | 4 | | | iv) (C) $\sqrt{X_1X_2}$ | 1 | 7 | | 30 | i) (B) 5mC | 1 | | | | ii) (A) zero | 1 | | | | $ iii)$ (D) [$M^0L^0TA^0$] | 1 | | | | $ \mathbf{i}_{\mathbf{i}} \rangle \langle \mathbf{A} \rangle = \mathbf{m} \mathbf{A}$ | | | | | iv) (A) $\frac{1}{2\sqrt{e}}mA$ | | | | | Note: 1 mark for this part may be given to all the students who have | | | | | attempted other parts of the question. | | | | | OR | | | | | (B) 0.5 mA | 1 | 4 | | | SECTION - E | | | | 2.1 | | | | | 31 | a) i) 1) Definition of coherent sources. | | | | | | | | | | Necessity of coherent sources for sustained interference pattern 1 | | | | | 2) Explanation 1 | | | | | ii) 1) Finding distance between adjacent bright fringes. 1 | | | | | 2) Finding angular width 1 | | | | | | | | | | i) 1) If the phase difference between the displacement produced by each of the | | | | | wave from two sources does not change with time then two sources are said to | 1 | | | | be coherent. | | | | | Alternatively | | | | | Two sources are said to be coherent if they emit light continuously of same | | | | | frequency / wavelength and having zero or constant phase difference. | | | | | Coherent sources are required to get constant phase difference. | 1 | | | | 2) Two independent sources will never be coherent because phase difference | | | | | between them will not be constant. | 1 | | | | ii) 1) Distance between adjacent bright fringe = fringe width | | | | | | | | | | | | | | _ | | | | Page 12 of 18 | $\beta = \frac{\lambda D}{d}$ | 1/2 | | |---|-----------------------------|--| | | | | | $=\frac{600\times10^{-9}\times1.2}{0.1\times10^{-3}}=7.2\mathrm{mm}$ | 1/ | | | $=\frac{1}{0.1\times10^{-3}}=7.2\mathrm{mm}$ | 1/2 | | | $\theta = \frac{\lambda}{1}$ | 1/2 | | | $\theta = \frac{\lambda}{d}$ | '2 | | | $= \frac{600 \times 10^{-9}}{0.1 \times 10^{-3}} = 6 \times 10^{-3} \text{ rad} = 0.34^{\circ}$ | | | | $= \frac{10.1 \times 10^{-3}}{0.1 \times 10^{-3}} - 0.000$ rad 0.34 | 1/2 | | | Give full marks if the student writes the answer in radians only. | | | | OR | | | | b) i) Definition of wave front. | | | | Drawing the incident and refracted wave front $\frac{1}{2} + \frac{1}{2}$ | | | | ii) Drawing the ray diagram | | | | Obtaining the position of final image 2 | | | | | | | | i) A wavefront is a locus of all the points which oscillate in phase. | | | | | 1 | | | | | | | Incident . | | | | planewave / | $\frac{1}{2} + \frac{1}{2}$ | | | • F | | | | | | | | | | | | Carb and a language from the Carb | | | | Spherical wavefront | | | | of radius f | | | | ii) | | | | | | | | $\mu=1$ $\mu=1.5$ | | | | | | | | | | | | P_1 C P_2 I | | | | P_1 C P_2 I I_1 | 1 | | | | | | | | | | | | | | | From I^{st} surface, Refraction is from rarer to denser medium and object is at ∞ | | | | $n_1 = 1$, $n_2 = 1.5$, $R = 15$ cm, $u = \infty$ | | | | n_2 n_1 n_2 n_1 | 1/2 | | | v u R | | | | | • | | Page 13 of 18 | $\frac{1.5}{1.5} - \frac{1}{1.5} = \frac{1.5 - 1}{1.5 - 1}$ | | | |--|-----|---| | $\frac{1}{v} - \frac{1}{\infty} = \frac{15}{15}$ | | | | v=45 cm | 1/2 | | | From 2 nd surface, Refraction is from denser to rarer medium and object is at 15 | | | | cm | | | | $n_1 = 1$, $n_2 = 1.5$, $R = -15$ cm, $u = 15$ cm | | | | n_1 n_2 n_1 - n_2 | 1/2 | | | $\frac{n_1}{v} - \frac{n_2}{u} = \frac{n_1 - n_2}{R}$ | | | | 1 1 5 1-1 5 | | | | $\frac{1}{v} - \frac{1.5}{15} = \frac{1 - 1.5}{-15}$ | | | | | 1/2 | 5 | | v= 7.5 cm | | | | 32 a) (i) Colombria de abora in destruction a series 2 | | | | i) Calculating the change in electrostatic energy of the system 2 | | | | ii) (1) Finding the capacitance. | | | | (2) Finding the potential difference. | | | | (3) Answering and Reason $\frac{1}{2} + \frac{1}{2}$ | | | | | | | | 5 | | | | (i) $\vec{E} = \frac{3 \times 10^5}{r^2} \hat{r}$ (Given) $dV = -\vec{E} \cdot d\vec{r}$ | | | | r^2 (Given) $av = D.ai$ | | | | $V = 3 \times 10^5 / r$ | | | | Electrostatic energy of the system in the absence of the field | | | | $U_{i} = \frac{Kq_{1}q_{2}}{}$ | 1/ | | | $U_{i} = \frac{1}{r_{12}}$ | 1/2 | | | Electrostatic energy in the presence of the field | | | | | | | | ${ m U_f} = rac{Kq_1q_2}{r_{12}} + q_1V(ec{r_1}) + q_2V(ec{r_2})$ | | | | | 1/ | | | $\Delta U = U_f - U_i = q_1 V(\vec{r}_1) + q_2 V(\vec{r}_2)$ | 1/2 | | | $\Delta U = \frac{5 \times 10^{-6} \times 3 \times 10^{5}}{2 \times 10^{-2}} - \frac{1 \times 10^{-6} \times 3 \times 10^{5}}{2 \times 10^{-2}}$ | 1/2 | | | $\Delta U = \frac{3 \times 10^{-3} \times 3 \times 10^{-2}}{3 \times 10^{-2}} - \frac{1 \times 10^{-3} \times 3 \times 10^{-2}}{3 \times 10^{-2}}$ | 72 | | | 3×10^{-2} 3×10^{-2} | | | | 40.1 | 1/2 | | | = 40 J | 72 | | | ii) 1) $C = \frac{Q}{V} = \frac{80}{16} = 5\mu F$ | 1 | | | V 16 ' | 1 | | | | | | | 2) C' = KC | 1/ | | | $= 3 \times 5 \mu F = 15 \mu F$ | 1/2 | | | | 1/ | | | $V' = \frac{Q}{C'} = \frac{80\mu C}{15\mu F} = 5.33V$ | 1/2 | | | 3) No, | 1/ | | | The capacitance of the system depends on its geometry. | 1/2 | | | OR | 1/2 | | | UK | | | | D 14 C10 | j | | Page 14 of 18 | b) i) Comparing the magnitude of the Electric fields 2 | | | |---|-------|---| | ii) Calculating the work done on the charge 3 | | | | | | | | Total charge for A = Total charge for B = Total charge for $C = +4q$ | 1 | | | | | | | As, $E = \frac{kQ}{r^2}$ | | | | T T | | | | Since $Q = 4q$ and $r = 3R$ | 1/2 | | | $E = \frac{k(4q)}{9R^2} = \frac{4kq}{9R^2}$ | | | | | 1/2 | | | $\therefore E_A = E_B = E_c$ | | | | ii) $V_c = \left[\frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right]$ | 1 | | | 5×10^{-2} 5×10^{-2} | | | | | | | | $\begin{bmatrix} k \times 6 \times 10^{-6} & k \times 6 \times 10^{-6} \end{bmatrix}$ | | | | $V_A = \left\lceil \frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right\rceil$ | 1/2 | | | [15×10 | | | | | | | | $= \frac{k \times 6 \times
10^{-6}}{10^{-2}} \left[\frac{1-3}{15} \right]$ | | | | $=\frac{10^{-2}}{10^{-2}} \left \frac{15}{15} \right $ | | | | $9 \times 10^9 \times 6 \times 10^{-6} \times 2$ | | | | $= -\frac{9 \times 10^9 \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}}$ | | | | $= -7.2 \times 10^5 \text{ V}$ | 1/2 | | | | 1/2 | | | $W = q ig[V_{\!\scriptscriptstyle A} - V_{\!\scriptscriptstyle c} ig]$ | , , , | | | $= 5 \times 10^{-6} \left[-7.2 \times 10^5 - 0 \right]$ | | | | W = -3.6 J | 1/2 | 5 | | 33 a) | | | | i) Finding the direction of magnetic field near points P,Q and R $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ | | | | Conclusion about the relative magnitude of magnetic field. $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ | | | | ii) Showing the given expression of magnetic moment. | | | | | | | | i) Near point P | | | | Magnetic field is acting into the plane of the paper as Force is acting upwards. | 1/2 | | | Near point Q | | | | Magnetic field is into the plane of paper as force is acting upwards. | 1/2 | | | Near point R | | | | Magnetic field is acting out of the plane of the paper as \vec{F} is acting downwards. | 1/2 | | | Relative Magnitude of the Magnetic field. | | | | As B $\alpha^{\frac{1}{2}}$ | | | | r | | | | Therefore, | 1/2 | | | Near point P, magnitude of B is small. Near point Q, B is relatively smaller than point P. | 1/2 | | | | 12 | | Page 15 of 18 | Near point R, B is relatively larger than point P. | 1/2 | | |--|-----|---| | $(B_Q < B_P < B_R)$ | | | | | | | | ii) Let r be the radius of the circular coil and I is the current in the coil then | | | | $B = \frac{\mu_0 I}{2r} or I = \frac{2Br}{\mu_0}$ | 1/2 | | | $2r$ μ_0 | 72 | | | $A = \pi r^2 \qquad r = \sqrt{\frac{A}{\pi}}$ | 1/2 | | | $A = \pi r$ $r = \sqrt{\frac{\pi}{\pi}}$ | . = | | | M = IA | 1/2 | | | $=\frac{2Br}{A}$ | | | | $-\frac{\mu_0}{\mu_0}$ A | | | | | 17 | | | $=\frac{2BA}{u}\sqrt{\frac{A}{\pi}}$ | 1/2 | | | $\mu_0 orall \pi$ OR | | | | h) | | | | 1) Deriving the expression for the torque. | | | | ii) 1) Finding the change in radius. | | | | 2) Finding the change in time period of Revolution. 1 | | | | i) | | | | $\frac{a/2\sin\theta}{al^2} \xrightarrow{\mathbf{B}} \mathbf{B}$ | 1/2 | | | ↓
F, | | | | \vec{F}_1 and \vec{F}_2 are the forces acting on two arms of the rectangular coil having sides | | | | a and b. | | | | | 1 | | | $\left \vec{F}_1 \right = \left \vec{F}_2 \right = I b B$ (b = length of the arm) | | | | Forces constitute a couple. The magnitude of Torque on the loop is – | | | | $\tau = F_1 \frac{a}{2} \sin \theta + F_2 \frac{a}{2} \sin \theta$ | 1/2 | | | 2 2 | , 2 | | | $= I a b B \sin \theta$ | 1/2 | | | $=IAB\sin\theta$ | | | | $ec{ au} = I\!ec{A}\! imes\!ec{B}$ | 1/2 | | | | | | | | | | | | | 1 | # Alternatively $\frac{1}{2}$ If the plane of the current carrying coil marks an angle ∝ with the magnetic field $\vec{F}_{DA} = -\vec{F}_{Bc}$ (cancel each other). $\frac{1}{2}$ Force on the arm DC is into the plane of the paper $|F_{DC}| = IbB$. $\frac{1}{2}$ Force on the arm AB is out of the plane of the paper. $\frac{1}{2}$ $|F_{AB}| = IbB$ Both of them form a couple and Torque acting on the coil is τ =either force ×perpendicular distance between the two forces. $\tau = IbB \times a \cos \alpha$ $= IabB\cos\alpha$ $\frac{1}{2}$ $\tau = IAB\cos\alpha$ Let $\hat{n} =$ outward drawn normal to the plane of the coil. $\theta + \alpha = 90^{\circ}$ $\alpha = 90^{\circ} - \theta$ $\tau = IAB\cos(90 - \theta)$ $= IAB \sin \theta$ $\frac{1}{2}$ $\vec{\tau} = I\vec{A} \times \vec{B}$ ii) 1) $r = \frac{mv}{qB} = \frac{\sqrt{2mK}}{qB}$ $\frac{1}{2}$ $r \quad \alpha \ \sqrt{K}$ $\frac{r'}{r} = \frac{\sqrt{K/2}}{\sqrt{K}} = \frac{1}{\sqrt{2}}$ $r' = \frac{r}{\sqrt{2}}$ $\frac{1}{2}$ Page 17 of 18 | 2) $T = \frac{2\pi m}{qB}$
Time period does not depend on Kinetic Energy | 1/2 | | |---|-----|---| | ∴ Time period will not change. | 1/2 | 5 | ## Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination, 2025 SUBJECT NAME PHYSICS (PAPER CODE 55/1/3) ## **General Instructions: -** | 1 | You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. | |----|---| | 2 | "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC." | | 3 | Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded. | | 4 | The Marking scheme carries only suggested value points for the answers These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. | | 5 | The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators. | | 6 | Evaluators will mark($$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing. | | 7 | If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly. | | 8 | If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly. | | 9 | If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question". | | 10 | No marks to be deducted for the cumulative effect of an error. It should be penalized only once. | | 11 | A full scale of marks70(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer | | | deserves it. | |----|---| | 12 | Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper. | | 13 | Ensure that you do not make the following common types of errors committed by the Examiner in the past:- Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer
than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. | | 14 | While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks. | | 15 | Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously. | | 16 | The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation" before starting the actual evaluation. | | 17 | Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words. | | 18 | The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme. | | | MARKING SCHEME: PHYSICS(042) | | | | | |-------|--|-------|----------------|--|--| | 0.37 | Code: 55/1/3 | | | | | | Q.No. | VALUE POINTS/EXPECTED ANSWERS | Marks | Total
Marks | | | | | SECTION A | | | | | | 1 | | 1 | 1 | | | | 2 | (A) 2 | 1 | 1 | | | | 3 | (B) $\left(-3\hat{j}+2\hat{k}\right)\mu N$ | 1 | 1 | | | | 4 | (D) 0.1 A | 1 | 1 | | | | 5 | (B) 2866 | 1 | 1 | | | | 6 | (D) $\frac{i_0 v_0}{2} \cos \phi$ | 1 | 1 | | | | 7 | (B) have wavelength smaller than that of ultraviolet radiation | 1 | 1 | | | | 8 | (B) $\frac{\pi H^2}{(n^2-1)}$ | 1 | 1 | | | | 9 | (C) 2.5eV | 1 | 1 | | | | 10 | (C) The barrier height and the depletion layer width both decrease. | 1 | 1 | | | | 11 | (B) $\lambda_e > \lambda_p > \lambda_d$ | 1 | 1 | | | | 12 | (A) $\xrightarrow{B.E.}$ \downarrow | 1 | 1 | | | | 13 | (C) Assertion (A) is true but Reason (R) is false. | 1 | 1 | | | | 14 | (D) Assertion (A) is false and Reason (R) is also false. | 1 | 1 | | | | 15 | (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A). | 1 | 1 | | | | 16 | (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A). | 1 | 1 | | | | | SECTION - B | | | | | | 17 | Calculating the potential difference 2 | | | | | | | Net e.m. $f = (n-4)E$
$\therefore I = \frac{(n-4)E}{nr}$ | 1/2 | | | | | | Potential difference across' X' $V=E+Ir$ | 1/2 | | | | Page **3** of **18** | | (A) D | | | |------|---|-----|---| | | $=E+\frac{(n-4)E}{nr}\times r$ | 1/2 | | | | $=\frac{(2n-4)E}{n}$ | 1/2 | 2 | | 18 (| (a) Calculating the width of the slit 2 | | | | | Condition for Minima $a \sin \theta = n\lambda$ | 1 | | | | For First Minima n=1
$a \sin 30^{\circ} = 600 \times 10^{-9} \text{ m}$ | 1/2 | | | | $a \times \frac{1}{2} = 600 \times 10^{-9} \text{ m}$
$a = 1200 \times 10^{-9} \text{ m}$ | | | | | $= 1.2 \times 10^{-6} \mathrm{m}$ | 1/2 | | | | OR | | | | | (b) Finding the Intensity 2 | | | | | Phase difference = $\frac{2\pi}{\lambda}$ × path difference | 1/2 | | | | $\Delta \phi = \frac{2\pi}{\lambda} \Delta x$ $\therefore \Delta x = \frac{\lambda}{8} (given)$ $\Delta \phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{8}$ | | | | | $\therefore \Delta x = \frac{\lambda}{8} (given)$ | | | | | | | | | | $\Delta \phi = \frac{\pi}{4}$ | 1/2 | | | | $I = I_{\circ} + I_{\circ} + 2\sqrt{I_{\circ}I_{\circ}}\cos\frac{\pi}{4}$ | 1/2 | | | | $=2I_{\circ}+2I_{\circ}\times\frac{1}{\sqrt{2}}$ | | | | | $I = 2I_{\circ} \left(1 + \frac{1}{\sqrt{2}} \right)$ | | | | | $= I_{\circ}(2 + \sqrt{2})$
$I = 3.414 I_{\circ}$ | 1/2 | | | A | Alternatively | | | Page 4 of 18 | | | 1./ | 1 | |----|--|-----|---| | | Phase difference = $\frac{2\pi}{3}$ × path difference | 1/2 | | | | λ | | | | | $\Delta \phi = \frac{2\pi}{\lambda} \Delta x$ | | | | | | | | | | $\therefore \Delta x = \frac{\lambda}{8} (given)$ | | | | | | | | | | $\Delta \phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{8}$ | | | | | $\Delta \phi = rac{\pi}{4}$ | 1/2 | | | | · | | | | | $I = 4I \cos^2\left(\frac{\phi}{\Phi}\right)$ | 1/2 | | | | $I = 4I_{\circ} \cos^{2}\left(\frac{\phi}{2}\right)$ $I = 4I_{\circ} \cos^{2}\left(\frac{\pi}{8}\right)$ | /2 | | | | $I = 4I \cos^2\left(\frac{\pi}{2}\right)$ | 1/2 | 2 | | | (8) | | | | 10 | | | | | 19 | Finding the focal length in water 2 | | | | | I manig the rotal length in water | | | | | $\begin{pmatrix} 1 & (n_a) & (1 & 1) \end{pmatrix}$ | 1/2 | | | | $\frac{1}{f} = \left(\frac{n_g}{n_{yy}} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ | 1.4 | | | | For double convex lens $R_1=R$ and $R_2=-R$ | 1/2 | | | | | 1/2 | | | | $\frac{1}{f} = \left(\frac{1.5}{1.33} - 1\right)\left(\frac{2}{R}\right)$ | | | | | (1.5-1.33)(2) | | | | | $=\left(\frac{1.5-1.33}{1.33}\right)\left(\frac{2}{17}\right)$ | | | | | f = 66.5 cm | 1/2 | 2 | | 20 | | / 2 | | | | Calculation of change in the radius 2 | | | | | | | | | | _13 6 | | | | | $E_n = \frac{-13.6}{n^2} eV$ | 1/2 | | | | For $E_n = -1.51eV$ | _ | | | | | | | | | $-1.51 = \frac{-13.6}{n^2}$ | | | | | n=3 | 1/2 | | | | For $E_n = -3.40 eV$ | ,2 | | | | $-3.40 = \frac{-13.6}{n^2}$ | | | | | $\frac{-3.40-\overline{n^2}}{n^2}$ | 17 | | | | n=2 | 1/2 | | | | | | | Page **5** of **18** | $\therefore r = 0.53n^2 \mathring{A}$ $\therefore \text{ change in radius}$ $\Delta r = 0.53[3^2 - 2^2]$ $= 0.53 \times 5$ $= 2.65 \mathring{A}$ | 1/2 | 2 | |---|-------------------------|---| | 21 | , 2 | | | Finding the number of holes One example Doping - 1 dopant atom for 5×10^7 Si atoms and number density of Si atoms = 5×10^{28} $\frac{\text{atoms}}{\text{m}^3}$ (given) | | | | $\therefore \text{ No. of holes created per m}^3 = \frac{5 \times 10^{28}}{5 \times 10^7} = 10^{21}$ | 1 | | | Number of holes created per cubic centimeter $= \frac{10^{21}}{10^{6}} = 10^{15}$ | | | | Any one example of dopant - Aluminium / Indium / Gallium SECTION - C | 1 | 2 | | [22] (a) Finding (i) Equivalent emf of combination 1 (ii) Equivalent internal resistance of combination 1 (iii) Current drawn from combination 1 (iii) Current drawn from combination 1 (i) Because $E_{eq} = \frac{E_1 r_2 + E_2 r_1}{r_1 + r_2}$ $E_{eq} = \frac{3 \times 0.4 + 6 \times 0.2}{0.6} = 4 \text{ V}$ (ii) $r_{eq} = \frac{r_1 r_2}{r_1 + r_2}$ $r_{eq} = \frac{0.2 \times 0.4}{0.2 + 0.4} = 0.133\Omega$ (iii) $I = \frac{E}{R + r_{eq}}$ $I = \frac{4}{4 + 0.13} = \frac{4}{4.13} A$ $I = 0.9A$ | 1/2 1/2 1/2 1/2 1/2 1/2 | | Page 6 of 18 | | OR | | | |-------------------------------------|---|-----|---| | (b) | (i) Finding the relation (i) between R' and R | | | | | (ii) between V_d and V_d | | | | | (ii) To identify whether all free electrons are moving in the same direction. | | | | | l' = 2l $Al = A'l'$ = volume of the wire | | | | | Al = A'(2l) | | | | | $\frac{A}{2} = A'$ | 1/2 | | | R | $=\frac{\rho l}{A}$ | | | | R | $r' = \frac{\rho l'}{A'}$ | | | | R' = | $= rac{ ho(2l)}{A/2}$ | | | | | | 1/2 | | | $\frac{R'}{R}$ | | /2 | | | | rnatively
= $n^2 R$ | 1/2 | | | n= 2
R'= | :
= 4 <i>R</i> | 1/2 | | | (ii) | $v_d = \frac{eE}{\tau}$ | 1/2 | | | V | $t = \frac{\text{eV}}{\text{m}l} \tau$ | | | | 177 | $ \frac{d}{dt} = \frac{eV}{ml'} \tau $ | | | | | | | | | $\frac{\mathbf{v}_d}{\mathbf{v}_d}$ | $=\frac{l}{l'}=\frac{1}{2}$ | 1/2 | | | (ii) | | 1 | 3 | | | Finding | | | | | a) The magnetic field \vec{B} 1 | | | | | b) The magnetic force \vec{F}_m | | | Page 7 of 18 | | | 1 | | |----
--|-----------|---| | | a) $\vec{B} = \frac{\mu \cdot I}{2\pi d} \left(-\hat{K} \right)$ | 1 | | | | b) $\vec{F}_B = q(\vec{v} \times \vec{B}) = \frac{qv\mu \cdot I}{2\pi d}(-\hat{j})$ | 1 | | | | c) $q\vec{F}_e = -\vec{F}_B$ (For undeviation of charge particle) | | | | | $\vec{F}_{e} = \frac{qv\mu \cdot I}{2\pi d} (\hat{j})$ | 1/2 | | | | $\vec{F}_{e} = q\vec{E}$ $\therefore \vec{E} = \frac{\mu_{o} vI}{2\pi d} \hat{j}$ | 1/2 | 3 | | | 2πd ³ | | | | 24 | Drawing phasor diagram Obtaining the expression for Impedance of the circuit Phase difference 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | a) | | | | | $v_{\rm R}$ $v_{\rm C}$ | | | | | b) | | | | | $\begin{array}{c c} & v_{cov} - v_{tov} \\ \hline & v_{R} \\ \hline & v_{Cov} v$ | 1/2 + 1/2 | | | | $V_{Rm} = i_m R$, $V_{Cm} = i_m X_c$, $V_{Lm} = i_m X_L$
From Phasor diagram $V_m^2 = V_{Rm}^2 + (V_{Cm} - V_{Lm})^2$ $V_m^2 = (i_m R)^2 + (i_m X_c - i_m X_L)^2$ | 1/2 | | Page **8** of **18** | | $= \left(i_m\right)^2 \left[R^2 + \left(X_c - X_L\right)^2\right]$ | | | |----|--|-----|---| | | Or $i_m = \frac{V_m}{\sqrt{R^2 + (X_c - X_L)^2}}$ | 1/2 | | | | | 72 | | | | $\dot{i}_m = rac{V_m}{Z}$ | | | | | $\therefore Z = \sqrt{R^2 + \left(X_c - X_L\right)^2}$ | 1/2 | | | | From phasor diagram | | | | | $\tan \theta = \frac{V_{Cm} - V_{Lm}}{V_{Rm}}$ | | | | | | | | | | $= rac{X_c-X_L}{R}$ | | | | | $\therefore \theta = \tan^{-1} \left(\frac{X_c - X_L}{R} \right)$ | 1/2 | 3 | | 25 | a) Showing that $(I_c + I_d)$ has the same value. | | | | | b) Explanation of Kirchhoff's first rule at each plate of capacitor. | | | | | a) : Total current $I = I_c + I_d$ | | | | | outside the capacitor | 1/ | | | | $I_{d} = 0$ $\therefore I = I_{c}$ | 1/2 | | | | Inside the capacitor | 1.4 | | | | $I_c = 0$ | 1/2 | | | | $\therefore \ \ \mathrm{I} = \mathrm{I_d} = \ \varepsilon_0 \frac{d\phi_{\scriptscriptstyle E}}{dt}$ | | | | | $= \varepsilon_0 \frac{d}{dt} [EA]$ | 1/2 | | | | | | | | | $= \varepsilon_0 \frac{d}{dt} \left[\frac{\sigma}{\varepsilon_0} A \right]$ | | | | | $= \frac{\varepsilon_0}{\varepsilon_0} A \frac{d}{dt} \left[\frac{Q}{A} \right]$ | | | | | $I = \frac{dQ}{dt} = I_c$ | 1/2 | | | | Alternatively | | | | | $\therefore \text{ Total current } I = I_c + I_d$ | | | | | outside the capacitor | | | | | $I_d = 0$ | 1/2 | | | | $\therefore I = I_c$ In the dependence of the second state s | | | | | Inside the capacitor $I_c = 0$ | 1/2 | | | | • | • | | Page 9 of 18 | $I = I_{d} = \varepsilon_{0} \frac{d\phi_{E}}{dt}$ $= \varepsilon_{0} \frac{d}{dt} \left[\frac{Q}{\varepsilon_{0}} \right]$ $I = \frac{dQ}{dt} = I_{c}$ hence $I_{c} + I_{d}$ has the same value at all points of the circuit. b) Yes Current entering the capacitor is (I_{c}) and between the plates capacitor is (I_{d}) $I_{c} = I_{d}$ which validates Kirchhoff's junction rule. | 3 | |--|---| | $I = \frac{dQ}{dt} = I_c$ hence $I_c + I_d$ has the same value at all points of the circuit. b) Yes Current entering the capacitor is (I_c) and between the plates capacitor is (I_d) $I_c = I_d$ which validates Kirchhoff's junction rule. | 3 | | b) Yes Current entering the capacitor is (I _c) and between the plates capacitor is (I _d) $I_c = I_d$ which validates Kirchhoff's junction rule. | 3 | | Current entering the capacitor is (I_c) and between the plates capacitor is (I_d) $I_c = I_d$ which validates Kirchhoff's junction rule. | 3 | | 26 | 3 | | | | | a) Mentioning three features b) Calculating the value of Planck's constant 1 ½ 1 ½ | | | a) Three features i) The existence of threshold frequency (v_0) ii) Maximum Kinetic energy of photoelectrons is independent of intensity of | | | incident radiation. iii) Instantaneous nature of photoelectric effect. | | | b) slope = $\frac{h}{e}$ | | | $ \begin{array}{c} $ | 3 | | a) Circuit Arrangement for studying V–I characteristics. b) Showing the shape of characteristic curves. c) Two informations from the characteristics | | | a) | | | | | | Voltmeter(V) | | | p n | | | Milliammeter (mA) | | | Switch 1/2 | | | Circuit diagram for forward characteristics | | Page 10 of 18 Page 11 of 18 | | 1 | | | |----|---|-------------|---| | | nucleus. In Fission process a heavy nucleus splits into lighter nuclei and energy is released. As a result the Binding Energy per nucleon increases. | 1/2 | | | | b) $\Delta m = (m_p + m_n) - m_d$
$\Delta m = (1.007277 + 1.008665) - 2.013553$ | 1/2 | | | | $\Delta m = 0.002389 u$ | 1/2 | | | | Energy released = $\Delta m
\times c^2$ | | | | | Energy released = 0.002389×931.5
= $2.2253 \text{ MeV} \approx 2.22 \text{ MeV}$ | 1/2 | 3 | | | = 2.2233 MeV ~2.22 MeV
SECTION - D | ,,, | 3 | | 29 | | 1 | | | 29 | i) (C) | 1 | | | | ii) (A) For a convex mirror magnification is always negative iii) (B) 2f OR | 1
1 | | | | (B) 12 cm
iv) (C) $\sqrt{X_1 X_2}$ | 1 | 4 | | 30 | i) (B) 5mC
ii) (A) zero
iii) (D) [M ⁰ L ⁰ TA ⁰] | 1
1
1 | | | | iv) (A) $\frac{1}{2\sqrt{e}}mA$
Note: 1 mark for this part may be given to all the students who have | | | | | attempted other parts of the question. OR | 1 | 4 | | | (B) 0.5 mA | 1 | 7 | | | SECTION - E | | | | 31 | i) 1) Definition of coherent sources. Necessity of coherent sources for sustained interference pattern 1 2) Explanation 1 ii) 1) Finding distance between adjacent bright fringes. 1 2) Finding angular width 1 | | | | | i) 1) If the phase difference between the displacement produced by each of the wave from two sources does not change with time then two sources are said to be coherent. Alternatively | 1 | | | | Two sources are said to be coherent if they emit light continuously of same frequency / wavelength and having zero or constant phase difference. | | | | | Coherent sources are required to get constant phase difference. 2) Two independent sources will never be coherent because phase difference | 1 | | | | between them will not be constant. | 1 | | Page 12 of 18 | ii) 1) Distance between adjacent bright fringe = fringe width | | | |---|-----------------------------|--| | $\beta = \frac{\lambda D}{d}$ | 1/2 | | | | 72 | | | $=\frac{600\times10^{-9}\times1.2}{0.1\times10^{-3}}=7.2\text{mm}$ | 1/2 | | | | | | | $\theta = \frac{\lambda}{d}$ | 1/2 | | | | 1/2 | | | $= \frac{600 \times 10^{-9}}{0.1 \times 10^{-3}} = 6 \times 10^{-3} \text{ rad} = 0.34^{\circ}$ | , 2 | | | Give full marks if the student writes the answer in radians only. | | | | OR | | | | b) i) Definition of wave front. | | | | Drawing the incident and refracted wave front $\frac{1}{2} + \frac{1}{2}$ | | | | ii) Drawing the ray diagram | | | | Obtaining the position of final image 2 | | | | | | | | i) A wavefront is a locus of all the points which oscillate in phase. | 1 | | | Ι Δ . | | | | · · · · · · · · · · · · · · · · · · · | | | | Incident | $\frac{1}{2} + \frac{1}{2}$ | | | •F | /2 /2 | | | | | | | $\rightarrow V$ | | | | | | | | Spherical wavefront | | | | of radius f | | | | ::) | | | | ii) | | | | $\mu=1$ $\mu=1.5$ | | | | | | | | | | | | P_1 C P_2 I | 1 | | | I_1 | | | | | | | | | | | | | | | | From Ist surface Refraction is from report to denser medium and object is at so | | | | From I st surface, Refraction is from rarer to denser medium and object is at ∞ | | | | $n_1 = 1$, $n_2 = 1.5$, $R = 15$ cm, $u = \infty$ | | | | Г | | 17 | | |----|--|----------------|---| | | $\frac{\mathbf{n}_2}{\mathbf{n}_2} - \frac{\mathbf{n}_1}{\mathbf{n}_2} = \frac{\mathbf{n}_2 - \mathbf{n}_1}{\mathbf{n}_2}$ | 1/2 | | | | v u R | | | | | $\frac{1.5}{v} - \frac{1}{\infty} = \frac{1.5 - 1}{15}$ | | | | | $\frac{1}{v} = \frac{1}{\infty} = \frac{1}{15}$ | 1/ | | | | v=45 cm | 1/2 | | | | From 2 nd surface, Refraction is from denser to rarer medium and object is at 15 | | | | | cm | | | | | $n_1 = 1$, $n_2 = 1.5$, $R = -15$ cm, $u = 15$ cm | | | | | $\frac{n_1}{n_2} - \frac{n_2}{n_2} = \frac{n_1 - n_2}{n_2}$ | 1/2 | | | | $\frac{n_1}{v} - \frac{n_2}{u} = \frac{n_1 - n_2}{R}$ | , 2 | | | | $\frac{1}{v} - \frac{1.5}{15} = \frac{1 - 1.5}{-15}$ | | | | | $\frac{1}{v} - \frac{1}{15} - \frac{1}{-15}$ | 1/2 | 5 | | | v = 7.5 cm | | | | 32 | a) | | | | | i) Calculating the change in electrostatic energy of the system 2 | | | | | ii) (1) Finding the capacitance. | | | | | (2) Finding the potential difference. | | | | | (3) Answering and Reason $\frac{1}{2} + \frac{1}{2}$ | | | | | | | | | | | | | | | (i) $\vec{E} = \frac{3 \times 10^5}{r^2} \hat{r}$ (Given) $dV = -\vec{E} \cdot d\vec{r}$ | | | | | (1) $E = \frac{1}{r^2} r$ (Given) $av = -E \cdot ar$ | | | | | $V = 3 \times 10^5 / r$ | | | | | Electrostatic energy of the system in the absence of the field | | | | | | | | | | $U_{i} = \frac{Kq_{1}q_{2}}{r}$ | 1/2 | | | | | | | | | Electrostatic energy in the presence of the field | | | | | $U_{\rm f} = \frac{Kq_1q_2}{r} + q_1V(\vec{r}_1) + q_2V(\vec{r}_2)$ | | | | | \prime_{12} | 1/ | | | | $\Delta U = U_f - U_i = q_1 V(\vec{r}_1) + q_2 V(\vec{r}_2)$ | 1/2 | | | | $5 \times 10^{-6} \times 3 \times 10^{5}$ $1 \times 10^{-6} \times 3 \times 10^{5}$ | 1/2 | | | | $\Delta U = \frac{5 \times 10^{-6} \times 3 \times 10^{5}}{3 \times 10^{-2}} - \frac{1 \times 10^{-6} \times 3 \times 10^{5}}{3 \times 10^{-2}}$ | /2 | | | | 3×10 3×10 | | | | | - 40 I | 1/2 | | | | = 40 J | /2 | | | | ii) 1) $C = \frac{Q}{V} = \frac{80}{16} = 5\mu F$ | 1 | | | | V 10 | 1 | | | | 2) 0/ 1/0 | | | | | 2) C' = KC | 1/2 | | | | $= 3 \times 5 \mu F = 15 \mu F$ | , - | | | | $V' = \frac{Q}{C'} = \frac{80\mu C}{15\mu F} = 5.33V$ | 1/2 | | | | C' 15µF | _ | | | | 3) No, | 1/2 | | Page 14 of 18 | | | 1/ | | |----------|--|-----|---| | | The capacitance of the system depends on its geometry. OR | 1/2 | | | | b) i) Comparing the magnitude of the Electric fields 2 | | | | | ii) Calculating the work done on the charge 3 | | | | | | | | | | Total charge for A = Total charge for B = Total charge for $C = +4q$ | 1 | | | | | | | | | As, $E = \frac{kQ}{r^2}$ | | | | | Since $Q = 4q$ and $r = 3R$ | 1/2 | | | | $E = \frac{k(4q)}{QR^2} = \frac{4kq}{QR^2}$ | 72 | | | | | 1/2 | | | | $\therefore E_A = E_B = E_C$ | | | | | ii) $V_c = \left[\frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right]$ | 1 | | | | | | | | | | | | | | $V_A = \left[\frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right]$ | 1/2 | | | | $\begin{bmatrix} A & 15 \times 10^{-2} & 5 \times 10^{-2} \end{bmatrix}$ | | | | | | | | | | $=\frac{k\times 6\times 10^{-6}}{10^{-2}}\left[\frac{1-3}{15}\right]$ | | | | | | | | | | $= -\frac{9 \times 10^9 \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}}$ | | | | | 10 × 10 | 1/2 | | | | $= -7.2 \times 10^5 \text{ V}$ | 1/2 | | | | $W = q[V_A - V_c]$ | | | | | $= 5 \times 10^{-6} \left[-7.2 \times 10^5 - 0 \right]$ | | _ | | | W = -3.6 J | 1/2 | 5 | | 33 | | | | | | i) Finding the direction of magnetic field near points P,Q and R $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
Conclusion about the relative magnitude of magnetic field. $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ | | | | | ii) Showing the given expression of magnetic moment. | | | | | | | | | | i) Near point P Magnetic field is acting into the plane of the paper of Force is acting anywards | 1/ | | | | Magnetic field is acting into the plane of the paper as Force is acting upwards. Near point Q | 1/2 | | | | Magnetic field is into the plane of paper as force is acting upwards. | 1/2 | | | | Near point R | | | | | Magnetic field is acting out of the plane of the paper as \vec{F} is acting downwards. | 1/2 | | | | Relative Magnitude of the Magnetic field. | | | | | As B $\alpha \frac{1}{\alpha}$ | | | | | r | | | | <u> </u> | | | l | Page 15 of 18 | Therefore, | | |---|------| | Near point P, magnitude of B is small. | 1/2 | | Near point Q, B is relatively smaller than point P. Near point R, B is relatively larger than point P. | 1/2 | | $(B_Q < B_P < B_R)$ | /2 | | $(\mathbf{p}(\mathbf{r},\mathbf{p}_k,\mathbf{p}_K))$ | | | ii) Let r be the radius of the circular coil and I is the current in the coil then | | | $u_0I = 2Br$ | 1/2 | | $B = \frac{r_0}{2r}$ or $I = \frac{r_0}{r}$ | | | $B = \frac{\mu_0 I}{2r} \text{or} I = \frac{2Br}{\mu_0}$ $A = \pi r^2 \qquad r = \sqrt{\frac{A}{\pi}}$ | | | $A = \pi r^2$ $r = \sqrt{\frac{A}{r}}$ | 1/2 | | | | | M = IA | 1/2 | | $=\frac{2Br}{A}$ | | | μ_0 | | | $2BA \overline{A}$ | 1/2 | | $=\frac{2BA}{\mu_0}\sqrt{\frac{A}{\pi}}$ | | | OR | | | b) i) Deriving the expression for the torque. 3 | | | ii) 1) Finding the change in radius. | | | 2) Finding the change in time period of Revolution. | | | | | | i) | | | | | | | | | | | | a/2 sin 0 | | | al ² m | 17 | | | 1/2 | | | | | | | | \mathbf{F}_{1} | | | \vec{F}_1 and \vec{F}_2 are the forces acting on two arms of the rectangular coil having significant. | ides | | a and b. | | | | | | $\left \vec{F_1} \right = \left \vec{F_2} \right = IbB$ (b = length of the arm) | 1 | | Forces constitute a couple. The magnitude of Torque on the loop is – | | | $\tau = F_1 \frac{a}{2} \sin \theta + F_2 \frac{a}{2} \sin \theta$ | 1/2 | | | /2 | | $=IabB\sin\theta$ | 1/2 | | $=IAB\sin\theta$ | | | $ec{ au} = I ec{A} imes ec{B}$ | 1/2 | Page **16** of **18** ### Alternatively $\frac{1}{2}$ If the plane of the current carrying coil marks an angle ∝ with the magnetic field $\vec{F}_{DA} = -\vec{F}_{Bc}$ (cancel each other). $\frac{1}{2}$ Force on the arm DC is into the plane of the paper $|F_{DC}| = IbB$. $\frac{1}{2}$ Force on the arm AB is out of the plane of the paper. $|F_{AB}| = IbB$ $\frac{1}{2}$ Both of them form a couple and Torque acting on the coil is τ =either force ×perpendicular distance between the two forces. $\tau = IbB \times a \cos \alpha$ $= IabB\cos\alpha$ $\frac{1}{2}$ $\tau = IAB\cos\alpha$ Let $\hat{n} =$ outward drawn normal to the plane of the coil. $\theta + \alpha =
90^{\circ}$ $\alpha = 90^{\circ} - \theta$ $\tau = IAB\cos(90 - \theta)$ $= IAB \sin \theta$ $\frac{1}{2}$ $\vec{\tau} = I\vec{A} \times \vec{B}$ ii) 1) $r = \frac{mv}{qB} = \frac{\sqrt{2mK}}{qB}$ $\frac{1}{2}$ $r \quad \alpha \ \sqrt{K}$ $\frac{r'}{r} = \frac{\sqrt{K/2}}{\sqrt{K}} = \frac{1}{\sqrt{2}}$ $r' = \frac{r}{\sqrt{2}}$ $\frac{1}{2}$ Page 17 of 18 | $2) T = \frac{2\pi m}{qB}$ | 1/2 | | |--|-----|---| | Time period does not depend on Kinetic Energy ∴ Time period will not change. | 1/2 | 5 | ## Marking Scheme Strictly Confidential # (For Internal and Restricted use only) Senior School Certificate Examination, 2024 SUBJECT NAME PHYSICS (PAPER CODE 55/1/1) #### **General Instructions: -** | 1 | You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. | |---|---| | 2 | "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC." | | 3 | Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded. | | 4 | The Marking scheme carries only suggested value points for the answers These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. | | 5 | The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the | significant variation in the marking of individual evaluators. same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no | | impression that answer is correct and no marks are awarded. This is most | | | | |----|---|--|--|--| | | common mistake which evaluators are committing. | | | | | 7 | If a question has parts, please award marks on the right-hand side for each part. | | | | | | Marks awarded for different parts of the question should then be totaled up and | | | | | | written in the left-hand margin and encircled. This may be followed strictly. | | | | | 8 | If a question does not have any parts, marks must be awarded in the left-hand | | | | | | margin and encircled. This may also be followed strictly. | | | | | 9 | If a student has attempted an extra question, answer of the question deserving | | | | | | more marks should be retained and the other answer scored out with a note | | | | | | "Extra Question". | | | | | 10 | No marks to be deducted for the cumulative effect of an error. It should be | | | | | 11 | penalized only once. | | | | | 11 | A full scale of marks(example 0 to 80/70/60/50/40/30 marks as given in | | | | | | Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it. | | | | | 12 | Every examiner has to necessarily do evaluation work for full working hours i.e., 8 | | | | | | hours every day and evaluate 20 answer books per day in main subjects and 25 | | | | | | answer books per day in other subjects (Details are given in Spot Guidelines). This | | | | | | is in view of the reduced syllabus and number of questions in question paper. | | | | | 13 | Ensure that you do not make the following common types of errors committed by | | | | | | the Examiner in the past:- | | | | | | Leaving answer or part thereof unassessed in an answer book. | | | | | | Giving more marks for an answer than assigned to it. | | | | | | Wrong totaling of marks awarded on an answer. | | | | | | Wrong transfer of marks from the inside pages of the answer book to the title | | | | | | page. | | | | | | Wrong question wise totaling on the title page. | | | | | | Wrong totaling of marks of the two columns on the title page. Wrong grand total | | | | | | Wrong grand total.Marks in words and figures not tallying/not same. | | | | | | Marks in words and figures not fallying/not same. Wrong transfer of marks from the answer book to online award list. | | | | | | Answers marked as correct, but marks not awarded. (Ensure that the right tick | | | | | | mark is correctly and clearly indicated. It should merely be a line. Same is with | | | | | | the X for incorrect answer.) | | | | | | Half or a part of answer marked correct and the rest as wrong, but no marks | | | | | | awarded. | | | | | 14 | While evaluating the answer books if the answer is found to be totally incorrect, it | | | | | | should be marked as cross (X) and awarded zero (0)Marks. | | | | | 15 | Any un assessed portion, non-carrying over of marks to the title page, or totaling | | | | | | error detected by the candidate shall damage the prestige of all the personnel | | | | | | engaged in the evaluation work as also of the Board. Hence, in order to uphold | |----|--| | | the prestige of all concerned, it is again reiterated that the instructions be | | | followed meticulously and judiciously. | | 16 | The Examiners should acquaint themselves with the guidelines given in the | | | "Guidelines for spot Evaluation" before starting the actual evaluation. | | 17 | Every Examiner shall also ensure that all the answers are evaluated, marks carried | | | over to the title page, correctly totaled and written in figures and words. | | 18 | The candidates are entitled to obtain photocopy of the Answer Book on request | | | on payment of the prescribed processing fee. All Examiners/Additional Head | | | Examiners/Head Examiners are once again reminded that they must ensure that | | | evaluation is carried out strictly as per value points for each answer as given in the | | | Marking Scheme. | | | अंक योजना : भौतिकी (042) | | | | | |---------|--|-----|------------|--|--| | | कोड: 55/1/1 | | | | | | प्र.सं. | मूल्यांकन बिन्दु / अपेक्षित उत्तर | अंक | कुल
अंक | | | | | खण्ड (क) | | | | | | 1. | (A) $q_2 < q_3 < q_1$ | 1 | 1 | | | | 2. | (C) $\frac{R}{8}$ | 1 | 1 | | | | 3. | (B) $\left(-3\hat{j}+2\hat{k}\right)\mu N$ | 1 | 1 | | | | 4. | (B) 0.30 C | 1 | 1 | | | | 5. | (B) 2866 | 1 | 1 | | | | 6. | (D) $\frac{\mathrm{i}_0\mathrm{v}_0}{2}\mathrm{cos}\phi$ | 1 | 1 | | | | 7. | (A) X- किरणें, सूक्ष्म तरंगें, UV विकिरण | 1 | 1 | | | | 8. | (B) $\frac{3H}{4}$ | 1 | 1 | | | | 9. | (C) $\frac{h}{m}$ | 1 | 1 | | | | 10 | (B) $\lambda_e > \lambda_p > \lambda_d$ | 1 | 1 | | | | 11 | (A) $\xrightarrow{B.E.}$ \downarrow | 1 | 1 | | | | 12 | (C) रोधिका की ऊँचाई और ह्रासी स्तर की चौड़ाई दोनों में कमी होती है | 1 | 1 | | | | 13 | (A) अभिकथन (A) और कारण (R) दोनों सत्य हैं और कारण (R) अभिकथन (A) की सही व्याख्या है। | 1 | 1 | |----|--|-----|---| | 14 | (A) अभिकथन (A) और कारण (R) दोनों सत्य हैं और कारण (R) अभिकथन (A) की
सही व्याख्या है | 1 | 1 | | 15 | (C) अभिकथन (A) सत्य है, परन्तु कारण (R) असत्य है | 1 | 1 | | 16 | (D) अभिकथन (A) और कारण (R) दोनों ही असत्य हैं | 1 | 1 | | | खण्ड(ख) | | | | 17 | E के मान का परिकलन 1 r के मान का परिकलन 1 $E = V + Ir$ | | | | | पहले प्रकरण में
E = 5 + 2r | 1/2 | | | | द्वितीय प्रकरण में
E = 4 + 4r
हल करने के बाद | 1/2 | | | | E= 6 V | 1/2 | | | | R= 0.5 Ω | 1/2 | | | 18 | (a) झिरी की चौड़ाई का परिकलन 2 निम्निष्ठ के लिए शर्त | | | | | $a \sin \theta = n\lambda$ | 1 | | | | पहला निम्निष्ठ के लिए n=1 | | | | | $a \sin 30^{\circ} = 600 \times 10^{-9} \mathrm{m}$ | 1/2 | | | | $a \times \frac{1}{2} = 600 \times 10^{-9} \text{ m}$
$a = 1200 \times 10^{-9}
\text{ m}$
$= 1.2 \times 10^{-6} \text{ m}$ | 1/2 | | | | अथवा | | | | | (b) | | | | | तीव्रता को ज्ञात करना 2 | | | | | कलान्तर = $\frac{2\pi}{\lambda}$ × पथान्तर | 1/2 | | Page 4 of 21 | | 0 - | | | |----|--|-----|---| | | $\Delta \phi = \frac{2\pi}{\lambda} \Delta x$ | | | | | $\therefore \Delta x = \frac{\lambda}{8}$ (दिया गया है) | | | | | $\Delta \phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{8}$ | | | | | $\Delta\phi= rac{\pi}{4}$ | 1/2 | | | | $I=I_{\circ}+I_{\circ}+2\sqrt{I_{\circ}I_{\circ}}\cos rac{\pi}{4}$ | 1/2 | | | | $= 2I_{\circ} + 2I_{\circ} \times \frac{1}{\sqrt{2}}$ | | | | | $I=2I_{\circ}igg(1+ rac{1}{\sqrt{2}}igg)$ | | | | | $= I_{\circ}(2+\sqrt{2})$ | | | | | $I = 3.414 I_{\circ}$ | 1/2 | | | | <u>वैकल्पिक</u> | | | | | कलान्तर = $\frac{2\pi}{\lambda}$ × पथान्तर | 1/2 | | | | $\Delta \phi = rac{2\pi}{\lambda} \Delta x$ | | | | | $\therefore \Delta x = \frac{\lambda}{8}$ (दिया गया है) | | | | | $\Delta \phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{8}$ | | | | | $\Delta\phi= rac{\pi}{4}$ | 1/2 | | | | $I = 4I_{\circ} \cos^2\left(\frac{\phi}{2}\right)$ | 1/2 | | | | $\Delta \phi = \frac{\pi}{4}$ $I = 4I_{\circ} \cos^{2} \left(\frac{\phi}{2}\right)$ $I = 4I_{\circ} \cos^{2} \left(\frac{\pi}{8}\right)$ | 1/2 | 2 | | 19 | θ कोण की गणना 2 | Page **5** of **21** | क्रांतिक कोण के लिए $\frac{n_2}{n_1} = \frac{1}{\sin \theta_c}$ $n_1 = 1 n_2 = \frac{2}{\sqrt{3}} \qquad (\ \ \text{दिया } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | 1/2 | | |--|-----|---| | $=30^{\circ}$ | 1/2 | | | स्नेल के नियम वायु-छड़ के अंतरापृष्ठ पर $n_1 \sin i = n_2 \sin r$ $n_2 = \frac{\sin \theta}{\sin r}$ | 1/2 | | | $\frac{2}{\sqrt{3}} = \frac{\sin \theta}{\sin 30^{\circ}}$ $\frac{2}{\sqrt{3}} \times \frac{1}{2} = \sin \theta$ $\frac{1}{\sqrt{3}} = \sin \theta$ | | | | $\theta = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$ | 1/2 | 2 | | 20 परिक्रमण का आवर्तकाल , $T \propto n^3$ सिद्ध करना 2 $T = \frac{2\pi r}{v} \qquad \qquad \text{(1)}$ बोर के कान्टमीकरण की शर्त से | 1/2 | | Page **6** of **21** | | $mvr = \frac{nh}{2\pi}$ nh | 1/2 | | |----|---|---------------------------------|---| | | $v = \frac{nh}{2\pi mr} \tag{2}$ | 72 | | | | (1) और (2) से | | | | | $T= rac{2\pi r}{\left(rac{nh}{2\pi mr} ight)}$ | | | | | $T = \frac{2\pi r(2\pi mr)}{nh}$ | | | | | $T = \frac{4\pi^2 mr^2}{nh}$ | 1/2 | | | | $\vec{\Re} \ r = \frac{n^2 h^2}{4\pi^2 m k e^2}$ | | | | | | | | | | $T = \frac{4\pi^2 m}{nh} \left(\frac{n^2 h^2}{4\pi^2 m k e^2} \right)^2$ | | | | | $T = \frac{n^3 h^3}{4\pi^2 m k e^4}$ | | | | | $\Rightarrow T \alpha n^3$ | | | | | वैकल्पिक | 1/2 | | | | $T = \frac{2\pi r}{v}$ | 1/2 | | | | $\therefore r \alpha n^2$ | 1/2 | | | | और $va\frac{1}{\alpha}$ | | | | | n | 1/ ₂ 1/ ₂ | 2 | | 21 | $\therefore T \alpha n^3$ | 72 | 2 | | 21 | होलों की संख्या ज्ञात करना | | | | | एक उदाहरण 1 | | | | | | | | | | एक अपमिश्रक परमाणु प्रति 5×10 ⁷ सिलिकॉन परमाणु | | | | | और सिलिकॉन परमाणु का संख्या घनत्व = 5×10 ²⁸ परमाणु प्रति घनमीटर दिया है | | | | | प्रति घनमीटर में निर्मित होलों की संख्या = $\frac{5 \times 10^{28}}{5 \times 10^7} = 10^{21}$ | 1 | | | | प्रति घनसेंटीमीटर से निर्मित होलों की संख्या | | | | | $=\frac{10^{21}}{10^6}=10^{15}$ | | | | | 10 | 1 | 2 | | | अपमिश्रक का कोई एक उदाहरण - एल्युमिनियम / इंडीयम / गैलियम | | | Page 7 of 21 | | खण्ड – ग | | | |----|---|-----------------|--| | 22 | (a) ज्ञात करना (i) संयोजन का तुल्य emf 1 (ii) संयोजन का तुल्य आतंरिक प्रतिरोध 1 (iii) संयोजन से ली गई धारा 1 | | | | | (i) क्यूंकि $E_{eq}=\frac{E_1r_2+E_2r_1}{r_1+r_2}$ $E_{eq}=\frac{3\times0.4+6\times0.2}{0.6} = 4 \text{ V}$ | 1/ ₂ | | | | (ii) $r_{eq} = \frac{r_1 r_2}{r_1 + r_2}$ $r_{eq} = \frac{0.2 \times 0.4}{0.2 + 0.4} = 0.133\Omega$ | 1/2 | | | | (iii) $I = \frac{E}{R + r_{eq}}$ $I = \frac{4}{4 + 0.13} = \frac{4}{4.13} A$ $I = 0.9A$ | 1/2 | | | | अथवा | | | | | (b) (i) संबंध ज्ञात करना 1 (i) R' और R के बीच 1 (ii) v_a और v_a के बीच 1 (ii) यह पता लगाना कि क्या सभी मुक्त इलेक्ट्रॉन एक ही दिशा में गित कर रहे हैं 1 | | | | | (i) $l' = 2l$ $Al = A'l' = तार का आयतन$ $Al = A'(2l)$ $\frac{A}{2} = A'$ | | | Page **8** of **21** | | $R = \frac{\rho l}{A}$ $R' = \frac{\rho l'}{A'}$ $R' = \frac{\rho(2l)}{A/2}$ $\frac{R'}{R} = 4$ | 1/2 | | |----|---|-----|---| | | A = a' | | | | | $R' = \frac{P'}{A'}$ | | | | | $R' = \frac{\rho(2l)}{l}$ | | | | | $\frac{A}{2}$ | | | | | $\frac{R'}{R} = 4$ | 1./ | | | | R | 1/2 | | | | वैकल्पिक | | | | | $R' = n^2 R$ | 1/2 | | | | n=2 | ., | | | | R' = 4R eE | 1/2 | | | | (ii) $v_d = \frac{eE}{m}\tau$ | 1/2 | | | | | | | | | $v_{d} = \frac{eV}{ml} \tau$ $v_{d}' = \frac{eV}{ml'} \tau$ | | | | | , , eV | | | | | $v_{\rm d} - \frac{1}{ml'} \iota$ | | | | | $\frac{\mathbf{v_d}'}{\mathbf{v_d}} = \frac{l}{l'} = \frac{1}{2}$ | | | | | $oldsymbol{\mathrm{v}}_{\mathrm{d}}$ $oldsymbol{l}'$ 2 | 1/2 | | | | (ii) नही | 1 | 3 | | 23 | | 1 | 3 | | | व्युत्पत्ति के लिए | | | | | व्युत्पत्ति के लिए
अक्ष पर चुम्बकीय क्षेत्र 2 ½
केन्द्र पर चुम्बकीय क्षेत्र | | | | | केन्द्र पर चुम्बकीय क्षेत्र ½ | | | | | ,Y | | | | | | | | | | di d | | | | | $d\mathbf{B}_{\mathbf{A}}$ $d\mathbf{B}_{\mathbf{A}}$ | 1/2 | | | | $I = 0$ X $P d\mathbf{B}_{\mathbf{x}} \to X$ | | | | | Y ub _x | | | | | di | | | | | Z | | | | | | | | | | | | | Page 9 of 21 | | बायो-सावर्ट नियम से | | | |----|--|----------------|---| | | | 1/2 | | | | $\left \overrightarrow{dB} \right = \frac{\mu_{\circ}}{4\pi} \frac{I \left d\overrightarrow{l} \times \overrightarrow{r} \right }{r^3}$ | , = | | | | ্ৰা দ্বা দ্বা দ্বা দ্বা দ্বা দ্বা দ্বা দ্ব | | | | | क्यूंकि $\left d\vec{l} \times \vec{r} \right = rdl$ | | | | | | | | | | $\therefore dB = \frac{\mu_{\circ}}{4\pi} \frac{idl}{(x^2 + R^2)}$ | 1/2 | | | | dB के दो अवयव हैं | | | | | x- अक्ष के लम्बवत सभी अवयवों को जोड़ दिया जाता है और हमें शून्य परिमाण प्राप्त | | | | | होता है | | | | | केवल x- अवयव ही योगदान करते हैं x- दिशा के अनुदिश नेट योगदान | | | | | $dB_{x} = dB\cos\theta$ | 1/2 | | | | $\cos \theta = \frac{R}{R}$ | | | | | $\cos\theta = \frac{R}{\left(R^2 + x^2\right)^{\frac{1}{2}}}$ | | | | | अतः | | | | | | | | | | $dB_x = \frac{\mu_{\circ} \dot{t}}{4\pi} dl \frac{R}{\left(R^2 + x^2\right)^{\frac{3}{2}}}$ | | | | | संपूर्ण लूप पर dB_x का योग | | | | | $\oint dl = 2\pi R$ $\vec{B} = B_x \hat{i} = \frac{\mu_0 i R^2}{2(x^2 + R^2)^{\frac{3}{2}}} \hat{i}$ | | | | | $=$ uiR^2 | 1/2 | | | | $B = B_x i = \frac{P_x^{3/2}}{3} i$ | 7 2 | | | | 2(x² + R²)²
लूप के केन्द्र पर चुम्बकीय क्षेत्र | | | | | यहां x= 0 | | | | | | | | | | $\therefore \vec{B} = \frac{\mu_{\circ} \dot{i}}{2R} \hat{i}$ | 1/2 | 3 | | 24 | a) प्रेरक में ऊर्जा-संचयन का व्यंजक उत्पन्न करना 1 ½ | | | | | b) चुम्बकीय क्षेत्र की ऊर्जा घनत्व का व्युत्पन्न 1 ½ | | | | | -, 3 | | | | | a) एक प्रेरक (कुंडली) में प्रेरित वैद्युत वाहक बल | | | | | $ \varepsilon = L \frac{dI}{dt}$ | | | | | | 1/2 | | | | किसी क्षण कार्य करने की दर | | | | | $\frac{dW}{dt} = \varepsilon I$ | 1/ | | | | ш | 1/2 | | Page 10 of 21 | | धारा स्थापित करने में किया गया कुल कार्य है | | | |----|--|-----|---| | | $W = \int dW = \int_{0}^{I} LIdI$ | | | | | धारा स्थापित करने में आवश्यक ऊर्जा होगी
W = ½ L I ² | | | | | b) चुम्बकीय ऊर्जा | 1/2 | | | | $W = U_B = \frac{1}{2} LI^2$ | | | | | $= \frac{1}{2} L \left(\frac{B}{n \mu_0} \right)^2 \qquad \text{as } B = n \mu_0 I$ | 1/2 | | | | प्रयोग करके L= $\mu_0 n^2 A l$ | | | | | $U_B = \frac{1}{2} \left(\mu_0 n^2 A l \right) \left(\frac{B^2}{{\mu_0}^2 n^2} \right)$ | 1/2 | | | | জর্জা ঘনলে = $\frac{U_{\scriptscriptstyle B}}{volume}$ | | | | | $\frac{U_B}{volume} = \frac{1}{2} \times \mu_0 n^2 A l \times \frac{B^2}{\mu_0^2 n^2} \times \frac{1}{A l}$ | | | | | $=\frac{1}{2}\frac{B^2}{\mu_0}$ | 1/2 | | | | 2 μ_0 | | 3 | | 25 | a) दर्शाइए कि (I _c + I _d) का मान प्रत्येक बिन्दु पर समान रहता है 2
b) किरखोफ के प्रथम नियम का धारिता की प्रत्येक प्लेट पर व्याख्या 1 | | | | | a) ∵ कुल धारा I = I _c + I _d | | | | | संधारित्र के बाहर | | | | | I _d =0
∴ I = I _c | 1/2 | | | | संधारित्र के अन्दर | | | | | $I_c = 0$ | 1/2 | | | | $\therefore I = I_{d} = \varepsilon_{0} \frac{d\phi_{E}}{dt}$ | 1/2 | | | | $= \varepsilon_0 \frac{d}{dt} [EA]$ | | | | | $= \varepsilon_0 \frac{d}{dt} \left[\frac{\sigma}{\varepsilon_0} A \right]$ | | | | | | | | Page 11 of 21 | | | , | | |----|--|-----|---| | | $= \frac{\varepsilon_0}{\varepsilon_0} A \frac{d}{dt} \left[\frac{Q}{A} \right]$ $I = \frac{dQ}{dt} = I_c$ वैकल्पिक | 1/2 | | | | ∵ कुल धारा । = I _c + I _d
संधारित्र के बाहर
I _d =0 | 1/2 | | | | ∴ I = I _c
संधारित्र के अन्दर
I _c = 0 | 1/2 | | | | $I = I_{d} = \varepsilon_{0} \frac{d\phi_{E}}{dt}$ $= \varepsilon_{0} \frac{d}{dt} \left[\frac{Q}{\varepsilon_{0}} \right]$ | 1/2 | | | | $I = \frac{dQ}{dt} = I_{c}$ | 1/2 | | | | इसलिए Ic + Id का मान परिपथ के सभी बिन्दुओं पर समान है | | | | |
b) हाँ
संधारित्र में प्रवेश करने वाली धारा (I _c) और संधारित्र के प्लेटों के बीच विस्थापन धारा
(I _d) है | 1 | | | | $: I_c = I_d$ जो कि किरखोफ संधि नियम को मान्य करता है | | 3 | | 26 | कारण a) सभी फोटोइलेक्ट्रॉनों की गतिज ऊर्जा का एक समान न होने का कारण 1 b) विभिन्न तीव्रताओं के लिए संतृप्त धारा भिन्न होती है का कारण 1 c) फोटोइलेक्ट्रॉनों का किसी निश्चित तरंगदैर्घ्य पर उत्सर्जन का रुकने का कारण 1 | | | | | a) जब एक वर्णीय प्रकाश किसी धातु पर आपतित होता है तब अधिक / कम दृढबद्ध
अवस्था में इलेक्ट्रॉन कम / अधिक गतिज ऊर्जा से निकलते हैं , इसलिए सभी
फोटोइलेक्ट्रॉन समान गतिज ऊर्जा में बाहर नहीं निकलते | 1 | | | | b) उत्सर्जित होने वाले प्रति सेकेंड प्रकाशिक इलेक्ट्रॉनों की संख्या आपतित विकिरण
की तीव्रता के समानुपाती है इसलिए विभिन्न तीव्रताओं पर संतृप्त धारा विभिन्न होती है | 1 | | | | | 1 | | |----|--|-------------------------|---| | | c) जब λ बढ़ता है , v घटता है और आपतित फ़ोटॉन की ऊर्जा भी घटती है जब λ> λo,
v< vo (देहली आवृत्ति) , फोटोइलेक्ट्रॉन बाहर नही निकलते फोटोइलेक्ट्रॉन का
उत्सर्जन λ> λo पर रुक जाता है | 1 | 3 | | 27 | a) द्रव्यमान क्षति ज्ञात करना 1/2
बंधन ऊर्जा परिभाषित करना 1/2
विखण्डन प्रक्रम का वर्णन करना 1/2
b) द्रव्यमान क्षति का परिकलन 1
ऊर्जा का परिकलन 1/2 | | | | | a) नाभिक के द्रव्यमान एवं इसके घटकों के द्रव्यमान के अंतर को द्रव्यमान क्षिति कहते हैं किसी नाभिक को इसके न्यूक्लिऑनों में पृथक्कृत करने के आवश्यक ऊर्जा को बंधन ऊर्जा कहते हैं विखण्डन प्रक्रम में एक अत्यधिक भारी नाभिक जब दो हल्के नाभिक में विघटित होता है , इस प्रक्रिया में ऊर्जा विमुक्त होती है जिसके परिणाम स्वरूप बंधन ऊर्जा प्रति न्यूक्लिऑन बढ़ती है b) $\Delta m = (m_p + m_n) - m_d$ $\Delta m = (1.007277 + 1.008665) - 2.013553$ $\Delta m = 0.002389$ u विमुक्त ऊर्जा = $\Delta m \times c^2$ | 1/2 1/2 1/2 1/2 1/2 1/2 | | | | विमुक्त ऊर्जा = 0.002389 × 931.5
= 2.2253 MeV ≈2.22 MeV | 1/2 | 3 | | 28 | a) V—I अभिलाक्षणिकों का अध्ययन करने के लिये परिपथ व्यवस्था 1 b) अभिलाक्षणिकों की आकृति को दर्शाना 1 c) अभिलाक्षणिकों से प्राप्त दो सूचनाएं ½ + ½ 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 | 1/2 | | Page 13 of 21 Page 14 of 21 | 20 | :) (C) | 1 | | |----|--|-----------------|---| | 30 | i) (C) | | | | | | | | | | | | | | | ii) (A) उत्तल दर्पण के लिए आवर्धन सदैव ऋणात्मक होता है | | | | | iii) (B) 2f | | | | | अथवा | | | | | (B) 12 cm | | | | | $ \text{iv) (C)} \sqrt{X_1 X_2} $ | | | | | $N_1 = V_1 + V_2$ | 1 | 4 | | | खण्ड – ङ | | | | | G*0 = 0 | | | | 31 | a) | | | | | i) निकाय की स्थिर विद्युत ऊर्जा में परिवर्तन का परिकलन 2 | | | | | ii) (1) धारिता ज्ञात करना | | | | | (2) विभवान्तर ज्ञात करना | | | | | (३) उत्तर और कारण | | | | | (5) GUY SUY SUY SUY SUY SUY SUY SUY SUY SUY S | | | | | | | | | | | | | | | 2×10^5 | | | | | (i) $\vec{E} = \frac{3 \times 10^5}{r^2} \hat{r}$ (दिया गया है) $dV = -\vec{E} \cdot d\vec{r}$ | | | | | $V = 3 \times 10^5 / r$ | | | | | ४ = 3 × 10 ° / 1
 क्षेत्र की अनुपस्थिति में निकाय की स्थिर विद्युत ऊर्जा | | | | | | 1/2 | | | | $U_i = \frac{Kq_1q_2}{q_2}$ | 72 | | | | r_{12} | | | | | क्षेत्र की उपस्थिति में स्थिर विद्युत ऊर्जा | | | | | $U_{f} = \frac{Kq_{1}q_{2}}{r} + q_{1}V(r_{1}) + q_{2}V(r_{2})$ | 1/ | | | | 112 | 1/2 | | | | $\Delta U = U_f - U_i = q_1 V(r_1) + q_2 V(r_2)$ | | | | | $5 \times 10^{-6} \times 3 \times 10^{5}$ $1 \times 10^{-6} \times 3 \times 10^{5}$ | 1/ | | | | $\Delta U = \frac{5 \times 10^{-6} \times 3 \times 10^{5}}{3 \times 10^{-2}} - \frac{1 \times 10^{-6} \times 3 \times 10^{5}}{3 \times 10^{-2}}$ | 1/2 | | | | | | | | | = 40 J | 1/ | | | | (ii) 1) $C = \frac{Q}{V} = \frac{80}{16} = 5\mu F$ | 1/ ₂ | | | | $(11) \ 1) \ C - \frac{1}{V} = \frac{16}{16} = 3\mu F$ | 1 | | | | | | | | | 2) C' = KC | 1/2 | | | | $= 3 \times 5 \mu F = 15 \mu F$ | /2 | | | | | <u> </u> | | Page 15 of 21 | $V' = \frac{Q}{C'} = \frac{80\mu C}{15\mu F} = 5.33V$ 3) नहीं, | | | | | |---|----|--|-----|---| | 3) नहीं , | | $V' = \frac{Q}{V} = \frac{80\mu C}{V} = 5.33V$ | 1/2 | | | निकाय की धारिता इसकी ज्यामिती पर निर्भर करती है अथवा b) | | | | | | अथवा | | | 1/2 | | | b) i) विद्युत क्षेत्रों के परिणाम की तुलना 2 ii) आवेश पर किये गये कार्य का परिकलन 3 A के लिए कुल आवेश = B के लिए कुल आवेश = C के लिए कुल आवेश = .4q 1 वर्यूकि , E = \frac{kQ}{r^2} चूँकि Q = 4q तथा r = 3R E = \frac{k(4q)}{9R^2} = \frac{4kq}{9R^2} \therefore E_A = E_B = E_C | | निकाय की धारिता इसकी ज्यामिती पर निर्भर करती है | 1/2 | | | बंदि अर्थिय के परिजास कर पुरास पुर | | अथवा | | | | बंदि अर्थिय के परिजास कर पुरास पुर | | b) ं विद्यात थेत्रों के प्रतिपाप की तलना | | | | A के लिए कुल आवेश = B के लिए कुल आवेश = C के लिए कुल आवेश =+4q | | । । । । । । । । । । । । । । । । । । । | | | | बसूकि , E = $\frac{kQ}{r^2}$ चूँकि Q = 4q तथा r = 3R E = $\frac{k(4q)}{9R^2} = \frac{4kq}{9R^2}$ \therefore E_A = E_B = E_C ii) $V_c = \left[\frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}}\right]$ = 0 $V_A = \left[\frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}}\right]$ $= \frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}}\right]$ $= \frac{-9 \times 10^9 \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}}$ $= -7.2 \times 10^5 V$ W = $q[V_A - V_c]$ = $5 \times 10^{-6} \left[-7.2 \times 10^5 - 0\right]$ W = -3.6 J i) बिन्दु P,Q और R पर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ चुम्बकीय क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ | | ा) जापरा पर पिन्य गय पनाय पना पारपन्तान ५ | | | | बसूकि , E = $\frac{kQ}{r^2}$ चूँकि Q = 4q तथा r = 3R E = $\frac{k(4q)}{9R^2} = \frac{4kq}{9R^2}$ \therefore E_A = E_B = E_C ii) $V_c = \left[\frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}}\right]$ = 0 $V_A = \left[\frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}}\right]$ $= \frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}}\right]$ $= \frac{-9 \times 10^9 \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}}$ $= -7.2 \times 10^5 V$ W = $q[V_A - V_c]$ = $5 \times 10^{-6} \left[-7.2 \times 10^5 - 0\right]$ W = -3.6 J i) बिन्दु P,Q
और R पर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ चुम्बकीय क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ | | | | | | बसूकि , E = $\frac{kQ}{r^2}$ चूँकि Q = 4q तथा r = 3R E = $\frac{k(4q)}{9R^2} = \frac{4kq}{9R^2}$ \therefore E_A = E_B = E_C ii) $V_c = \left[\frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}}\right]$ = 0 $V_A = \left[\frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}}\right]$ $= \frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}}\right]$ $= \frac{-9 \times 10^9 \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}}$ $= -7.2 \times 10^5 V$ W = $q[V_A - V_c]$ = $5 \times 10^{-6} \left[-7.2 \times 10^5 - 0\right]$ W = -3.6 J i) बिन्दु P,Q और R पर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ चुम्बकीय क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ | | A के लिए कुल आवेश = B के लिए कुल आवेश = C के लिए कुल आवेश =+4a | 1 | | | चूँकि Q = 4q तथा r = 3R $E = \frac{k(4q)}{9R^2} = \frac{4kq}{9R^2}$ $\therefore E_A = E_B = E_c$ $ii) V_c = \left[\frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right]$ $= 0$ $V_A = \left[\frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right]$ $= \frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right]$ $= \frac{-9 \times 10^9 \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}}$ $= -7.2 \times 10^5 \text{ V}$ $W = q[V_A - V_c]$ $= 5 \times 10^{-6} \left[-7.2 \times 10^5 - 0 \right]$ $W = -3.6 \text{ J}$ $i) \text{ Air } Q = Q \text{ Air } R \text{ UT } \text$ | | | | | | $E = \frac{k(4q)}{9R^2} = \frac{4kq}{9R^2}$ $\therefore E_A = E_B = E_C$ $ii) V_C = \left[\frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right]$ $= 0$ $V_A = \left[\frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right]$ $= \frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right]$ $= \frac{-9 \times 10^9 \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}}$ $= -7.2 \times 10^5 \text{ V}$ $W = q[V_A - V_C]$ $= 5 \times 10^{-6} \left[-7.2 \times 10^5 - 0 \right]$ $W = -3.6 \text{ J}$ $i) larg P,Q sht R ut graphu & 3n \text{ large table with min and retain the large of th$ | | $rac{\text{eq}}{r}$ | | | | $E = \frac{k(4q)}{9R^2} = \frac{4kq}{9R^2}$ $\therefore E_A = E_B = E_C$ $ii) V_C = \left[\frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right]$ $= 0$ $V_A = \left[\frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right]$ $= \frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right]$ $= \frac{-9 \times 10^9 \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}}$ $= -7.2 \times 10^5 \text{ V}$ $W = q[V_A - V_C]$ $= 5 \times 10^{-6} \left[-7.2 \times 10^5 - 0 \right]$ $W = -3.6 \text{ J}$ $i) larg P,Q sht R ut graphu & 3n \text{ large table with min and retain the large of th$ | | चूँकि Q = 4g तथा r = 3R | | | | $\begin{array}{lll} \vdots & E_{A} = E_{B} = E_{C} \\ & ii) V_{C} = \left[\frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right] & 1 \\ & = 0 \\ & V_{A} = \left[\frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right] & 1_{C} \\ & = \frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right] & 1_{C} \\ & = \frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} \left[\frac{1-3}{15} \right] \\ & = -\frac{9 \times 10^{9} \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}} \\ & = -7.2 \times 10^{5} V \\ & W = q \left[V_{A} - V_{C} \right] \\ & = 5 \times 10^{-6} \left[-7.2 \times 10^{5} - 0 \right] \\ & W = -3.6 J & V_{C} \end{array}$ | | •; | 1/2 | | | $\begin{aligned} &\text{ii) } \ V_c = \left[\frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right] \\ &= 0 \\ V_A = \left[\frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right] \\ &= \frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right] \\ &= \frac{-9 \times 10^9 \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}} \\ &= -7.2 \times 10^5 \text{ V} \\ W = q \left[V_A - V_c \right] \\ &= 5 \times 10^{-6} \left[-7.2 \times 10^5 - 0 \right] \\ W = -3.6 \text{ J} \end{aligned}$ | | $E = \frac{1}{9R^2} = \frac{1}{9R^2}$ | '- | | | $\begin{aligned} &\text{ii) } \ V_c = \left[\frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right] \\ &= 0 \\ V_A = \left[\frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right] \\ &= \frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right] \\ &= \frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} \left[\frac{1-3}{15} \right] \\ &= -\frac{9 \times 10^9 \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}} \\ &= -7.2 \times 10^5 \text{ V} \\ \text{W} = q \left[V_A - V_c \right] \\ &= 5 \times 10^{-6} \left[-7.2 \times 10^5 - 0 \right] \\ \text{W} = -3.6 \text{ J} \end{aligned}$ $32 \qquad \text{a)}$ $\text{i) } \ \hat{\text{Ii}} = \frac{1}{3} P_{,Q} \hat{\text{Mit R Ut } } P$ | | \therefore E _A = E _B = E _C | 1/2 | | | $V_A = \begin{bmatrix} \frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \end{bmatrix}$ $= \frac{k \times 6 \times 10^{-6}}{10^{-2}} \begin{bmatrix} \frac{1-3}{15} \end{bmatrix}$ $= -\frac{9 \times 10^9 \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}}$ $= -7.2 \times 10^5 \text{ V}$ $W = q[V_A - V_c]$ $= 5 \times 10^{-6} \begin{bmatrix} -7.2 \times 10^5 - 0 \end{bmatrix}$ $W = -3.6 \text{ J}$ $32 \qquad a)$ $i) बिन्दु P,Q और R Uर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}}{\frac{1}{2}} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}}{\frac{1}{2}} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + $ | | | '- | | | $V_A = \begin{bmatrix} \frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \end{bmatrix}$ $= \frac{k \times 6 \times 10^{-6}}{10^{-2}} \begin{bmatrix} \frac{1-3}{15} \end{bmatrix}$ $= -\frac{9 \times 10^9 \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}}$ $= -7.2 \times 10^5 \text{ V}$ $W = q[V_A - V_c]$ $= 5 \times 10^{-6} \begin{bmatrix} -7.2 \times 10^5 - 0 \end{bmatrix}$ $W = -3.6 \text{ J}$ $32 \qquad a)$ $i) बिन्दु P,Q और R Uर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}}{\frac{1}{2}} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}}{\frac{1}{2}} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + $ | | ii) $V_c = \left \frac{\kappa \times 0 \times 10^{-2}}{F_{12} \times 10^{-2}} - \frac{\kappa \times 0 \times 10^{-2}}{F_{12} \times 10^{-2}} \right $ | 1 | | | $V_A = \left[\frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right] $ $= \frac{k \times 6 \times 10^{-6}}{10^{-2}} \left[\frac{1-3}{15} \right] $ $= -\frac{9 \times 10^9 \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}} $ $= -7.2 \times 10^5 \text{ V} $ $W = q[V_A - V_c] $ $= 5 \times 10^{-6} \left[-7.2 \times 10^5 - 0 \right] $ $W = -3.6 \text{ J} $ $32 a)$ $i) \text{ A a constant } \text{ B a constant } \text{ B a constant } \text{ B }$ | | | ' | | | $=\frac{k\times 6\times 10^{-6}}{10^{-2}}\left[\frac{1-3}{15}\right]$ $=-\frac{9\times 10^{9}\times 6\times 10^{-6}\times 2}{15\times 10^{-2}}$ $=-7.2\times 10^{5}\text{ V}$ $W=q[V_{A}-V_{c}]$ $=5\times 10^{-6}\left[-7.2\times 10^{5}-0\right]$ $W=-3.6\text{ J}$ $1/2$
$1/2$ | | | | | | $=\frac{k\times 6\times 10^{-6}}{10^{-2}}\left[\frac{1-3}{15}\right]$ $=-\frac{9\times 10^{9}\times 6\times 10^{-6}\times 2}{15\times 10^{-2}}$ $=-7.2\times 10^{5}\text{ V}$ $W=q[V_{A}-V_{c}]$ $=5\times 10^{-6}\left[-7.2\times 10^{5}-0\right]$ $W=-3.6\text{ J}$ $1/2$ | | $\left \begin{array}{ccc} V & - & \frac{k \times 6 \times 10^{-6}}{2} & \frac{k \times 6 \times 10^{-6}}{2} \end{array} \right $ | 1/2 | | | $= -\frac{9 \times 10^{9} \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}}$ $= -7.2 \times 10^{5} \text{ V}$ $W = q[V_{A} - V_{c}]$ $= 5 \times 10^{-6} \left[-7.2 \times 10^{5} - 0 \right]$ $W = -3.6 \text{ J}$ $1/2$ $1/2$ 5 $32 a)$ $i) [a$ | | $ {}^{V_A} 15 \times 10^{-2} $ $5 \times 10^{-2} $ | 72 | | | $= -\frac{9 \times 10^{9} \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}}$ $= -7.2 \times 10^{5} \text{ V}$ $W = q[V_{A} - V_{c}]$ $= 5 \times 10^{-6} \left[-7.2 \times 10^{5} - 0 \right]$ $W = -3.6 \text{ J}$ $1/2$ $1/2$ 5 $32 a)$ $i) [a$ | | _ | | | | $= -\frac{9 \times 10^{9} \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}}$ $= -7.2 \times 10^{5} \text{ V}$ $W = q[V_{A} - V_{c}]$ $= 5 \times 10^{-6} \left[-7.2 \times 10^{5} - 0 \right]$ $W = -3.6 \text{ J}$ $1/2$ $1/2$ 5 $32 a)$ $i) [a$ | | $k \times 6 \times 10^{-6} \left[1 - 3\right]$ | | | | $= -\frac{9 \times 10^{9} \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}}$ $= -7.2 \times 10^{5} \text{ V}$ $W = q[V_{A} - V_{c}]$ $= 5 \times 10^{-6} \left[-7.2 \times 10^{5} - 0 \right]$ $W = -3.6 \text{ J}$ $1/2$ 5 $32 a)$ $i) [i) [i) [i) [i] $ | | $=\frac{10^{-2}}{10^{-2}}\left \frac{10}{15}\right $ | | | | = - 7.2 × 10 ⁵ V W = q[V _A - V _c] = 5 × 10 ⁻⁶ [-7.2 × 10 ⁵ - 0] W = - 3.6 J 32 a) i) बिन्दु P,Q और R पर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए ½+½+½ चुम्बकीय क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष ½+½+½ | | | | | | | | $= -\frac{9 \times 10^{7} \times 6 \times 10^{-7} \times 2}{1.7 \times 10^{-2}}$ | | | | W = q[V _A - V _c] ½ = 5 × 10 ⁻⁶ [-7.2 × 10 ⁵ - 0] ½ W = - 3.6 J ½ 32 a) i) बिन्दु P,Q और R पर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए ½+½+½ चुम्बकीय क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष ½+½+½+½ | | | 1 | | | = 5×10 ⁻⁶ [-7.2×10 ⁵ - 0]
W = - 3.6 J 32 a) i) बिन्दु P,Q और R पर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए ½+½+½ चुम्बकीय क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष ½+½+½ | | | | | | W = - 3.6 J 32 a) i) बिन्दु P,Q और R पर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए ½+½+½ चुम्बकीय क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष ½+½+½ | | $ W = q[V_A - V_c]$ | 1/2 | | | W = - 3.6 J 32 a) i) बिन्दु P,Q और R पर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए ½+½+½ चुम्बकीय क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष ½+½+½ | | $= 5 \times 10^{-6} \left[-7.2 \times 10^5 - 0 \right]$ | | | | 32 a) i) बिन्दु P,Q और R पर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए ½+½+½ चुम्बकीय क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष ½+½+½ | | | 1/2 | 5 | | i) बिन्दु P,Q और R पर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए 1/2+1/2+1/2
चुम्बकीय क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष 1/2+1/2+1/2 | | | | | | चुम्बकीय क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष ½+½+½ | 32 | a) | | | | चुम्बकीय क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष ½+½+½ | | i) बिन्द P O और R पर चम्बकीय क्षेत्र की दिशा जात करने के लिए $1/2 \pm 1/2 \pm 1/2$ | | | | | | | | | | ा) वारा पर पुरुषपराय जातूज परा प्रशाना | | | | | | | | ।) नारा वर युष्पवराव जावून वरा वसाना | | | | | | | | | | | | | | | | <u> </u> | | | | | Page 16 of 21 | i) बिन्दु P के पास
चुम्बकीय क्षेत्र , तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर
की ओर लग रहा है | 1/2 | | |--|-----|--| | बिन्दु Q के पास
चुम्बकीय क्षेत्र , तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर
की ओर लग रहा है | 1/2 | | | बिन्दु R के पास
चुम्बकीय क्षेत्र , तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की
ओर लग रहा है | 1/2 | | | चुम्बकीय क्षेत्र , के आपेक्षिक परिणाम | | | | क्यूंकि B $\alpha \frac{1}{r}$ | | | | अतः
P बिन्दु के पास B का परिमाण कम है | 1. | | | | 1/2 | | | Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है | 1/2 | | | R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है | 1/2 | | | $(B_Q < B_P < B_R)$ | | | | ii) यदि वृत्ताकार पाश की त्रिज्या r है और पाश में धारा । है तब | | | | $B = \frac{\mu_0 I}{2r} or I = \frac{2Br}{\mu_0}$ | 1/2 | | | μ_0 | | | | $A = \pi r^2 \qquad r = \sqrt{\frac{A}{\pi}}$ | 1/2 | | | M = IA | | | | $=\frac{2Br}{A}$ | 1/2 | | | $-\frac{1}{\mu_0}A$ | | | | $2BA \overline{A}$ | | | | | 1/2 | | | $\mu_{0} \forall \ \pi$ | | | | अथवा | | | | b) | | | | | | | | i) बल आघूर्ण का व्यंजक व्युत्पन्न करना 3 | | | | ii) 1) त्रिज्या में परिवर्तन को ज्ञात करना 1 | | | | 2) परिक्रमण के आवर्तकाल में परिवर्तन को ज्ञात करना 1 | | | | | | | | | | | | | | | | • | | | Page 18 of 21 | | गरि धाग गरित केंटली का तल साबकींग थेन के गांध न कोण नमान है | | | |----|--|-----|---| | | यदि धारा रहित कुंडली का तल चुम्बकीय क्षेत्र के साथ \propto कोण बनाता है $\vec{F}_{DA} = -\vec{F}_{Bc}$ (एक दूसरे को निर्गत करते हैं) | | | | | भुजा BC पर बल पृष्ठ के नीचे तल पर है | 1/2 | | | | $ F_{DC} = IbB$. | | | | | भुजा DA पर बल पृष्ठ के ऊपर तल पर है | 1/2 | | | | $\left \stackrel{.}{F_{AB}} \right = IbB$ | 1/2 | | | | दोनों ही बल बलयुग्म बनाते हैं और कुंडली पर लगने वाला बल आघूर्ण है | /2 | | | | τ=कोई बल ×दो बलों के बीच लम्बवत् दूरी | | | | | $\tau = IbB \times a \cos \alpha$ | | | | | $= IabB\cos\alpha$ $\tau = IAB\cos\alpha$ | 1.6 | | | | Let \hat{n} =माना में = कुंडली के तल पर बाहर की ओर | 1/2 | | | | $\theta + \alpha = 90^{\circ}$ | | | | | $\alpha = 90^{\circ} - \theta$ | | | | | $\tau = IAB\cos(90 - \theta)$ | | | | | $= IAB\sin\theta$ $\vec{\tau} = I\vec{A} \times \vec{B}$ | 1/2 | | | | $i = IA \times D$ | | | | | $mv = \sqrt{2mK}$ | 1/2 | | | | ii) 1) $r = \frac{mv}{qB} = \frac{\sqrt{2mK}}{qB}$ | | | | | $r \alpha \ \sqrt{K}$ | | | | | $\frac{r'}{r} = \frac{\sqrt{K/2}}{\sqrt{K}} = \frac{1}{\sqrt{2}}$ | | | | | $\frac{1}{r} - \frac{1}{\sqrt{K}} - \frac{1}{\sqrt{2}}$ | | | | | $r' = \frac{r}{\sqrt{2}}$ | 1/2 | | | | 0 | | | | | $2) T = \frac{2\pi m}{qB}$ | 1/2 | | | | अवर्तकाल गतिज्ञ ऊर्जा पर निर्भर नहीं करता है | 1/2 | 5 | | | आवर्तकाल नहीं ब दलेगा | 72 | J | | 33 | a) | | | | | i) 1) कलासंबद्ध स्रोत की परिभाषा | | | | | सतत व्यतिकरण पैटर्न के लिए कला संबद्ध स्रोतों का आवश्यक होना 1 | | | | | 2) व्याख्या 1
ii) 1) निकटवर्ती चमकीली व्यतिकरण फ्रिंजों के बीच की दूरी का परिकलन 1 | | | | | 2) कोणीय चौड़ाई का परिकलन 1 | | | | | | | | | | | | | | | | | i | | a) i) 1) यदि दो स्रोत कलासंबद्ध है तो किसी भी बिन्दु पर कलांतर समय के साथ नहीं
बदलेगा | 1 | |---|---------| | वैकल्पिक | | | 1) दो स्रोत कलासंबद्ध कहे जाते हैं यदि वे लगातार समान आवृत्ति / तरंगदैर्घ्य और शून्य
अथवा सतत कलांतर के साथ प्रकाश उत्सर्जित करते हैं | | | सतत कलांतर पाने के लिए कलासंबद्ध स्रोतों की आवश्यकता होती है
2) दो स्वतंत्र स्रोत कभी भी कला संबद्ध नही होंगे , क्यूंकि इनके बीच कलांतर सतत | 1 | | नहीं होता है
ii) 1) निकटवर्ती चमकीली फ्रिंज के बीच की दूरी = फ्रिंज चौड़ाई | 1 | | $\beta = \frac{\lambda D}{d}$ | 1/2 | |
$=\frac{600\times10^{-9}\times1.2}{0.1\times10^{-3}}=7.2mm$ | 1/2 | | $\theta = \frac{\lambda}{d}$ | 1/2 | | $= \frac{600 \times 10^{-9}}{0.1 \times 10^{-3}} = 6 \times 10^{-3} \text{rad} = 0.34^{\circ}$ | 1/2 | | यदि छात्र उत्तर को सिर्फ रेडियन में लिखता है तो पूरे अंक दिए जायें
अथवा | | | b) i) तरंगाग्र की परिभाषा 1
आपतित और अपवर्तित तरंगाग्रों का आरेख खींचना ½+½
ii) किरण आरेख खींचना 1
अंतिम प्रतिबिम्ब की स्थिति प्राप्त करना 2 | | | | | | b) i) समान कला में दोलन करते ऐसे सभी बिन्दुओं का बिन्दु पथ तरंगाग्र कहलाता है | 1 | | आर्यातत समाव वस्याव राष्ट्र | 1/2+1/2 | | f त्रिज्या का गोलीय तरंगाग्र | | | | | # Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination, 2025 SUBJECT NAME PHYSICS (PAPER CODE 55/1/2) | General Instruction | าร: - | |----------------------------|-------| |----------------------------|-------| | 1 | You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. | |----|---| | 2 | "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC." | | 3 | Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded. | | 4 | The Marking scheme carries only suggested value points for the answers These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. | | 5 | The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators. | | 6 | Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing. | | 7 | If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly. | | 8 | If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly. | | 9 | If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question". | | 10 | No marks to be deducted for the cumulative effect of an error. It should be penalized only once. | 11 A full scale of marks 70 (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it. Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours 12 every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper. 13 Ensure that you do not make the following common types of errors committed by the Examiner in the past:-Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. 14 While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks. Any un assessed portion, non-carrying over of marks to the title page, or totaling error 15 detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously. 16 The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation" before starting the actual evaluation. 17 Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words. 18 The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme. | | अंक योजना ∶ भौतिकी (042) | | | | |---------|---|-----|------------|--| | | कोड: 55/1/2 | | | | | प्र.सं. | मूल्यांकन बिन्दु / अपेक्षित उत्तर | अंक | कुल
अंक | | | | खण्ड-क | | | | | 1. | (C) C | 1 | 1 | | | 2. | (B) समान त्रिज्या का लम्बाई में आधा तार | 1 | 1 | | | 3. | (B) $\left(-3\hat{j}+2\hat{k}\right)\mu N$ | 1 | 1 | | | 4. | (C) 2 | 1 | 1 | | | 5. | (B) 2866 | 1 | 1 | | | 6. | (D) $\frac{\mathbf{i}_0 \mathbf{v}_0}{2} \cos \phi$ | 1 | 1 | | | 7. | (B) चाल तरंगदैर्ध्य आवृत्ति
कोई परिवर्तन नहीं घट जाती है वृद्धि होती है | 1 | 1 | | | 8. | (A) माध्यम '1' से कोण $\sin^{-1}\left(\dfrac{\mathbf{v}_1}{\mathbf{v}_2}\right)$ से अधिक पर | 1 | 1 | | | 9. | (A) 10 ¹⁶ | 1 | 1 | | | 10 | (A) $\xrightarrow{B.E.}$ $\xrightarrow{56}$ A | 1 | 1 | | | 11 | (C) रोधिका की ऊँचाई और ह्रासी स्तर की चौड़ाई दोनों में कमी होती है | 1 | 1 | | | 12 | (B) $\lambda_e > \lambda_p > \lambda_d$ | 1 | 1 | | | 13 | (D) अभिकथन (A) और कारण (R) दोनों ही असत्य हैं | 1 | 1 | | | 14 | (C) अभिकथन (A) सत्य है , परन्तु कारण (R) असत्य है | 1 | 1 | | | 15 | (A) अभिकथन (A) और कारण (R) दोनों सत्य हैं कारण (R) अभिकथन (A) की सही
व्याख्या है | 1 | 1 | | | 16 | (A) अभिकथन (A) और कारण (R) दोनों सत्य हैं कारण (R) अभिकथन (A) की सहीं
व्याख्या है | 1 | 1 | | | | खण्ड ख | | | | | 17 | $ec{E}= hoec{j}$ से ओम के नियम को प्राप्त करना 1½ स्थिति का उल्लेख करना $ rac{1}{2}$ $ec{E}= hoec{j}$ | 17 | | | | | $D - \rho J$ | 1/2 | | | Page **3** of **20** | | V = I | | | |----|---|-----|---| | | $\frac{V}{l} = \rho \frac{I}{A}$ | 1/2 | | | | $\frac{V}{I} = \rho \frac{l}{A} = $ नियतांक (ओम का नियम) | 1/2 | | | | ओम का नियम वैध नही होने की स्थिति | 1/2 | 2 | | | उच्चताप / अर्धचालक | 72 | 2 | | 18 | (a) झिरी की चौड़ाई का परिकलन 2 | | | | | निम्निष्ठ के लिए शर्त a $\sin\theta = n\lambda$ | 1 | | | | पहला निम्निष्ठ के लिए n=1 | | | | | $a \sin 30^{\circ} = 600 \times 10^{-9} \mathrm{m}$ | 1/2 | | | | $a \times \frac{1}{2} = 600 \times 10^{-9} \mathrm{m}$ | | | | | $a = 1200 \times 10^{-9} \text{ m}$
= 1.2 × 10 ⁻⁶ m | 1/2 | | | | अथवा | | | | | (b) | | | | | तीव्रता को ज्ञात करना 2 | | | | | कलान्तर = $\frac{2\pi}{\lambda}$ × पथान्तर | 1/2 | | | | $\Delta \phi = rac{2\pi}{\lambda} \Delta x$ | | | | | $\therefore \Delta x = \frac{\lambda}{8} \ (दिया गया है)$ | | | | | $\Delta \phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{8}$ | 1/ | | | | $\Delta\phi= rac{\pi}{4}$ | 1/2 | | | | $I = I_{\circ} + I_{\circ} +
2\sqrt{I_{\circ}I_{\circ}}\cos\frac{\pi}{4}$ | 1/2 | | | | $= 2I_{\circ} + 2I_{\circ} \times \frac{1}{\sqrt{2}}$ | | | | | $I=2I_{\circ}igg(1+ rac{1}{\sqrt{2}}igg)$ | | | | | $= I_{\circ}(2+\sqrt{2})$ | | | | | $I = 3.414 I_{\circ}$ | 1/2 | | Page **4** of **20** | | <u>वैकल्पिक</u> | | | |----|---|---------|---| | | कलान्तर = $\frac{2\pi}{\lambda}$ × पथान्तर | 1/2 | | | | $\Delta\phi = rac{2\pi}{\lambda}\Delta x$ | | | | | $\therefore \Delta x = \frac{\lambda}{8} \ (दिया गया है)$ | | | | | $\Delta \phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{8}$ | | | | | $\Delta \phi = \frac{\pi}{4}$ | 1/2 | | | | $I = 4I_{\circ} \cos^2\left(\frac{\phi}{2}\right)$ | 1/2 | | | | $I = 4I_{\circ} \cos^2\left(\frac{\pi}{8}\right)$ | 1/2 | 2 | | 19 | स्थिति का परिकलन 1½ | | _ | | | बनने वाले प्रतिबिम्ब की प्रकृति ½ | | | | | विरल से सघन माध्यम में प्रकाश का अपवर्तन | 1/2 | | | | $u=-\frac{R}{2}, n_1=1, n_2=1.5$ | | | | | $\frac{2}{R} + \frac{1.5}{v} = \frac{1.5-1}{R}$ $1.5 - 0.5 = 2$ | 1/2 | | | | $\frac{1.5}{v} = \frac{0.3}{R} - \frac{2}{R}$ $\frac{1.5}{R} = \frac{1.5}{R}$ | | | | | v R | | | | | v = - R
हवा में आभासी प्रतिबिम्ब R दूरी पर है | 1/2 1/2 | 2 | | 20 | कोणीय संवेग का परिकलन 2 | | | | | | | | | | $E_n = -\frac{13.6}{n^2}eV$ | 1/2 | | Page **5** of **20** | | _ | | |-----------------------|--------------------------------------|---| | | | | | | 1/2 | | | | 1/2 | | | | 1/2 | | | | | 2 | | 1 | | | | 1 | | | | | | | | ते घनमीटर (दिया है) | | | | (1411/10) | | | | | 1 | | | | | | | ′ गैलियम | 1 | 2 | | | | | | | | | | | | | | 1 | | | | 1 | | | | | 1/2 | | | | 1/2 | | | | | | | | 1/2 | | | | 1/2 | | | | /2 | | | | | | | | ते घनमीटर (दिया है)
गैलियम
1 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1/2 | Page 6 of 20 | $I = \frac{4}{4 + 0.13} = \frac{4}{4.13} A$ | 1/2 | | |---|-----|--| | I = 0.9A | | | | | | | | अथवा | | | | (b) (i) संबंध ज्ञात करना 1 (i) R' और R के बीच 1 (ii) v_a ' और v_a के बीच 1 (ii) यह पता लगाना कि क्या सभी मुक्त इलेक्ट्रॉन एक ही दिशा में गित कर रहे हैं 1 | | | | (i) $l' = 2l$ $Al = A'l' = तार का आयतन Al = A'(2l)$ | | | | $\frac{A}{2} = A'$ | | | | $R = \frac{\rho l}{A}$ | 1/2 | | | $R' = \frac{\rho l'}{A'}$ | | | | $R' = \frac{\rho(2l)}{A/2}$ | | | | $\frac{R'}{R} = 4$ | 1/2 | | | वैकल्पिक $R' = n^2 R$ | 1/2 | | | n=2 $R'=4R$ | 1/2 | | | (ii) $v_d = \frac{eE}{m} \tau$ | 1/2 | | | $v_d = \frac{eV}{ml}\tau$ | | | | $v_d' = \frac{eV}{ml'}\tau$ | | | Page 7 of 20 | | , | | | |----|---|-----|---| | | $\frac{\mathbf{v}_{\mathrm{d}}^{'}}{\mathbf{v}_{\mathrm{d}}} = \frac{l}{l'} = \frac{1}{2}$ | 1/2 | | | | (ii) नही | 1 | 3 | | | | | 3 | | 23 | a) चुम्बकीय आघूर्ण की परिभाषा 1 चुम्बकीय आघूर्ण का SI मात्रक ½ b) चुम्बकीय क्षेत्र को परिणाम को ज्ञात करना 1½ a) धारा रहित कुंडली के चुम्बकीय आघूर्ण को कुंडली से प्रवाहित धारा और कुंडली के क्षेत्रफल के गुणनफल से परिभाषित किया जाता है | 1 | | | | वैकल्पिक | | | | | $ec{M} = I ec{A}$ Am ² S.I. मात्रक है | 1/2 | | | | b) $\tau = \text{NIABsin}\theta$ | | | | | $\tau_1 = 0.12 = 60 \times 2 \times 1.5 \times 10^{-3} \times B \sin \theta$ $B \sin \theta = \frac{2}{3}$ | 1/2 | | | | BSING = $\frac{1}{3}$ | | | | | $\tau_2 = 0.05 = 60 \times 2 \times 1.5 \times 10^{-3} \times B \cos\theta$ | 1/2 | | | | $B\cos\theta = \frac{5}{18}$ | | | | | $B = \sqrt{B^2 \sin^2 \theta + B^2 \cos^2 \theta}$ | | | | | $= \sqrt{\left(\frac{2}{3}\right)^2 + \left(\frac{5}{18}\right)^2} = \frac{13}{18} T$ | 1/2 | 3 | | 24 | अन्योन्य प्रेरकत्व के लिए व्यंजक व्युत्पन्न करना 2
M ₂₁ = M ₁₂ दर्शाना 1 | | | | | | | | | | | | | | | 950 | 1 | | |----|---|-----------------|---| | | N ₂ turns | 1/2 | | | | मान लीजिए N_1 तथा N_2 क्रमशः कुंडलियों S_1 और S_2 में फेरों की कुल संख्या है जब S_2 में धारा I_2 प्रवाहित करते हैं तो यह S_1 में एक चुम्बकीय फ्लक्स स्थापित करती है $N_1\phi_1=M_{12}I_2$ (i) | 1/2 | | | | $N_{1}\phi_{1} = (n_{1}l)(\pi r_{1}^{2})(\mu_{0}n_{2}I_{2})$ $N_{1}\phi_{1} = \mu_{0}n_{1}n_{2}\pi r_{1}^{2}lI_{2}(ii)$ | 1/2 | | | | (i) तथा (ii) से | 1/2 | | | | $M_{12} = \mu_0 n_1 n_2 \pi r_1^2 l$ | 72 | | | | विपरीत स्थिति में S1 से एक विद्युत धारा I1 प्रवाहित की जाती है , S2 से फ्लक्स – बंधता
है | | | | | $ \begin{array}{c} $ | 1/2 | | | | $N_2 \phi_2 = (n_2 l) (\pi r_1^2) (\mu_0 n_1 I_1)$ (iv) | | | | | (iii) और (iv) से | | | | | $\mathbf{M}_{21} = \mu_0 \mathbf{n}_1 \mathbf{n}_2 \pi \mathbf{r}_1^2 \mathbf{l}$ $\mathbf{M}_{21} = \mathbf{M}_{21} \mathbf{n}_1 \mathbf{n}_2 \mathbf{n}_2 \mathbf{r}_1^2 \mathbf{l}$ | 1/2 | | | 25 | $\therefore M_{12} = M_{21}$ | | 3 | | 25 | a) दर्शाइए कि (I _c + I _d) का मान प्रत्येक बिन्दु पर समान रहता है 2
b) किरखोफ के प्रथम नियम का धारिता की प्रत्येक प्लेट पर व्याख्या 1 | | | | | a) ∵ कुल धारा I = I _c + I _d | | | | | संधारित्र के बाहर
I _d =0 | 1/2 | | | | $\therefore = _{c}$ | / 2 | | | | संधारित्र के अन्दर | | | | | $I_c = 0$ | 1/ ₂ | | | | $\therefore \ \ I = I_{d} = \ \varepsilon_0 \frac{d\phi_{\scriptscriptstyle E}}{dt}$ | 1/2 | | | L | | l | | Page 9 of 20 | $= \varepsilon_0 \frac{d}{dt} [EA]$ $= \varepsilon_0 \frac{d}{dt} \left[\frac{\sigma}{\sigma_0} A \right]$ $= \frac{\varepsilon_0}{\varepsilon_0} A \frac{d}{dt} \left[\frac{Q}{A} \right]$ $= \frac{dQ}{\varepsilon_0} A \frac{d}{dt} \left[\frac{Q}{A} \right]$ $= \frac{dQ}{dt} = I_c$ $\frac{d}{dt} \frac{d}{dt} = I_c$ $\frac{d}{dt} \frac{d}{dt} \frac{d}{dt} = I_c$ $\frac{d}{dt} \frac{d}{dt} \frac{d}{dt} = I_c$ $\frac{d}{dt} \frac{d}{dt} \frac{d}{dt} = I_c$ $= \frac{d}{dt} \frac{d}{dt} \frac{d}{dt} \frac{d}{dt} = I_c$ $= \frac{d}{dt} \frac{d}{dt} \frac{d}{dt} \frac{d}{dt} = I_c$ $= \frac{d}{dt} \frac{d}{dt} \frac{d}{dt} = I_c$ $= \frac{d}{dt} \frac{d}{dt} \frac{d}{dt} = I_c$ $= $ | .1 | | | |---|---|-----|---| | $=\frac{\varepsilon_0}{\varepsilon_0}A\frac{d}{dt}\left[\frac{Q}{A}\right]$ $=\frac{dQ}{dt}=I_c$ $\frac{d\mathbf{o}\mathbf{e}\mathbf{d}\mathbf{v}}{dt}=I_c$ $\frac{d\mathbf{o}\mathbf{v}}{dt}=I_c+I_d$ $\frac{d\mathbf{v}}{dt}=I_c+I_d$ $\frac{1}{d}=0$ $\frac{1}{d}=I_c$ $\frac{1}{d}=\frac{1}{d}=\frac{1}{d}$ $\frac{d}{d}=\frac{1}{d}$ $=\frac{d}{d}\frac{Q}{dt}=I_c$ $\frac{d}{d}\frac{Q}{dt}=I_c$ $\frac{d}{d}\frac{Q}{dt}=I_c$ $\frac{d}{d}\frac{Q}{dt}=I_c$ $\frac{d}{d}\frac{Q}{dt}=I_c$ $\frac{d}{d}\frac{Q}{dt}=I_c$ $\frac{d}{d}\frac{Q}{dt}=I_c$ $\frac{d}{d}\frac{Q}{dt}=I_c$
$\frac{1}{d}\frac{Q}{dt}=I_c$ $\frac{1}{d}\frac{Q}{dt$ | $= \varepsilon_0 \frac{d}{dt} [EA]$ | | | | $I = \frac{dQ}{dt} = I_c$ I_c $I_c = I_c + I_d$ $I_d = 0$ I_d$ I | | | | | केकिल्पेक $ \frac{d}{d}$ किल्पेक $ \frac{d}{d}$ कुल धारा $I = I_c + I_d$ संधारित्र के बाहर $I_d = 0$ $ \therefore I = I_c$ संधारित्र के अन्दर $I_c = 0$ $ I = I_d = \varepsilon_0 \frac{d \phi_E}{dt}$ $ I = \frac{dQ}{dt} = I_c $ इसिलिए $I_c + I_d$ का मान परिपथ के सभी बिन्दुओं पर समान है b) हाँ संधारित्र में प्रवेश करने वाली धारा (I_c) और संधारित्र के प्लेटों के बीच विस्थापन धारा (I_d) है $ \therefore I_c = I_d $ | | | | | उन्हों से प्रविश्व करने वाली धारा (I_c) और संधारित्र के बीच विस्थापन धारा (I_d) है $ \vdots I_c = I_d $ | $I = \frac{dQ}{dt} = I_c$ | | | | संधारित्र के बाहर $ \begin{matrix} l_d = 0 \\ \therefore l = l_c \\ \text{संधारित्र के अन्दर} \\ l_c = 0 \end{matrix} $ | वैकल्पिक | 1/2 | | | $\begin{split} & _{d} = 0 \\ & \therefore _{c} = _{c} \\ & \text{संधारित्र के अन्दर} \\ & _{c} = 0 \\ & _{d} = _{d} = _{d} \frac{d\phi_{E}}{dt} \\ & = _{d} = _{d} \frac{dQ}{dt} \left[\frac{Q}{\varepsilon_{0}} \right] \\ & _{d} = _{d} = _{d} \frac{dQ}{dt} = _{d} = _{d} \\ & = _{d} = _{d} \\ & = _{d} =$ | | | | | $\begin{array}{c} \vdots \ = _{c} \\ \text{संधारित्र के अन्दर} \\ _{c} = 0 \\ = _{d} = \varepsilon_{0} \frac{d\phi_{E}}{dt} \\ = \varepsilon_{0} \frac{d}{dt} \left[\frac{Q}{\varepsilon_{0}} \right] \\ _{I} = \frac{dQ}{dt} = _{c} \\ \text{इसिलए } _{c} + _{d} \text{ का मान परिपथ के सभी बिन्दुओं पर समान है} \\ _{b} = _{d} _{$ | संधारित्र के बाहर | | | | $\begin{array}{c} \therefore I = I_c \\ \text{संधारित्र के अन्दर} \\ I_c = 0 \\ I = I_d = \varepsilon_0 \frac{d\phi_E}{dt} \\ = \varepsilon_0 \frac{d}{dt} \left[\frac{Q}{\varepsilon_0} \right] \\ I = \frac{dQ}{dt} = I_c \\ \text{इसिलए } I_c + I_d \text{ का मान urrule ab सभी बिन्दुओं urrule } \tilde{\tau} \\ \text{b) } \tilde{\tau} \\ \text{संधारित्र में प्रवेश करने वाली धारा } (I_c) और संधारित्र के प्लेटों के बीच विस्थापन धारा } (I_d) \\ \vdots \\ \tilde{\tau} \\ I_c = I_d \end{array}$ | - | 1/2 | | | $\begin{split} & I_c = 0 \\ & I = I_d = \varepsilon_0 \frac{d\phi_E}{dt} \\ & = \varepsilon_0 \frac{d}{dt} \left[\frac{Q}{\varepsilon_0} \right] \\ & = \frac{dQ}{dt} = I_c \frac{dQ}{$ | • | 72 | | | $I = I_{d} = \varepsilon_{0} \frac{d\phi_{E}}{dt}$ $= \varepsilon_{0} \frac{d}{dt} \left[\frac{Q}{\varepsilon_{0}} \right]$ $I = \frac{dQ}{dt} = I_{c}$ $\exists \text{ संसिल्ए } I_{c} + I_{d} \text{ का मान urture } \hat{\sigma} \text{ सभी बिन्दुओं ut समान } \hat{\sigma}$ $\dot{\theta}$ | · | | | | $= \varepsilon_0 \frac{d}{dt} \left[\frac{Q}{\varepsilon_0} \right]$ $I = \frac{dQ}{dt} = I_c$ $\exists \text{ Hence } I_c + I_d for the proof of proof$ | | 1/2 | | | $I = \frac{dQ}{dt} = I_c$ | $I = I_d = \varepsilon_0 \frac{\alpha \varphi_E}{dt}$ | | | | इसलिए $I_c + I_d$ का मान परिपथ के सभी बिन्दुओं पर समान है
b) हाँ संधारित्र में प्रवेश करने वाली धारा (I_c) और संधारित्र के प्लेटों के बीच विस्थापन धारा (I_d) है $:: I_c = I_d $ | $= \varepsilon_0 \frac{d}{dt} \left[\frac{Q}{\varepsilon_0} \right]$ | 1/2 | | | इसलिए $I_c + I_d$ का मान परिपथ के सभी बिन्दुओं पर समान है
b) हाँ संधारित्र में प्रवेश करने वाली धारा (I_c) और संधारित्र के प्लेटों के बीच विस्थापन धारा (I_d) है $:: I_c = I_d $ | $I = \frac{dQ}{dQ} = I$ | | | | b) हाँ संधारित्र में प्रवेश करने वाली धारा (I_c) और संधारित्र के प्लेटों के बीच विस्थापन धारा (I_d) है $\because I_c = I_d$ | dt ^{-c} | 1/2 | | | संधारित्र में प्रवेश करने वाली धारा (I_c) और संधारित्र के प्लेटों के बीच विस्थापन धारा (I_d) है $\because I_c = I_d$ | इसलिए Ic + Id का मान परिपथ के सभी बिन्दुओं पर समान है | | | | संधारित्र में प्रवेश करने वाली धारा (I_c) और संधारित्र के प्लेटों के बीच विस्थापन धारा (I_d) है $\because I_c = I_d$ | b) ਗੱ | | | | $\Gamma_c = I_d$ । | | | | | | | | | | जो कि किरखोफ संधि नियम को मान्य करता है | | 1 | | | | जो कि किरखोफ संधि नियम को मान्य करता है | • | 3 | Page 11 of 20 Page 12 of 20 | | विखण्डन प्रक्रम में एक अत्यधिक भारी नाभिक जब दो हल्के नाभिक में विघटित होता है | | | |----|---|-----|---| | | , इस प्रक्रिया में ऊर्जा विमुक्त होती है जिसके परिणाम स्वरूप बंधन ऊर्जा प्रति | | | | | न्युक्लिऑन बढ़ती है। | 1/2 | | | | b) $\Delta m = (m_p + m_n) - m_d$ | 1/2 | | | | Δm = (1.007277 + 1.008665) – 2.013553 | | | | | $\Delta m = 0.002389 \text{ u}$ | 1/2 | | | | विमुक्त ऊर्जा = Δm × c ² | | | | | विमुक्त ऊर्जा = 0.002389 × 931.5 | | | | | = 2.2253 MeV ≈2.22 MeV | 1/2 | 3 | | | खण्ड-घ | | | | 29 | i) (C) | 1 | | | | | 1 | | | | | 1 | | | | ii) (A) उत्तल दर्पण के लिए आवर्धन सदैव ऋणात्मक होता है | | | | | iii) (B) 2f | | | | | अथवा | | | | | (B) 12 cm | | | | | iv) (C) $\sqrt{X_1 X_2}$ | _ | | | | $(\mathcal{C})^{-1}\sqrt{N_1N_2}$ | 1 | 4 | | 30 | | | | | | i) (B) 5mC | | | | | ii) (A) zero | 1 | | | | iii) (D) [$M^0L^0TA^0$] | 1 | | | | iv) (A) $\frac{1}{2\sqrt{e}}mA$ | 1 | | | | | | | | | प्रत्येक छात्र को 1 अंक प्रश्न के इस भाग के लिए प्रदान करें यदि छात्र ने इस प्रश्न के दूसरे | | | | | भागों को हल करने का प्रयास किया है | | | | | अथवा
(B) 0.5 m A | | | | | (B) 0.5 mA | 1 | | | | | 1 | 4 | | | खण्ड – ङ | | | | | a) | | | | | | | | | 31 | i) 1) कलासंबद्ध स्रोत की परिभाषा 1 | | | | | सतत व्यतिकरण पैटर्न के लिए कला संबद्ध स्रोतों का आवश्यक होना 1 | | | | | 2) व्याख्या | | | | | ii) 1) निकटवर्ती चमकीली व्यतिकरण फ्रिंजों के बीच की दूरी का परिकलन 1
2) कोणीय चौड़ाई का परिकलन 1 | | | | | ८) पर्राणीय पाठाइ पर्रा पारपरशंग | | | Page 13 of 20 | a) i) 1) यदि दो स्रोत कलासंबद्ध है तो किसी भी बिन्दु पर कलांतर समय के साथ नहीं
बदलेगा | 1 | |---|---------| | <u>वैकल्पिक</u> | | | 1) दो स्रोत कलासंबद्ध कहे जाते हैं यदि वे लगातार समान आवृत्ति / तरंगदैर्घ्य और शून्य
अथवा सतत कलांतर के साथ प्रकाश उत्सर्जित करते हैं | | | सतत कलांतर पाने के लिए कलासंबद्ध स्रोतों की आवश्यकता होती है
2) दो स्वतंत्र स्रोत कभी भी कला संबद्ध नहीं होंगे , क्यूंकि इनके बीच कलांतर सतत | 1 | | नहीं होता है
 ii) 1) निकटवर्ती चमकीली फ्रिंज के बीच की दूरी = फ्रिंज चौड़ाई | 1 | | $\beta = \frac{\lambda D}{d}$ | 1/2 | | $=\frac{600\times10^{-9}\times1.2}{0.1\times10^{-3}}=7.2mm$ | 1/2 | | $\theta = \frac{\lambda}{d}$ | 1/2 | | $= \frac{600 \times 10^{-9}}{0.1 \times 10^{-3}} = 6 \times 10^{-3} \text{rad} = 0.34^{\circ}$ | 1/2 | | यदि छात्र उत्तर को सिर्फ रेडियन में लिखता है तो पूरे अंक दिए जायें
अथवा | | | b) i) तरंगाग्र की परिभाषा 1 अपितत और अपवर्तित तरंगाग्रों का आरेख खींचना 1/2+1/2 ii) किरण आरेख खींचना 1 | | | अंतिम प्रतिबिम्ब की स्थिति प्राप्त करना 2 | | | b) i) समान कला में दोलन करते ऐसे सभी बिन्दुओं का बिन्दु पथ तरंगाग्र कहलाता है | 1 | | आर्थातत
सम्पत्त तरंगाव
• F | 1/2+1/2 | | \vdash | | | f त्रिज्या का गोलीय तरंगाग्र | | Page **14** of **20** Page 15 of 20 | $U_i = \frac{Kq_1q_2}{}$ | 1/2 | | |--|-----|--| | r_{12} | | | | क्षेत्र की उपस्थिति में स्थिर विद्युत ऊर्जा | | | | $U_{f} = \frac{Kq_{1}q_{2}}{r} + q_{1}V(r_{1}) + q_{2}V(r_{2})$ | 1/2 | | | $\Delta U = U_f - U_i = q_1 V(r_1) + q_2 V(r_2)$ | ,2 | | | | | | | $\Delta U = \frac{5 \times 10^{-6} \times 3 \times 10^{5}}{3 \times 10^{-2}} - \frac{1 \times 10^{-6} \times 3 \times 10^{5}}{3 \times 10^{-2}}$ | 1/2 | | | GA10 | | | | = 40 J | 1/2 | | | ii) 1) $C = \frac{Q}{V} = \frac{80}{16} = 5\mu F$ | 1 | | | V 16 | ' | | | 2) $C' = KC$ | 1/2 | | | $= 3 \times 5 \mu F = 15 \mu F$ | | | | $V' = \frac{Q}{C'} = \frac{80\mu\text{C}}{15\mu\text{F}} = 5.33V$ | 1.0 | | | $V - \frac{15\mu F}{C'} - \frac{3.33V}{15\mu F}$ | 1/2 | | | 3) नहीं , | 1/2 | | | निकाय की धारिता इसकी ज्यामिती पर निर्भर करती है | 1/2 | | | अथवा | | | | b) i) विद्युत क्षेत्रों के परिणाम की तुलना 2 | | | | ii) आवेश पर किये गये कार्य का परिकलन 3 | | | | | | | | A के लिए कुल आवेश = B के लिए कुल आवेश = C के लिए कुल आवेश = +4q | 1 | | | ब्यूंकि , E = $\frac{kQ}{r^2}$ | | | | चूँकि Q = 4q तथा r = 3R | | | | $E = \frac{k(4q)}{QR^2} = \frac{4kq}{QR^2}$ | | | | | 1/2 | | | $\therefore E_A = E_B = E_C$ | 1/2 | | | ii) $V_c = \left[\frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right]$ | 72 | | | | 1 | | | = 0 | | | | $V_A = \left\lceil rac{k imes 6 imes 10^{-6}}{15 imes 10^{-2}} - rac{k imes 6 imes 10^{-6}}{5 imes 10^{-2}} ight ceil$ | | | | | 1/2 | | | $k \times 6 \times 10^{-6}$ $\lceil 1 - 3 \rceil$ | | | | $= \frac{k \times 6 \times 10^{-6}}{10^{-2}} \left[\frac{1-3}{15} \right]$ | | | |] + | | | Page **16** of **20** | $ = \frac{9 \times 10^{\circ} \times 6 \times 10^{\circ} \times 2}{15 \times 10^{\circ}} $ $ = -7.2 \times 10^{5} \text{ V} $ $ \text{W} = q[V_{A} - V_{c}] $ $ = 5 \times 10^{-6} \left[-7.2 \times 10^{5} - 0 \right] $ $ \text{W} = -3.6 \text{ J} $ $ 33 $ a) $ \text{i)} \left[\text{Aerg PQ} \text{और R VT } \frac{1}{2} \text{ we flut } \text{ Bit } \text{ Air } \text{ Bit } \text{ Bit } \text{ Bit } \text{ Air } \text{ Bit Bit $ | | 0 109 6 10-6 0 | | |
---|----|--|-----|---| | | | $=-\frac{9\times10^{3}\times6\times10^{3}\times2}{15\cdot10^{-2}}$ | | | | $W = q[V_A - V_c] \\ = 5 \times 10^{-6} \Big[-7.2 \times 10^5 - 0 \Big] $ \(\frac{\gamma_2}{\gamma_2} \) | | | | | | | | | 1/2 | | | 33 a) i) बिन्दु P.Q. और R पर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए | | | | | | 33 a) i) बिन्दु P,Q और R पर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ चुम्बकीय क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ ii) पाश के चुम्बकीय क्षेत्र का दर्शाना 2 i) बिन्दु P के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु Q के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु R के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की ओर लग रहा है चुम्बकीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की ओर लग रहा है चुम्बकीय क्षेत्र के आपेक्षिक परिणाम क्यूकि B α $\frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है $\frac{1}{2}$ Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है $\frac{1}{2}$ (Bo< Bp< Br/>B) ii) यदि वृत्ताकार पाश की त्रिज्या r है और पाश में धारा r है तब r | | $= 5 \times 10^{-6} \left[-7.2 \times 10^5 - 0 \right]$ | 72 | 5 | | a) i) बिन्दु P,Q और R पर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए ½+½+½ graafly क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष ½+½+½ ii) पाश के चुम्बकीय आधूर्ण को दर्शाना 2 i) बिन्दु P के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु Q के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु R के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की ओर लग रहा है चुम्बकीय क्षेत्र के आपेक्षिक परिणाम क्यूंकि B α 1/r अत: P बिन्दु के पास B का परिमाण कम है Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है (Bq< Bp< Bk) ii) यदि वृत्ताकार पाश की त्रिज्या r है और पाश में धारा । है तब B = μο 1/2 | | W = -3.6 J | 1/2 | | |) बिन्दु P,Q और R पर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए $\frac{1}{2}+\frac{1}{2}+\frac{1}{2}$ चुम्बकीय क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष $\frac{1}{2}+\frac{1}{2}+\frac{1}{2}$ ii) पाश के चुम्बकीय आघूर्ण को दर्शाना 2 1) बिन्दु P के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु Q के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु R के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की ओर लग रहा है चुम्बकीय क्षेत्र के आपेक्षिक परिणाम व्यूकि B α $\frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है (Bq< Bp< Bp) ii) यदि वृत्ताकार पाश की त्रिज्या r है और पाश में धारा l है तब $B = \frac{\mu_0 I}{2r} or I = \frac{2Br}{\mu_0}$ $A = \pi r^2 \qquad r = \sqrt{\frac{A}{\pi}}$ | | | 72 | | | i) बिन्दु P,Q और R पर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए $\frac{1}{2}+\frac{1}{2}+\frac{1}{2}$ चुम्बकीय क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष $\frac{1}{2}+\frac{1}{2}+\frac{1}{2}$ ii) पाश के चुम्बकीय आघूर्ण को दर्शाना 2 i) बिन्दु P के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु Q के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु R के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की और लग रहा है चुम्बकीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की और लग रहा है चुम्बकीय क्षेत्र के आपेक्षिक परिणाम क्यूंकि B α $\frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है $\frac{1}{2}$ NG: P बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है $\frac{1}{2}$ R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है $\frac{1}{2}$ MG: B $\frac{1}{2}$ or $\frac{1}{2}$ $\frac{2}{4}$ $\frac{1}{2}$ \frac | 33 | a) | | | | चुम्बर्कीय क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष $\frac{1}{12} + \frac{1}{12} + \frac{1}{12}$ i) पाश के चुम्बर्कीय आधूर्ण को दर्शाना $\frac{1}{2}$ $\frac{1}{12}$ i) पाश के चुम्बर्कीय अधूर्ण को दर्शाना $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ i) बिन्दु P के पास चुम्बर्कीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है P बिन्दु P के पास चुम्बर्कीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की ओर लग रहा है P चुम्बर्कीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की ओर लग रहा है P चुम्बर्कीय क्षेत्र के आपेक्षिक परिणाम क्यूंकि P विन्दु के पास P बिन्दु के सापेक्ष P का परिमाण कम है P विन्दु के पास P बिन्दु के सापेक्ष P का परिमाण अधिक है P विन्दु P के पास P बिन्दु के सापेक्ष P का परिमाण अधिक है P विन्दु P के पास P बिन्दु के सापेक्ष P का परिमाण अधिक है P विन्दु P के पास P बिन्दु के सापेक्ष P का परिमाण अधिक है P विन्दु P के पास P बिन्दु P के पारेम P धारा P धारा P है तब P P विन्दु P | | | | | | i) पाश के चुम्बकीय आघूर्ण को दर्शाना 2 i) बिन्दु P के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु Q के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु R के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की ओर लग रहा है चुम्बकीय क्षेत्र तल के
अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की ओर लग रहा है चुम्बकीय क्षेत्र के आपेक्षिक परिणाम क्यूंकि B α $\frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है $\frac{1}{2}$ अतः P बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है $\frac{1}{2}$ (Bac Bp < Bp) ii) यदि वृत्ताकार पाश की त्रिज्या r है और पाश में धारा l है तब l | | | | | | i) बिन्दु P के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु Q के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु R के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की और लग रहा है चुम्बकीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की और लग रहा है चुम्बकीय क्षेत्र के आपेक्षिक परिणाम क्यूंकि B $\alpha \frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है $\frac{1}{2}$ Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है $\frac{1}{2}$ (Bq- $\frac{1}{2}$ Branch Respondent of the proof | | | | | | चुम्बनीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु Q के पास चुम्बनीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की $\frac{1}{2}$ ओर लग रहा है बिन्दु R के पास चुम्बनीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की $\frac{1}{2}$ ओर लग रहा है चुम्बनीय क्षेत्र के आपेक्षिक परिणाम क्यूंकि B α $\frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है $\frac{1}{2}$ Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है $\frac{1}{2}$ R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है $\frac{1}{2}$ (Ba $= \frac{\mu_0 I}{2r}$ or $I = \frac{2Br}{\mu_0}$ $= \frac{\Lambda}{\pi}$ $= \frac{\Lambda}{r}$ $= \frac{\Lambda}{\pi}$ | | ॥) पाश क चुम्बकाय आधूण का दशाना 2 | | | | चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु Q के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की $\frac{1}{2}$ ओर लग रहा है बिन्दु R के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की $\frac{1}{2}$ ओर लग रहा है चुम्बकीय क्षेत्र के आपेक्षिक परिणाम क्यूंकि B α $\frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है $\frac{1}{2}$ Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है $\frac{1}{2}$ R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है $\frac{1}{2}$ (Ba $= \pi r^2$ or $1 = \frac{2Br}{\mu_0}$ A $= \pi r^2$ $= \sqrt{\frac{A}{\pi}}$ | | | | | | चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु Q के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की $\frac{1}{2}$ ओर लग रहा है बिन्दु R के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की $\frac{1}{2}$ ओर लग रहा है चुम्बकीय क्षेत्र के आपेक्षिक परिणाम क्यूंकि B α $\frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है $\frac{1}{2}$ Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है $\frac{1}{2}$ R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है $\frac{1}{2}$ (Ba $= \pi r^2$ or $1 = \frac{2Br}{\mu_0}$ A $= \pi r^2$ $= \sqrt{\frac{A}{\pi}}$ | | | | | | चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु Q के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की $\frac{1}{2}$ ओर लग रहा है बिन्दु R के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की $\frac{1}{2}$ ओर लग रहा है चुम्बकीय क्षेत्र के आपेक्षिक परिणाम क्यूंकि B α $\frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है $\frac{1}{2}$ Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है $\frac{1}{2}$ R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है $\frac{1}{2}$ (Ba $= \pi r^2$ or $1 = \frac{2Br}{\mu_0}$ A $= \pi r^2$ $= \sqrt{\frac{A}{\pi}}$ | | | | | | की ओर लग रहा है बिन्दु Q के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की और लग रहा है बिन्दु R के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की और लग रहा है चुम्बकीय क्षेत्र के आपेक्षिक परिणाम क्यूंकि B α $\frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है $\frac{1}{r}$ Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है $\frac{1}{r}$ R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है $\frac{1}{r}$ (Back Because of the point th | | · • | | | | बिन्दु Q के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु R के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की अर लग रहा है चुम्बकीय क्षेत्र के आपेक्षिक परिणाम क्यूंकि B α $\frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है $\frac{1}{2}$ Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है $\frac{1}{2}$ R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है $\frac{1}{2}$ (Back Bpc Bpc) $\frac{1}{2}$ (Back Bpc Bpc) $\frac{1}{2}$ (Back Bpc Bpc) $\frac{1}{2}$ | | | 1/2 | | | चुम्बर्कीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की ओर लग रहा है बिन्दु R के पास चुम्बर्कीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की और लग रहा है चुम्बर्कीय क्षेत्र के आपेक्षिक परिणाम क्यूंकि B $\alpha \frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है $\frac{1}{2}$ Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है $\frac{1}{2}$ R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है $\frac{1}{2}$ (BQ< BP <br) <math="" ii)="" की="" त्रिज्या="" पाश="" यदि="" वृत्ताकार="">r है और पाश में धारा l है तब l l l l l l l l l l</br)> | | | | | | ओर लग रहा है बिन्दु R के पास चुम्बकीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की और लग रहा है चुम्बकीय क्षेत्र के आपेक्षिक परिणाम क्यूंकि B $\alpha \frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है $\frac{1}{2}$ Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है $\frac{1}{2}$ R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है $\frac{1}{2}$ (BQ $<$ BP $<$ BR) ii) यदि वृत्ताकार पाश की त्रिज्या r है और पाश में धारा l है तब l | | | | | | बिन्दु R के पास पुम्बिन के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की ओर लग रहा है चुम्बकीय क्षेत्र के आपेक्षिक परिणाम क्यूंकि B $\alpha \frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है $\frac{1}{2}$ Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है $\frac{1}{2}$ R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है $\frac{1}{2}$ (BQ $<$ BP $<$ BR) ii) यदि वृत्ताकार पाश की त्रिज्या r है और पाश में धारा l है तब l | | | 1/2 | | | चुम्बकीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की ओर लग रहा है चुम्बकीय क्षेत्र के आपेक्षिक परिणाम क्यूंकि B $\alpha \frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है $\frac{1}{2}$ Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है $\frac{1}{2}$ R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है $\frac{1}{2}$ (BQ $<$ BP $<$ BR) ii) यदि वृत्ताकार पाश की त्रिज्या r है और पाश में धारा l है तब l | | · · | | | | और लग रहा है चुम्बकीय क्षेत्र के आपेक्षिक परिणाम क्यूंकि B $\alpha \frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है ½ Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है ½ R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है ½ (BQ< BP< BR) ii) यदि वृत्ताकार पाश की त्रिज्या r है और पाश में धारा l है तब $B = \frac{\mu_0 I}{2r}$ or $I = \frac{2Br}{\mu_0}$ ½ $\frac{A}{\pi}$ $\frac{A}{\pi}$ $\frac{A}{\pi}$ | | | | | | चुम्बकीय क्षेत्र के आपेक्षिक परिणाम क्यूंकि B $\alpha \frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है 1/2 Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है 1/2 R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है 1/2 (BQ< BP< BR) ii) यदि वृत्ताकार पाश की त्रिज्या r है और पाश में धारा l है तब l | | | 1/2 | | | क्यूंकि B $\alpha \frac{1}{r}$ अतः P बिन्दु के पास B का परिमाण कम है ½ Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है ½ R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है ½ ½ (BQ< Bp <bp) <math="" ="">\frac{\mu_0}{2r} or $I = \frac{2Br}{\mu_0}$ $\frac{2Br}{\mu_0}$ $\frac{4}{7}$ $\frac{4}{$</bp)> | | | | | | अतः $P \text{ बिन्दु के पास B का परिमाण कम है } 1/2$ $Q \text{ बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है } 1/2$ $R \text{ बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है } 1/2$ $(B_Q < B_P < B_R)$ $ii) \text{ यदि वृत्ताकार पाश की त्रिज्या r है और पाश में धारा I है तब B = \frac{\mu_0 I}{2r} \text{or } I = \frac{2Br}{\mu_0} A = \pi r^2 \qquad r = \sqrt{\frac{A}{\pi}} 1/2$ | | चुम्बकीय क्षेत्र के आपेक्षिक परिणाम | | | | अतः $P \text{ बिन्दु के पास B का परिमाण कम है } 1/2$ $Q \text{ बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है } 1/2$ $R \text{ बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है } 1/2$ $(B_Q < B_P < B_R)$ $ii) \text{ यदि वृत्ताकार पाश की त्रिज्या r है और पाश में धारा I है तब B = \frac{\mu_0 I}{2r} \text{or } I = \frac{2Br}{\mu_0} A = \pi r^2 \qquad r = \sqrt{\frac{A}{\pi}} 1/2$ | | क्यंकि в $\alpha^{\frac{1}{2}}$ | | | | P बिन्दु के पास B का परिमाण कम है $\frac{1}{2}$ Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है $\frac{1}{2}$ R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है $\frac{1}{2}$ (BQ< BP <br)< td=""> $\frac{1}{2}$ ii) यदि वृत्ताकार पाश की त्रिज्या r है और पाश में धारा I है तब $\frac{1}{2}$ $B = \frac{\mu_0 I}{2r}$ or $I = \frac{2Br}{\mu_0}$ $\frac{1}{2}$ $A = \pi r^2$ $r = \sqrt{\frac{A}{\pi}}$</br)<> | | r | | | | Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है $\frac{1}{2}$ R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है $\frac{1}{2}$ (BQ< BP <br) <math="" ii)="" r="" और="" की="" तब="" त्रिज्या="" धारा="" पाश="" में="" यदि="" वृत्ताकार="" है="" ।="">B = \frac{\mu_0 I}{2r} or $I = \frac{2Br}{\mu_0}$ $\frac{1}{2}$ $A = \pi r^2$ $r = \sqrt{\frac{A}{\pi}}$</br)> | | _ | | | | R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है $\mu_{Q} < \mu_{P} < \mu_{R} \mu$ | | | 1/2 | | | (B _Q < B _P <b<sub>R) ii) यदि वृत्ताकार पाश की त्रिज्या r है और पाश में धारा l है तब $B = \frac{\mu_0 I}{2r} or I = \frac{2Br}{\mu_0}$ $A = \pi r^2 \qquad r = \sqrt{\frac{A}{\pi}}$</b<sub> | |
| 1/2 | | | ii) यदि वृत्ताकार पाश की त्रिज्या r है और पाश में धारा l है तब $B = \frac{\mu_0 I}{2r} or I = \frac{2Br}{\mu_0}$ $A = \pi r^2 \qquad r = \sqrt{\frac{A}{\pi}}$ | | | 1/2 | | | $B = \frac{\mu_0 I}{2r} \text{or} I = \frac{2Br}{\mu_0}$ $A = \pi r^2 \qquad r = \sqrt{\frac{A}{\pi}}$ | | $(B_Q < B_P < B_R)$ | | | | $B = \frac{\mu_0 I}{2r} \text{or} I = \frac{2Br}{\mu_0}$ $A = \pi r^2 \qquad r = \sqrt{\frac{A}{\pi}}$ | | | | | | $A = \pi r^2 \qquad r = \sqrt{\frac{A}{\pi}}$ | | | | | | $A = \pi r^2 \qquad r = \sqrt{\frac{A}{\pi}}$ | | $B = \frac{\mu_0 I}{r}$ or $I = \frac{2Br}{r}$ | 1/2 | | | | | $2r$ μ_0 | | | | | | $\Lambda = -r^2$ $r = \sqrt{A}$ | | | | | | $A - M = \sqrt{\frac{\pi}{\pi}}$ | 1/2 | | | M = IA | | M = IA | | | Page 17 of 20 | 2Pr | 1/2 | |--|-----| | $=\frac{2Br}{\mu_0}A$ | 72 | | | | | $=\frac{2BA}{\mu_0}\sqrt{\frac{A}{\pi}}$ | 1/2 | | अथवा | | | | | | b) | | | i) बल आघूर्ण का व्यंजक व्युत्पन्न करना 3 | | | i) बल आघूर्ण का व्यंजक व्युत्पन्न करना 3
ii) 1) त्रिज्या में परिवर्तन को ज्ञात करना 1 | | | 2) परिक्रमण के आवर्तकाल में परिवर्तन को ज्ञात करना 1 | | | | | | | | | | | | (i) | | | $\wedge^{\mathbf{F}_2}$ | | | | | | | 1/2 | | a/2 sin 0 B | ,,, | | a/2 m | | | | | | ↓ | | | ř, | | | आयताकार कुंडली जिनकी भुजा a और b है , दोनों भुजा पर लगने वाले बल | | | $ec{F_1}$ और $ec{F_2}$ है | 1 | | $\left \vec{F}_1 \right = \left \vec{F}_2 \right = I b B$ (b = भुजा की लंबाई) | ' | | लगने वाले बलों से बलयुग्म बनता है पाश पर बल आघूर्ण का परिणाम है – | 1/2 | | $\tau = F_1 \frac{a}{2} \sin \theta + F_2 \frac{a}{2} \sin \theta$ | | | $= I a b B \sin \theta$ | 1/2 | | $=IAB\sin\theta$ | 1/2 | | $ec{ au} = I \! ec{A} imes \! ec{B}$ | '- | | | | | | | | | 1 | | $r \alpha \sqrt{K}$ | | | |---|-----|---| | $\frac{r'}{r} = \frac{\sqrt{K/2}}{\sqrt{K}} = \frac{1}{\sqrt{2}}$ | | | | $r' = \frac{r}{\sqrt{2}}$ | 1/2 | | | $T = \frac{\sqrt{2}}{2\pi m}$ | 1/2 | | | qB आवर्तकाल गतिज्ञ ऊर्जा पर निर्भर नहीं करता है | 72 | | | ः आवर्तकाल नहीं बदलेगा | 1/2 | 5 | ## Marking Scheme Strictly Confidential ## (For Internal and Restricted use only) Senior School Certificate Examination, 2025 SUBJECT NAME PHYSICS (PAPER CODE 55/1/3) ## **General Instructions: -** | 331. | | |----------|--| | 1 | You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. | | 2 | "Evaluation policy is a confidential policy as it is related to the confidentiality of the | | | examinations conducted, Evaluation done and several other aspects. Its' leakage to | | | public in any manner could lead to derailment of the examination system and affect | | | the life and future of millions of candidates. Sharing this policy/document to | | | anyone, publishing in any magazine and printing in News Paper/Website etc may | | | invite action under various rules of the Board and IPC." | | 3 | Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking | | | Scheme should be strictly adhered to and religiously followed. However, while | | | evaluating, answers which are based on latest information or knowledge and/or are | | | innovative, they may be assessed for their correctness otherwise and due marks be | | | awarded to them. In class-X, while evaluating two competency-based questions, | | | please try to understand given answer and even if reply is not from marking scheme | | | but correct competency is enumerated by the candidate, due marks should be | | | awarded. | | 4 | The Marking scheme carries only suggested value points for the answers | | | These are in the nature of Guidelines only and do not constitute the complete answer. The | | | students can have their own expression and if the expression is correct, the due marks | | | should be awarded accordingly. | | 5 | The Head-Examiner must go through the first five answer books evaluated by each | | | evaluator on the first day, to ensure that evaluation has been carried out as per the | | | instructions given in the Marking Scheme. If there is any variation, the same should be zero | | | after delibration and discussion. The remaining answer books meant for evaluation shall be | | | given only after ensuring that there is no significant variation in the marking of individual | | | evaluators. | | 6 | Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer CROSS 'X" be | | | marked. Evaluators will not put right () while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which | | | | | 7 | evaluators are committing. If a question has parts, please award marks on the right-hand side for each part. Marks | | ' | awarded for different parts of the question should then be totaled up and written in the | | | left-hand margin and encircled. This may be followed strictly. | | 8 | If a question does not have any parts, marks must be awarded in the left-hand margin and | | | encircled. This may also be followed strictly. | | | Total class this may also be followed strictly. | If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question". 10 No marks to be deducted for the cumulative effect of an error. It should be penalized only once. 11 A full scale of marks 70 (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it. Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours 12 every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper. 13 Ensure that you do not make the following common types of errors committed by the Examiner in the past:-Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. While evaluating the answer books if the answer is found to be totally incorrect, it should 14 be marked as cross (X) and awarded zero (0)Marks. Any un assessed portion, non-carrying over of marks to the title page, or totaling error 15 detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously. The Examiners should acquaint themselves with the guidelines given in the "Guidelines 16 **for spot Evaluation**" before starting the actual evaluation. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to 17 the title page, correctly totaled and written in figures and words. The candidates are entitled to obtain photocopy of the Answer Book on request on 18 payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme. | | अंक योजना : भौतिकी (042)
कोड: 55/1/3 | | | |---------|--|-----|------------| | प्र.सं. | मूल्यांकन बिन्दु / अपेक्षित उत्तर | अंक | कुल
अंक | | | खण्ड क | | | | 1 | (A) | 1 | 1 | | 2 | (A) 2 | 1 | 1 | | 3 | (B) $\left(-3\hat{j}+2\hat{k}\right)\mu N$ | 1 | 1 | | 4 | (D) 0.1 A | 1 | 1 | | 5 | (B) 2866 | 1 | 1 | | 6 | (D) $\frac{\mathrm{i}_0\mathrm{v}_0}{2}\mathrm{cos}\phi$ | 1 | 1 | | 7 | (B) की तरंगदैर्घ्य पराबैंगनी विकिरणों की तरंगदैर्घ्य से कम होती है | 1 | 1 | | 8 | (B) $\frac{\pi H^2}{(n^2-1)}$ | 1 | 1 | | 9 | (C) 2.5eV | 1 | 1 | | 10 | (C) रोधिका की ऊँचाई और ह्रासी स्तर की चौड़ाई दोनों में कमी होती है | 1 | 1 | | 11 | (B) $\lambda_e > \lambda_p > \lambda_d$ | 1 | 1 | | 12 | (A) $\xrightarrow{B.E.}$ $\xrightarrow{56}$ A | 1 | 1 | | 13 | (C) अभिकथन (A) सत्य है, परन्तु कारण (R) असत्य है | 1 | 1 | | 14 | (D) अभिकथन (A) और कारण (R) दोनों ही असत्य हैं | 1 | 1 | | 15 | (A) अभिकथन (A) और कारण (R) दोनों सत्य हैं और कारण (R) अभिकथन (A) की सही
व्याख्या है | 1 | 1 | | 16 | (A) अभिकथन (A) और कारण (R) दोनों सत्य हैं और कारण (R) अभिकथन (A) की सही
व्याख्या है | 1 | 1 | | | खण्ड-ख | | | | 17 |
विभवान्तर का परिकलन 2 | | | | | तुल्य विद्युत वाहक बल = (n-4)E | 1/2 | | Page 3 of 19 | | V= E +Ir | 1/2 | | |----|---|-----|---| | | $= E + \frac{(n-4)E}{r} \times r$ | | | | | $-\frac{L}{nr}$ | 1/2 | | | | (2n-4)E | | | | | $=\frac{(2n-4)E}{n}$ | 1/2 | 2 | | | | | | | 18 | (a) झिरी की चौड़ाई का परिकलन 2 | | | | | | | | | | निम्निष्ठ के लिए शर्त a $\sin \theta = n \lambda$ | 1 | | | | पहला निम्निष्ठ के लिए n=1 | 1 | | | | $a \sin 30^\circ = 600 \times 10^{-9} \text{ m}$ | 1/2 | | | | $a \times \frac{1}{2} = 600 \times 10^{-9} \mathrm{m}$ | | | | | $a = 1200 \times 10^{-9} \text{ m}$ | 1/2 | | | | $= 1.2 \times 10^{-6} \mathrm{m}$ | /2 | | | | अथवा | | | | | (b) | | | | | तीव्रता को ज्ञात करना | | | | | | | | | | कलान्तर = $\frac{2\pi}{\lambda}$ × पथान्तर | 1/2 | | | | $\Delta \phi = \frac{2\pi}{\lambda} \Delta x$ | | | | | $\therefore \Delta x = \frac{\lambda}{8}$ (दिया गया है) | | | | | $\Delta \phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{8}$ | | | | | <i>"</i> 6 | | | | | $\Delta \phi = \frac{\pi}{4}$ | 1/2 | | | | $I = I_{\circ} + I_{\circ} + 2\sqrt{I_{\circ}I_{\circ}}\cos\frac{\pi}{4}$ | 1/2 | | | | $= 2I_{\circ} + 2I_{\circ} \times \frac{1}{\sqrt{2}}$ | 72 | | | | , | | | | | $I=2I_{\circ}igg(1+ rac{1}{\sqrt{2}}igg)$ | | | | | $= I_{\circ}(2+\sqrt{2})$ | | | | | I = 3.414 <i>I</i> . | 1/2 | | Page 4 of 19 | | | | T I | |----|---|-----|-----| | | <u>वैकल्पिक</u> | | | | | कलान्तर = $\frac{2\pi}{\lambda}$ × पथान्तर | 1/2 | | | | $\Delta \phi = \frac{2\pi}{\lambda} \Delta x$ | , - | | | | $\therefore \Delta x = \frac{\lambda}{8} \ (दिया गया है)$ | | | | | $\Delta \phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{8}$ | | | | | $\Delta\phi= rac{\pi}{4}$ | 1/2 | | | | $I = 4I_{\circ} \cos^2\left(\frac{\phi}{2}\right)$ | 1/2 | | | | $I = 4I_{\circ} \cos^2\left(\frac{\pi}{8}\right)$ | 1/2 | 2 | | 19 | | | | | 19 | पानी में फोकस दूरी का परिकलन 2 | | | | | $egin{aligned} rac{1}{f} = & \left(rac{n_g}{n_w} - 1 ight) & \left(rac{1}{R_1} - rac{1}{R_2} ight) \end{aligned}$ | 1/2 | | | | उभयोत्तल लेंस के लिए R₁=R और R₂= -R | 1/2 | | | | $\frac{1}{f} = \left(\frac{1.5}{1.33} - 1\right) \left(\frac{2}{R}\right)$ | 1/2 | | | | $= \left(\frac{1.5 - 1.33}{1.33}\right) \left(\frac{2}{17}\right)$ | | | | | f = 66.5 cm | 1/2 | 2 | | 20 | त्रिज्या में परिवर्तन का परिकलन 2 | | | | | 10.6 | | | | | $E_n = \frac{-13.6}{n^2} eV$ | 1/2 | | | | के लिए $E_n = -1.51eV$ | | | | | $-1.51 = \frac{-13.6}{n^2}$ | | | | | n=3
के लिए $E_n=-3.40eV$ | 1/2 | | Page **5** of **19** | | $-3.40 = \frac{-13.6}{n^2}$ n= 2 ∴ $r = 0.53n^2A^\circ$ ∴ त्रिज्या में परिवर्तन $\Delta r = 0.53[3^2 - 2^2]$ = 0.53×5 = 2.65 A° | 1/2 | 2 | |----|--|---|---| | 21 | होलों की संख्या ज्ञात करना प्रक उदाहरण 1 एक उपिश्रक परमाणु प्रति 5×10^7 सिलिकॉन परमाणु अगर सिलिकॉन परमाणु का संख्या घनत्व $=5\times10^{28}$ परमाणु प्रति घनमीटर दिया है प्रति घनमीटर में निर्मित होलों की संख्या $=\frac{5\times10^{28}}{5\times10^7}=10^{21}$ प्रति घनसेंटीमीटर से निर्मित होलों की संख्या $=\frac{10^{21}}{10^6}=10^{15}$ अपिमश्रक का कोई एक उदाहरण - एल्युमिनियम / इंडीयम / गैलियम | 1 | 2 | | | खण्ड-ग | | | | 22 | (a) $\overline{\text{sin}}$ करना $\overline{\text{(i)}}$ संयोजन का तुल्य emf $\overline{\text{I}}$ $\overline{\text{I}}$ $\overline{\text{(ii)}}$ संयोजन का तुल्य आतंरिक प्रतिरोध $\overline{\text{I}}$ $\overline{\text{I}}$ $\overline{\text{(iii)}}$ संयोजन से ली गई धारा $\overline{\text{I}}$ | 1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ | | | | | | | Page 6 of 19 | (iii) $I = \frac{E}{R + r_{eq}}$ | 1/2 | | |---|-----|--| | $I = \frac{4}{4 + 0.13} = \frac{4}{4.13} A$ | 1/2 | | | I = 0.9A | | | | अथवा | | | | (b) (i) संबंध ज्ञात करना 1 (i) R' और R के बीच 1 (ii) v_a ' और v_a के बीच 1 (ii) यह पता लगाना कि क्या सभी मुक्त इलेक्ट्रॉन एक ही दिशा में गित कर रहे हैं 1 | | | | (i) $l'=2l$ $Al=A'l'=$ तार का आयतन $Al=A'(2l)$ | | | | $\frac{A}{2} = A'$ $R = \frac{\rho l}{A}$ $R' = \frac{\rho l'}{A'}$ $R' = \frac{\rho(2l)}{A}$ | 1/2 | | | $R' = \frac{\rho(2l)}{A/2}$ $\frac{R'}{R} = 4$ | 1/ | | | | 1/2 | | | वैकल्पिक $R' = n^2 R$ | 1/2 | | | n=2 $R'=4R$ | 1/2 | | | $n=2$ $R' = 4R$ $(ii) v_d = \frac{eE}{m}\tau$ | 1/2 | | | $v_d = \frac{eV}{ml} \tau$ | | | Page 7 of 19 | | $v_{d}' = \frac{eV}{ml'} \tau$ $\frac{v_{d}'}{v_{d}} = \frac{l}{l'} = \frac{1}{2}$ | 1/2 | | |----|--|-------------|---| | | v _d | 1 | 3 | | 23 | बात करना a) चुम्बकीय क्षेत्र \vec{B} b) चुम्बकीय बल \vec{F}_m 1 c) वैद्युत क्षेत्र ज्ञात करना \vec{E} 1 a) $\vec{B} = \frac{\mu \cdot I}{2\pi d} (-\hat{K})$ b) $\vec{F}_B = q (\vec{v} \times \vec{B}) = \frac{qv\mu \cdot I}{2\pi d} (-\hat{j})$ c) $q\vec{F}_e = -\vec{F}_B$ (आवेश के विचलन के लिए) $\vec{F}_e = \frac{qv\mu \cdot I}{2\pi d} (\hat{j})$ $\vec{F}_e = q\vec{E}$ $\vec{E} = \frac{\mu
\cdot vI}{2\pi d} \hat{j}$ | 1
1
½ | | | 24 | फेजर का आरेख खींचना 1 परिपथ की प्रतिबाधा तथा कलांतर के लिए 1½ व्यंजक प्राप्त करना ½ | | 3 | Page 8 of 19 | T. | | 1 | |---|---------------------|---| | b) $ \begin{array}{c} v_{co} - v_{co} \\ v_{R} \\ v_{C} + v_{L} \end{array} $ | 1/2+ 1/2 | | | $egin{aligned} V_{Rm} &= i_m R \;,\; V_{Cm} = i_m X_c \;, V_{Lm} = i_m X_L \ \end{array}$ फेजर आरेख से $V_m^{\;\;2} &= V_{Rm}^{\;\;2} + (V_{Cm} - V_{Lm})^2 \ V_m^{\;\;2} &= \left(i_m R ight)^2 + \left(i_m X_c - i_m X_L ight)^2 \ &= \left(i_m ight)^2 \left\lceil R^2 + \left(X_c - X_L ight)^2 ight ceil \end{aligned}$ | 1/2 | | | $\operatorname{Or} \ i_m = \frac{V_m}{\sqrt{R^2 + \left(X_c - X_L\right)^2}}$ | 1/2 | | | $dotsing i_m = rac{V_m}{Z}$ $dotsing Z = \sqrt{R^2 + \left(X_c - X_L ight)^2}$ फेजर आरेख से | 1/2 | | | $\tan \theta = \frac{V_{Cm} - V_{Lm}}{V_{Rm}}$ $= \frac{X_c - X_L}{R}$ $\therefore \theta = \tan^{-1} \left(\frac{X_c - X_L}{R} \right)$ | 1/2 | | | 25 a) दर्शाइए कि (Ic + Id) का मान प्रत्येक बिन्दु पर स | मान रहता है 2 | 3 | | b) किरखोफ के प्रथम नियम का धारिता की प्रत्येक | प्लेट पर व्याख्या १ | | | a) ∵ कुल धारा । = I _c + I _d
संधारित्र के बाहर
I _d =0
∴ I = I _c | 1/2 | | Page 9 of 19 | | संधारित्र के अन्दर | | | |----|--|-----|---| | | $I_c = 0$ | 1/2 | | | | $\therefore \ \ I = I_{d} = \varepsilon_0 \frac{d\phi_{\scriptscriptstyle E}}{dt}$ | 1/2 | | | | at | | | | | $= \varepsilon_0 \frac{d}{dt} [EA]$ | | | | | $= \varepsilon_0 \frac{d}{dt} \left[\frac{\sigma}{\varepsilon_0} A \right]$ | | | | | $= \frac{\varepsilon_0}{\varepsilon_0} A \frac{d}{dt} \left[\frac{Q}{A} \right]$ | | | | | $I = \frac{dQ}{dt} = I_c$ | | | | | वैकल्पिक | 1/2 | | | | ∵ कुल धारा । = I _c + I _d | | | | | संधारित्र के बाहर | | | | | $I_d = 0$ | 1 / | | | | $\therefore I = I_c$ | 1/2 | | | | संधारित्र के अन्दर | | | | | $I_c = 0$ | 1/2 | | | | $I = I_d = \varepsilon_0 \frac{d\phi_E}{dt}$ | | | | | $= \varepsilon_0 \frac{d}{dt} \left[\frac{Q}{\varepsilon_0} \right]$ | 1/2 | | | | $I = \frac{dQ}{dt} = I_c$ | 1/2 | | | | इसलिए Ic + Id का मान परिपथ के सभी बिन्दुओं पर समान है | | | | | b) हाँ
संधारित्र में प्रवेश करने वाली धारा (Ic) और संधारित्र के प्लेटों के बीच विस्थापन धारा (Id)
है | | | | | $:: I_c = I_d$ | 1 | | | | जो कि किरखोफ संधि नियम को मान्य करता है | ı | 3 | | 26 | | | | | | a) तीन विशेषताओं का उल्लेख करना 1 ½
b) प्लांक नियतांक के मान का परिकलन 1 ½ | | | | | | | | | | a) तीन विशेषताएं
i) देहली आवृत्ति का अस्तित्व (v。) | 1/2 | | | | | | | Page **10** of **19** Page 11 of 19 | | | | ı | |----|--|---------|---| | | नोट : कृपया मान न लिखने के लिए अंकों को ना काटें | | | | | \ \ -\ \ \ -\ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | | c) कोई दो सूचनाएं | | | | | देहली वोल्टता / प्रतीप संतृप्त धारा / भंजन वोल्टता / अग्रदिशिक बायस में बहुत कम
प्रतिरोध / पश्चदिशिक बायस में बहुत तीव्र प्रतिरोध | 17 17. | 3 | | 28 | प्रातराव / पञ्चादाराक बावस म बहुत ताप्र प्रातराव | 1/2+1/2 | 3 | | 20 | | | | | | a) द्रव्यमान क्षति ज्ञात करना ½ | | | | | बंधन ऊर्जा परिभाषित करना ½ | | | | | विखण्डन प्रक्रम का वर्णन करना ½ | | | | | b) द्रव्यमान क्षति का परिकलन 1 | | | | | ऊर्जा का परिकलन ½ | | | | | | | | | | a) नाभिक के द्रव्यमान एवं इसके घटकों के द्रव्यमान के अंतर को द्रव्यमान क्षति कहते | | | | | | 1/2 | | | | किसी नाभिक को इसके न्यूक्लिऑनों में पृथक्कृत करने के आवश्यक ऊर्जा को बंधन | | | | | ऊर्जा कहते हैं | 1/2 | | | | विखण्डन प्रक्रम में एक अत्यधिक भारी नाभिक जब दो हल्के नाभिक में विघटित होता है | | | | | , इस प्रक्रिया में ऊर्जा विमुक्त होती है जिसके परिणाम स्वरूप बंधन ऊर्जा प्रति | | | | | न्यूक्लिऑन बढ़ती है | 1/2 | | | | b) $\Delta m = (m_{p} + m_{n}) - m_{d}$ | 1/2 | | | | $\Delta m = (1.007277 + 1.008665) - 2.013553$ | | | | | $\Delta m = 0.002389 \text{ u}$ | 1/2 | | | | विमुक्त ऊर्जा = ∆m × c ² | | | | | विमुक्त ऊर्जा = 0.002389 × 931.5 | 1. | | | | = 2.2253 MeV ≈2.22 MeV | 1/2 | 3 | | | खण्ड-घ | 4 | | | 29 | i) (C) | 1 | | | | | 1
1 | | | | | ı | | | | ii) (A) उत्तल दर्पण के लिए आवर्धन सदैव ऋणात्मक होता है | | | | | iii) (B) 2f | | | | | अथवा | | | | | (B) 12 cm | | | | | iv) (C) $\sqrt{X_1X_2}$ | 1 | 4 | | | | • | | | 30 | | | | | | i) (B) 5mC | 1 | | | | ii) (A) zero | 1 | | | | $(D) [M^0L^0TA^0]$ | 1 | | | | | | | Page **12** of **19** | | iv) (A) $\frac{1}{2\sqrt{e}}mA$ | | | |----|---|-----|----------| | | प्रत्येक छात्र को 1 अंक प्रश्न के इस भाग के लिए प्रदान करें यदि छात्र ने इस प्रश्न के दूसरे
भागों को हल करने का) प्रयास किया है | | | | | अथवा | | 4 | | | (B) 0.5 mA खण्ड – ভ | 1 | T | | 31 | | | | | 31 | a) i) 1) कलासंबद्ध स्रोत की परिभाषा 1 सतत व्यतिकरण पैटर्न के लिए कला संबद्ध स्रोतों का आवश्यक होना 1 2) व्याख्या 1 ii) 1) निकटवर्ती चमकीली व्यतिकरण फ्रिंजों के बीच की दूरी का परिकलन 1 2) कोणीय चौड़ाई का परिकलन 1 | | | | | a) i) 1) यदि दो स्रोत कलासंबद्ध है तो किसी भी बिन्दु पर कलांतर समय के साथ नहीं बदलेगा वैकल्पिक | 1 | | | | 1) दो स्रोत कलासंबद्ध कहे जाते हैं यदि वे लगातार समान आवृत्ति / तरंगदैर्घ्य और शून्य
अथवा सतत कलांतर के साथ प्रकाश उत्सर्जित करते हैं | | | | | सतत कलांतर पाने के लिए कलासंबद्ध स्रोतों की आवश्यकता होती है
2) दो स्वतंत्र स्रोत कभी भी कला संबद्ध नहीं होंगे , क्यूंकि इनके बीच कलांतर सतत | 1 | | | | २) पा प्रपत्न जात कमा मा करा। राबछ्क गुरु। हान , क्यूक्ट इनक बाव कराति रातत
 नहीं होता है
 ii) 1) निकटवर्ती चमकीली फ्रिंज के बीच की दूरी = फ्रिंज चौड़ाई | 1 | | | | $\beta = \frac{\lambda D}{d}$ | 1/2 | | | | $= \frac{600 \times 10^{-9} \times 1.2}{0.1 \times 10^{-3}} = 7.2 mm$ | 1/2 | | | | $\theta = \frac{\lambda}{d}$ | 1/2 | | | | $= \frac{600 \times 10^{-9}}{0.1 \times 10^{-3}} = 6 \times 10^{-3} \text{rad} = 0.34^{\circ}$ | 1/2 | | | | यदि छात्र उत्तर को सिर्फ रेडियन में लिखता है तो पूरे अंक दिए जायें। | | | | | अथवा | | | | | | | | Page **13** of **19** | b) i) तरंगाग्र की परिभाषा 1
आपतित और अपवर्तित तरंगाग्रों का आरेख खींचना ½+½
ii) किरण आरेख खींचना 1
अंतिम प्रतिबिम्ब की स्थिति प्राप्त करना 2 | 1 | |
---|---------|--| | b) i) समान कला में दोलन करते ऐसे सभी बिन्दुओं का बिन्दु पथ तरंगाग्र कहलाता है | 1/2+1/2 | | | आपतित स्यातल तरंगाव | | | | f त्रिज्या का गोलीय तरंगाग्र | | | | (ii) | | | | $\begin{array}{c c} \mu=1 \\ \hline \end{array}$ $\begin{array}{c c} \mu=1 \\ \hline \end{array}$ $\begin{array}{c c} P_2 & I \\ \hline \end{array}$ $\begin{array}{c c} I_1 \\ \hline \end{array}$ $\begin{array}{c c} \mu=1 \\ \hline \end{array}$ $\begin{array}{c c} P_2 & I \\ \hline \end{array}$ $\begin{array}{c c} I_1 \\ \hline \end{array}$ $\begin{array}{c c} \mu=1 \\ \hline \end{array}$ $\begin{array}{c c} \mu=1 \\ \hline \end{array}$ $\begin{array}{c c} P_2 & I \\ \hline \end{array}$ $\begin{array}{c c} I_1 \\ \hline \end{array}$ $\begin{array}{c c} \mu=1 | 1 | | | $n_1 = 1$, $n_2 = 1.5$, $R = 15$ cm, $u = \infty$
$\frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$ | 1/2 | | | $\frac{1.5}{v} - \frac{1}{\infty} = \frac{1.5 - 1}{15}$ v= 45 cm दितीय पृष्ठ से , सघन माध्यम से विरल माध्यम में अपवर्तन और वस्तु पर 15 cm पर रखी है | 1/2 | | | $n_1 = 1$, $n_2 = 1.5$, $R = -15$ cm, $u = 15$ cm $\frac{n_1}{v} - \frac{n_2}{u} = \frac{n_1 - n_2}{R}$ | 1/2 | | Page **14** of **19** | $\frac{1}{v} - \frac{1.5}{15} = \frac{1 - 1.5}{-15}$ $v = 7.5 \text{ cm}$ | 1/2 | 5 | |---|---------------------------------|---| | a) i) निकाय की स्थिर विद्युत ऊर्जा में परिवर्तन का परिकलन 2 ii) (1) धारिता ज्ञात करना 1 (2) विभवान्तर ज्ञात करना 1 (3) उत्तर और कारण ½ + ½ | | | | (i) $\vec{E} = \frac{3 \times 10^5}{r^2} \hat{r}$ (दिया गया है) $dV = -\vec{E} \cdot d\vec{r}$ $V = 3 \times 10^5 / r$ | | | | क्षेत्र की अनुपस्थिति में निकाय की स्थिर विद्युत ऊर्जा $U_i \ = \ \frac{Kq_1q_2}{r_{12}}$ | 1/2 | | | क्षेत्र की उपस्थिति में स्थिर विद्युत ऊर्जा $U_{\rm f} = \frac{Kq_1q_2}{r_{12}} + q_1V(r_1) + q_2V(r_2)$ $\Delta U = U_{\rm f} - U_{\rm i} = q_1V(r_1) + q_2V(r_2)$ | 1/2 | | | $\Delta U = \frac{5 \times 10^{-6} \times 3 \times 10^{5}}{3 \times 10^{-2}} - \frac{1 \times 10^{-6} \times 3 \times 10^{5}}{3 \times 10^{-2}}$ | 1/2 | | | = 40 J | 1/- | | | ii) 1) $C = \frac{Q}{V} = \frac{80}{16} = 5\mu F$ | 1 | | | 2) $C' = KC$
= $3 \times 5 \mu F = 15 \mu F$ | 1/2 | | | $V' = \frac{Q}{C'} = \frac{80\mu C}{15\mu F} = 5.33V$ | 1/2 | | | 3) नहीं ,
निकाय की धारिता इसकी ज्यामिती पर निर्भर करती है
अथवा | 1/ ₂ 1/ ₂ | | | b) i) विद्युत क्षेत्रों के परिणाम की तुलना 2 ii) आवेश पर किये गये कार्य का परिकलन 3 | | | | A के लिए कुल आवेश = B के लिए कुल आवेश = C के लिए कुल आवेश =+4q | 1 | | Page **15** of **19** | | क्यूंकि , E = $\frac{kQ}{r^2}$ | | | |----|---|-----|---| | | चूँकि Q = 4q तथा r = 3R | | | | | $E = \frac{k(4q)}{QR^2} = \frac{4kq}{QR^2}$ | 1/2 | | | | $\therefore E_A = E_B = E_C$ | 1/2 | | | | ii) $V_c = \left[\frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right]$ | 1 | | | | = 0 | | | | | $V_A = \left[\frac{k \times 6 \times 10^{-6}}{15 \times 10^{-2}} - \frac{k \times 6 \times 10^{-6}}{5 \times 10^{-2}} \right]$ | 1/2 | | | | $= \frac{k \times 6 \times 10^{-6}}{10^{-2}} \left[\frac{1-3}{15} \right]$ | | | | | $= -\frac{9 \times 10^9 \times 6 \times 10^{-6} \times 2}{15 \times 10^{-2}}$ | | | | | $= -7.2 \times 10^5 \text{ V}$ | 1/2 | | | | $W = q[V_A - V_c]$ | 1/2 | | | | $= 5 \times 10^{-6} \left[-7.2 \times 10^5 - 0 \right]$ | 1/2 | 5 | | | W = -3.6 J | 72 | 3 | | 33 | a) | | | | | i) बिन्दु P,Q और R पर चुम्बकीय क्षेत्र की दिशा ज्ञात करने के लिए ½+½+½ चुम्बकीय क्षेत्रों के आपेक्षिक परिमाण के बारे में निष्कर्ष ½+½+½ ii) पाश के चुम्बकीय आघूर्ण को दर्शाना 2 | | | | | | | | | | | | | | | i) बिन्दु P के पास
चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर
की ओर लग रहा है | 1/2 | | | | बिन्दु Q के पास | | | | | चुम्बकीय क्षेत्र तल के अभिलम्बवत अन्दर की ओर कार्य कर रहा है जिससे बल ऊपर की
ओर लग रहा है | 1/2 | | | | बिन्दु R के पास
चुम्बकीय क्षेत्र तल के अभिलम्बवत बाहर की ओर कार्य कर रहा है जिससे बल नीचे की
ओर लग रहा है
चुम्बकीय क्षेत्र के आपेक्षिक परिणाम | 1/2 | | | | _ | | | | | क्यूंकि B $\alpha^{\frac{1}{-}}$ | | | Page **16** of **19** | अतः | | | | |--|---|-----|--| | P बिन्दु के पास B का परिमाण कम है | | 1/2 | | | Q बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण कम है | | 1/2 | | | R बिन्दु के पास P बिन्दु के सापेक्ष B का परिमाण अधिक है | | 1/2 | | | $(B_Q < B_P < B_R)$ | | | | | | | | | | ii) यदि वृत्ताकार पाश की त्रिज्या r है और पाश में धारा । है तब | | | | | $B = \frac{\mu_0 I}{r}$ or $I = \frac{2Br}{r}$ | | 1/2 | | | $B = \frac{\mu_0 I}{2r} or I = \frac{2Br}{\mu_0}$ $A = \pi r^2 \qquad r = \sqrt{\frac{A}{\pi}}$ | | | | | $\Delta - \pi r^2$ $r = \frac{A}{A}$ | | 1./ | | | | | 1/2 | | | M = IA | | 1/2 | | | $=\frac{2Br}{A}$ | | 72 | | | μ_0 | | | | | $=\frac{2BA}{\mu_0}\sqrt{\frac{A}{\pi}}$ | | 1/2 | | | $\mu_{ m o}$ $\bigvee \pi$ | | , - | | | अथवा | | | | | | | | | | b) | | | | | | | | | | i) बल आघूर्ण का व्यंजक व्युत्पन्न करना | 3 | | | | ii) 1) त्रिज्या में परिवर्तन को ज्ञात करना | 1 | | | | 2) परिक्रमण के आवर्तकाल में परिवर्तन को ज्ञात करना | 1 | | | | | | | | | | _ | | | | | | | | | (i) | | | | | | | | | | $\uparrow^{\mathbf{F}_2}$ | | | | | | | | | | | | 1/2 | | | a172 | | / 2 | | | $a/2 \sin \theta$ B | | | | | al -m | | | | | | | | | | | | | | | F, | | | | | आयताकार कुंडली जिनकी भुजा a और b है , दोनों भुजा पर लगने वाले बल | | | | | जानतावगर कुठता जिनका नुजा a जार b b , दोना नुजा वर रानन वारा बरा $\vec{F_1}$ और $\vec{F_2}$ है | | | | | 11 11 2 4 | | | | Page 17 of 19 | $\left \vec{F_1} \right = \left \vec{F_2} \right = I b B$ ($b = H$ ुजा की लंबाई) | | |
--|-----|--| | लगने वाले बलों से बलयुग्म बनता है पाश पर बल आघूर्ण का परिणाम है 🕒 | 1 | | | $\tau = F_1 \frac{a}{2} \sin \theta + F_2 \frac{a}{2} \sin \theta$ | 1/2 | | | | 72 | | | $= I a b B \sin \theta$ | 1/2 | | | $= IAB\sin\theta$ | '- | | | $ec{ au} = I ec{A} imes ec{B}$ | 1/2 | | | वैकल्पिक | | | | यदि धारा रहित कुंडली का तल चुम्बकीय क्षेत्र के साथ ∝ कोण बनाता है | 1/2 | | | $\vec{F}_{DA} = -\vec{F}_{Bc}$ (एक दूसरे को निर्गत करते हैं) | 1/2 | | | भुजा BC पर बल पृष्ठ के नीचे तल पर है | 1/2 | | | $ F_{DC} = IbB$. | | | | भुजा DA पर बल पृष्ठ के ऊपर तल पर है | 1/2 | | | $ F_{AB} = IbB$ | | | | दोनों ही बल बलयुग्म बनाते हैं और कुंडली पर लगने वाला बल आघूर्ण है
र=कोई बल ×दो बलों के बीच लम्बवत् दूरी | | | | $\tau = IbB \times a \cos \alpha$ | | | | $ i - IbB \wedge a \cos a $
= $IabB \cos \alpha$ | 1/2 | | | $\tau = IAB\cos\alpha$ | '2 | | | Let $\hat{n} = \pi$ माना में = कुंडली के तल पर बाहर की ओर | | | | $\theta + \alpha = 90^{\circ}$ | | | | $\alpha = 90^{\circ} - \theta$ | | | | $\tau = IAB\cos(90 - \theta)$ $= IAB\sin\theta$ $\vec{\tau} = I\vec{A} \times \vec{B}$ | 1/2 | | |--|-----|---| | ii) 1) $r = \frac{mv}{qB} = \frac{\sqrt{2mK}}{qB}$
r $\alpha \sqrt{K}$ | 1/2 | | | $\frac{r'}{r} = \frac{\sqrt{K/2}}{\sqrt{K}} = \frac{1}{\sqrt{2}}$ | | | | $r' = \frac{r}{\sqrt{2}}$ 2) $T = \frac{2\pi m}{r}$ | 1/2 | | | 2) $T = \frac{2\pi m}{qB}$ आवर्तकाल गतिज्ञ ऊर्जा पर निर्भर नहीं करता है | 1/2 | | | . आवर्तकाल नहीं बदलेगा | 1/2 | 5 |