# **ELECTRONIC DEVICES TEST I**

### Number of Questions: 35

Directions for questions 1 to 35: Select the correct alternative from the given choices.

- 1. The Haynes-Shockly experiment enables one to determine the
  - (A) mobility of the minority charge carriers.
  - (B) diffusion co-efficient of majority carriers
  - (C) Hall co-efficient
  - (D) life time of the majority carriers
- 2. A long specimen of  $n^+$ -type semiconductor material
  - (A) is +vely charged (B) is -vely charged
  - (C) is electrically neutral (D) None of these
- 3. A zener diode works on the principle of
  - (A) thermionic emission
  - (B) hopping of charge carriers across the junction
  - (C) diffusion of charge carriers across the junction
  - (D) avalanche multiplication
- 4. Under high electric field, in a semiconductor with decreasing electric field
  - (A) the mobility of charge carriers decreases
  - (B) the mobility of charge carriers increases
  - (C) the velocity of the charge carriers saturates
  - (D) the velocity of the charge carriers increases
- 5. For a certain transistor,  $I_{B} = 25 \mu A$ ,  $I_{C} = 2.5 m A$  and  $\beta = 75$ , then the value of  $I_{CBO}$  is \_\_\_\_\_.
  - (A) 0.625 mA (B) 0.82 mA
  - (C) 8.22 µA (D) 7.5 µA
- 6. In a material, the Fermi level is located between the center of the forbidden band and the valance band. Then what is that material?
  - (A) an *n*-type semiconductor
  - (B) *a p*-type semiconductor
  - (C)  $a p^+$ -type semiconductor
  - (D) an  $n^+$ -type semiconductor
- 7. A piece of material that is 10cm wide and 12cm long and 0.05 mm thick has a dielectric strength of 10kV/ mm. If it is placed between two cu plates and subjected to an increasing voltage, it will breakdown at (D)  $0.51 \cdot V$  $(\Lambda)$  11-V

| (A) | IKV   | (В) | 0.5KV |
|-----|-------|-----|-------|
| (C) | 1.5kV | (D) | 1.2kV |

- (C) 1.5kV
- 8. In the fabrication of a buried p-n-p transistor, the processes involved are
  - 1. oxidation 2. epitaxy

3. diffusion 4. photo lithography The correct sequence in which these processes are to be carried out, is (D) (1 1 2 2)

| (A) 4, 1, 2, 3 | (B) 4, 1, 3, 2 |
|----------------|----------------|
| (C) 1.2.3.4    | (D) 1, 4, 3, 2 |

9. In the fabrication of *n*-*p*-*n* transistor in an *IC*, the buried layer on the *p*-type substrate is

- (A)  $p^+$  doped
- (B)  $n^+$  doped
- (C) used to reduce the parasitic capacitance
- (D) None of these
- 10. Two pure specimen of a semiconductor materials are taken, one is doped with 10<sup>15</sup> cm<sup>-3</sup> number of donors and the other is doped with 10<sup>18</sup> cm<sup>-3</sup> number of acceptors. The minority carrier density in the second specimen is 10<sup>8</sup> cm<sup>-3</sup>. What is the minority carrier density in the other specimen?
  - (B)  $10^{14} \text{ cm}^{-3}$ (A) 10<sup>12</sup> cm<sup>-3</sup>
  - (C)  $10^{11}$  cm<sup>-3</sup> (D)  $10^{25} \text{ cm}^{-3}$
- 11. The intrinsic carrier concentration of Si sample at  $300^{\circ}$ K is  $2.25 \times 10^{16}$  m<sup>-3</sup>. If after doping the number of majority carriers is  $4.5 \times 10^{19}$  m<sup>-3</sup>, then find the minority carrier density.
  - (B)  $11.25 \times 10^{14} \text{ m}^{-3}$ (A)  $1.125 \times 10^{16} \text{ cm}^{-3}$ (C)  $2.25 \times 10^{13} \text{ m}^{-3}$ (D)  $1.125 \times 10^{13} \text{ m}^{-3}$
- 12. If the forward voltage applied to a Si diode at  $27^{\circ}C$ is 0.75V. Find the value of the forward current, if the reverse saturation current is 35nA.
  - (A) 64.25 mA (B) 45 mA (C) 55 mA (D) 6.82µA
- **13.** For a npn transistor  $I_E = 3$ mA,  $\alpha = 0.97$  and  $I_{CEO} = 1.5$ mA, then find  $I_C$  value.
  - (A) 2.75 mA (B) 2.955 mA (C) 2.9 mA (D) 2.25 mA
- 14. The bonding forces in compound semiconductors, such as GaAsp, arise from
  - (A) ionic bonding
  - (B) covalent bonding
  - (C) metallic bonding
  - (D) combination of ionic and covalent bonding
- 15. The diffusion diode capacitance of a forward biased  $n^+ - p$  junction with a steady current I depends on
  - (A) width of the depletion region
  - (B) junction area
  - (C) mean lifetime of the holes
  - (D) mean lifetime of electrons
- 16. A *n*-type Ge crystal has a current density of 150 A/ m<sup>2</sup>. The crystal has a resistivity of  $0.5\Omega$ -m and electron mobility of 0.5 m<sup>2</sup>/V–S, find the time taken by the electron to travel 15µm in the crystal.
  - (A) 0.5 µsec (B) 0.4 µsec
  - (C) 0.25 µsec (D) 0.2 µsec
- 17. Find the reverse saturation current density in an abrupt Si junction. Given the following data:
  - $N_D = 10^{21} \text{ m}^{-3}; N_A = 10^{22} \text{ m}^{-3}; D_n = 3.4 \times 10^{-3} \text{ m}^2/\text{sec};$  $D_p^2 = 1.5 \times 10^{-3} \text{ m}^2/\text{sec}; L_n = 7.5 \times 10^{-4} \text{ m};$

Time: 90 min.

#### 3.120 | Electronic Devices Test 1

| $L_p = 2.5 \times 10^{-4} \text{ m}; n_i = 1.5 \times 10^{-4}$ | $10^{16}$ | m <sup>-3</sup>         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------|
| (A) $2.323 \times 10^{-7} \text{ A/m}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (B)       | $2.23 \ \mu A/m^2$      |
| (C) $2.52 \text{ mA/cm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (D)       | 3.23 mA/cm <sup>2</sup> |

- 18. The Hall coefficient of a specimen of a doped silicon is found to be  $3.5 \times 10^{-4}$  m<sup>3</sup>/C, the resistivity of the specimen is  $8.9 \times 10^{-3} \Omega$ -m. Find the mobility of charge carriers, assuming single carrier concentration.
  - (A)  $0.28 \text{ m}^2/\text{V-sec}$ (B)  $0.333 \text{ m}^2/\text{V-sec}$
  - (C) 3.45 cm<sup>2</sup>/V-sec (D) 0.033 m<sup>2</sup>/V-sec
- **19.** If the value of collector current  $I_c$  decreases, then the value of  $V_{CE}$  is
  - (A) decreases (B) increases
  - (C) remains the same (D) None of the above
- **20.** If the transistor having  $V_{CE} = 4.5$  V,  $V_{BE} = 0.7$  V and  $\beta = 50$ , then the value of *R* is



21. In a sample of Ge at room temperature, the electron concentration varies linearly with distance, as shown in figure. The diffusion current density is 0.25 A/cm<sup>2</sup> and mobility of electrons is  $\mu_{\mu} = 2400 \text{ cm}^2/\text{V-s}$ , then the electron concentration is



- (A)  $24.98 \times 10^{13} \text{ cm}^{-3}$ (B) 2.498 ×10<sup>15</sup> cm<sup>-3</sup> (C)  $3.24 \times 10^{15} \text{ cm}^{-3}$ (D)  $5.25 \times 10^{14} \text{ cm}^{-3}$
- 22. In the following circuit transistor is in



- (A) cut-off region (B) Active region (C) saturation (D) inverse active
- 23. In a MOS capacitor the oxide voltage exceeds the threshold voltage by 1.5V. If the oxide

thickness is 15nm, the charge density in the channel is \_\_\_\_

- (A) 3.45 mC/m<sup>2</sup> (B) 0.88 mC/m<sup>2</sup> (D)  $3.23 \times 10^{-3} \text{ C/cm}^2$ (C)  $4.52 \times 10^{-7} \text{ C/cm}^3$
- 24. A Si sample is doped with  $10^{18}$  Arsenic atoms/cm<sup>3</sup>.

Where is  $E_F$  relative to  $E_i$ ?

- (A) 0.468eV below the intrinsic Fermi level
- (B) 0.468eV above the intrinsic Fermi level
- (C) 0.32eV above the conduction band
- (D) 0.468eV below the conduction band
- **25.** Determine the range of values of  $V_{in}$  that will works as the zener regulator.



(consider 
$$I_{m} = 50 \text{ mA}$$

- (A)  $25 \text{ V} \le V_{in} \le 35 \text{ V}$
- (B)  $23.33 \text{ V} < V_{in} < 30 \text{ V}$ (C)  $23.33 \text{ V} < V_{in} \leq 35.83 \text{ V}$ (D)  $20 \text{ V} \le V_{in} \le 35 \text{ V}$
- 26. The drain of an n-channel MOSFET is shorted to the gate so that  $V_{DS} = V_{GS}$ . The threshold voltage  $(V_{th})$  of MOSFET is 1.25V of the drain current  $I_D$  is 1.5mA for  $V_{GS} = 3$ V, then for  $V_{GS} = 1.5$ V,  $I_D$  is
  - (Å) 2.37 mA (B) 3.45µA
  - (C) 4.23 mA (D) 30.61µA
- 27. Group-I four different semiconductor devices. Match each device in Group-I with its characteristic property in Group-II.

| Group-I                | Group-II                                               |  |  |  |
|------------------------|--------------------------------------------------------|--|--|--|
| w. Photo diode         | 1. Early effect                                        |  |  |  |
| x. MOS capacitor       | 2. Coherent radiation                                  |  |  |  |
| y. LASER               | 3. Flat band voltage                                   |  |  |  |
| z. BJT                 | 4. Dark current                                        |  |  |  |
| (A) w-4, x-2, y-3, z-1 | (B) <i>w</i> -2, <i>x</i> -3, <i>y</i> -2, <i>z</i> -4 |  |  |  |

(D) w-4, x-3, y-2, z-1 (C) w-1, *x*-2, *y*-4, *z*-3 28. Determine the current I in the circuit shown in figure. Assume the diodes to be of silicon and forward bias



- 29. A P-type Si sample contains a acceptor concentration of  $N_a = 10^{20}$  m<sup>-3</sup>. The minority carrier electron lifetime is  $\tau_{\mu a} = 15 \mu s$ . Then the lifetime of the majority carrier is  $(n_i = 1.5 \times 10^{10} \text{ cm}^{-3})$ (B)  $3.24 \times 10^3$  S
  - (A)  $12.32 \times 10^3$  S
  - (C)  $1.2 \times 10^3$  S (D)  $6.66 \times 10^2$  S

# Data for Questions 30 and 31

For the common-emitter characteristics of figure shown in below



- **30.** Find the dc  $\beta$  at an operating point of  $V_{CE} = 8V$  and  $I_c = 2 \text{mA}$ 
  - (A) 120 (B) 99 (C) 110 (D) 117.64

**31.** At  $V_{CE} = 8V$ , find the corresponding value of  $I_{CEO}$ . (A) 0.237 mA (B) 2.38 µA

| (C) $3 \mu A$ (D) | 2.42 | mA |
|-------------------|------|----|
|-------------------|------|----|

### Data for Questions 32 and 33

- A Si bar 0.5cm long and 120µm<sup>2</sup> in cross-sectional area is doped with 1016 cm-3 phosphorus. Consider  $\mu = 1250 \text{ cm}^2/\text{V-s}.$
- 32. Find the resistance of the Si bar.

| (A) 2.08KΩ | (B) 4.16 KΩ |
|------------|-------------|
| (C) 208 KΩ | (D) 25.8 KΩ |

**33.** Find the current at  $800^{\circ}K$  with 14V applied. (A) 50.25mA (B) 6.25 μA (D) 3.25mA (C) 67.3 µA

#### Data for Questions 34 and 35

For a pn-junction with  $N_A = 10^{18}$  cm<sup>-3</sup> and  $N_D = 10^{17}$  cm<sup>-3</sup>, operating at  $T = 300^{\circ}$ K. Consider  $n_i = 1.5 \times 10^{10}$  cm<sup>-3</sup> and  $\epsilon_{r} = 11.9.$ 

- 34. The value of  $C_{io}$  per unit junction area ( $\mu$ m<sup>2</sup>) would be \_\_\_\_
  - (A)  $1.25 \times 10^{-14} \text{ F/}(\mu \text{m})^2$ (B)  $0.936 \text{ fF}/(\mu m)^2$
  - (C) 9.36  $fF/(\mu cm)^2$ (D)  $1.9 \text{ fF}/(\mu m)^2$
- **35.** If grading coefficient  $m = \frac{1}{2}$ . Find the capacitance  $c_i$  at reverse - bias voltage of 2V, assuming a junction area of 2500 µm<sup>2</sup>. (B) 1.52 pE(A) 1 29 nF

| (A) | 1.29 рг | (D) | 1.52рг |
|-----|---------|-----|--------|
| (C) | 0.13fF  | (D) | 2.52pF |

| Answer Keys  |              |              |              |              |              |              |              |              |              |
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| <b>1.</b> A  | <b>2.</b> C  | <b>3.</b> B  | <b>4.</b> B  | <b>5.</b> C  | <b>6.</b> B  | <b>7.</b> B  | 8. D         | <b>9.</b> B  | 10. C        |
| 11. D        | 12. A        | <b>13.</b> B | 14. D        | 15. D        | 16. B        | 17. A        | 18. D        | <b>19.</b> B | <b>20.</b> A |
| <b>21.</b> B | <b>22.</b> B | <b>23.</b> A | <b>24.</b> B | <b>25.</b> C | <b>26.</b> D | <b>27.</b> D | <b>28.</b> B | <b>29.</b> A | <b>30.</b> D |
| <b>31.</b> A | <b>32.</b> C | <b>33.</b> C | <b>34.</b> B | 35. A        |              |              |              |              |              |

## HINTS AND EXPLANATIONS

1. Choice (A)

- 2. Under thermal equilibrium all semiconductors are electrically neutral. i.e.,
  - $\therefore$  total +ve charge = total -ve charge. Choice (C)
- 3. Choice (B)
- $4. \quad V_d = \mu E$ 1

5. 
$$I_{C} = \beta I_{B} + I_{CEO}$$
  
 $2.5 \times 10^{-3} - 75 \times 25 \times 10^{-6} = I_{CEO}$   
 $I_{CEO} = 0.625 \text{ mA}$   
 $I_{CEO} = (1 + \beta) I_{CBO}$   
 $I_{CBO} = 8.22 \,\mu\text{A}$  Choice (C)

- 6. Choice (B)
- 7.  $V = E.d = 10 \times 10^3 \times 0.05$  $= 0.5 \, kV$

10. 
$$n.p = n_i^2$$
  
 $n_1p_1 = n_2p_2$   
from the given data  
 $n_1 = 10^{15} \text{ cm}^{-3}$   
 $p_1 = ?$   
 $n_2 = 10^8 \text{ cm}^{-3}$   
 $p_2 = 10^{18} \text{ cm}^{-3}$   
 $P_1 = \frac{10^8 \times 10^{18}}{10^{15}} = 10^{11} \text{ cm}^{-3}$  Choice (C)  
11.  $n.p = n_i^2$ 

 $n_i^2$  $\therefore$  minority carrier density = majority carrier density

Choice (B)

Choice (B)

$$=\frac{(2.25\times10^{16})^2}{4.5\times10^{19}}$$
  
= 1.125 × 10<sup>13</sup> per m<sup>3</sup> Choice (D)

12. We know 
$$I_D = I_s \cdot \left[ e^{\frac{V_D}{\eta V_T}} - 1 \right]$$
 Amp  
 $I_D = 35 \times 10^{-9} \left[ e^{\frac{0.75}{2 \times 0.026}} - 1 \right] = 64.25 \text{ mA}$  Choice (A)

**13.** 
$$I_{c} = \alpha . I_{E} + I_{CBO}$$
  
 $I_{CEO} = \frac{1}{1 - \infty} . I_{CBO}$   
 $I_{CBO} = (1 - \alpha) . I_{CEO} = 45 \ \mu A$   
 $I_{C} = 0.97 \times 3 \times 10^{-3} + 0.045 \times 10^{-3}$   
 $= 2.955 \ \text{mA}$  Choice (B)

14. Intrinsic *S*.*C*  $\Rightarrow$  covalent bond GaAsp  $\Rightarrow$  combination of covalent and ionic nature Because difference in the position of *Ga* and As, *p*. *Ga*  $\rightarrow$  III<sup>rd</sup> Group element *P*, As  $\rightarrow$  *V*<sup>th</sup> Group elements Choice (D)

15. 
$$C_D = \frac{\tau . I_f}{\eta V_T}$$
  
 $n^+ - p \Rightarrow n - \text{side heavily doped}$ 

:. If more depends on the electrons (majority carries) Choice (D)

16. From the given data

$$\rho = 0.5 \ \Omega - m$$
  

$$J = 150 \ A/m^2$$
  

$$\mu_n = 0.5 \ m^2/V - S$$
  

$$d = 15 \ \mu m$$
  
we know speed or velocity  $V = \frac{\text{distance}}{\text{time}} = \frac{d}{t}$ 

$$\therefore t = \frac{d}{v}$$

$$\Theta = \mu.E = \mu.J.\rho$$
  
=  $\mu.J.\rho = 0.5 \times 150 \times 0.5 = 37.5 \text{ m/sec}$   
 $t = \frac{15 \times 10^{-6}}{37.5} = 0.4 \,\mu \text{ sec}$  Choice (B)

17. We know reverse saturation current

$$I_{o} = A.q \left[ \frac{D_{n}}{L_{n}.N_{A}} + \frac{D_{p}}{L_{p}.N_{D}} \right] .n_{i}^{2}$$
  
But  $J_{o} = \frac{I_{o}}{A}$ 
$$J_{o} = \left[ \frac{3.4 \times 10^{-3}}{7.5 \times 10^{-4} \times 10^{22}} + \frac{1.5 \times 10^{-3}}{2.5 \times 10^{-4} \times 10^{21}} \right]$$

×1.6×10<sup>-19</sup>×(1.5×10<sup>16</sup>)<sup>2</sup>  
= [4.533 × 10<sup>-22</sup> + 0.6 × 10<sup>-20</sup>] × 3.6 × 10<sup>13</sup>  
= 2.323 × 10<sup>-7</sup> A/m<sup>2</sup>. Choice (A)  
**18.** We know  

$$\mu = \frac{8}{3\pi} \sigma R_{H}$$

$$\therefore \sigma = \frac{1}{\rho}$$

$$\mu = \frac{8}{3\pi} \times \frac{3.5 \times 10^{-4}}{8.9 \times 10^{-3}} = 0.8488 \times \frac{3.5}{89}$$

$$= 0.033 \text{ m}^{2}/\text{V} - \text{sec} \qquad \text{Choice (D)}$$
**19.** We know  

$$V_{Cc} = I_{C} R_{C} + V_{CE} + I_{E} R_{E}$$
Let  $IC \approx I_{E}$   

$$\therefore V_{CE} = V_{CC} - I_{C}(R_{C} + R_{E})$$

$$\therefore V_{CE}^{-1} \Rightarrow I_{C} \downarrow \qquad \text{Choice (B)}$$
**20.** From the given circuit  

$$I_{E} = \frac{24 - 4.5}{8} \text{ mA} = 2.43 \text{ 75 mA.}$$
Given  $\beta = 50$   

$$V_{E} = I_{E} R_{E}$$

$$= 2.4375 \times 250 \text{ 10}^{-3}$$

$$V_{E} = 0.61 \text{ Volts.}$$

$$V_{C} = 4.5 \text{ V}_{E}$$

$$= 5.11 \text{ Volts.}$$

$$V_{C} = 4.5 \text{ V}_{E}$$

$$= 5.11 \text{ Volts.}$$

$$I_{E} = (1 + \beta) I_{B}$$

$$I_{B} = 47.79 \text{ µA}$$

$$\frac{V_{0} - V_{B}}{R} = I_{B}$$

$$R = \frac{5.11 - 1.31}{47.79} \times 10^{6}$$

$$R = 79.5 \text{ 1k}\Omega. \qquad \text{Choice (A)}$$
**21.** We know  

$$J_{n} = q.D_{n} \cdot \frac{\partial n}{\partial x}$$
But  $\frac{D_{n}}{\mu_{n}} = V_{T}$ 

$$D_{n} = 2400 \times 0.026 = 62.4 \text{ cm}^{2}/\text{S}$$

$$0.25 = 1.6 \times 10^{15} - 1.25 \times 10^{13}$$

$$= 24.98 \times 10^{14} \text{ cm}^{-3} \qquad \text{Choice (B)}$$

**22.** From the given circuit Base emitter junction forward bias.  $V_{B} > V_{E}$ and collector base junction reverse bias  $V_{CB} = 0$ Choice (B) 23. We know Q = CV

$$= C_{ox} \cdot [V_{GS} - V_T]$$

$$Q = \frac{\varepsilon_{ox}}{T_{ox}} [V_{GS} - V_T]$$

$$= \frac{3.9 \times 8.852 \times 10^{-14}}{15 \times 10^{-7}} \times 1.5$$

$$= 3.45 \times 10^{-7} \text{ C/cm}^2$$

$$= 3.45 \times 10^{-3} \text{ C/m}^2 = 3.45 \text{ mC/m}^2 \qquad \text{Choice (A)}$$

- **24.** From the given data Si doped with As.
  - $\therefore$  It is a *n*-type material.
  - $\therefore$  Fermi level above the  $E_i$ (intrinsic)

$$E_{F_n} - E_i = \frac{KT}{q} \ln \left[ \frac{N_D}{n_i} \right] eV$$
$$= 0.026. \ln \left[ \frac{10^{18}}{1.5 \times 10^{10}} \right] eV$$
$$= 0.468 eV$$
Choice (B)

25. 
$$V_L = V_Z = \frac{R_L \cdot V_{in}}{R + R_L}$$
  
 $V_{i\min} = \frac{(R + R_L)}{R_L} V_Z$   
 $= \frac{1750}{1500} \times 20V = 23.33V$   
 $V_{i\max} = I_{R\max} \cdot R + V_Z$   
 $I_{R\max} = I_{Zm} + I_L$   
 $= 50\text{mA} + 13.33 \text{ mA}$   
 $= 63.33 \text{ mA}$   
 $V_{i\max} = 63.33 \times 10^{-3} \times 250 + 20$   
 $= 35.83 \text{ volts}$  Choice (C)

**26.** Given  $V_{DS} = V_{GS}$   $\therefore V_{DS(\min)} = V_{GS}$   $\Rightarrow$  MOSFET operates in saturation region

$$\Rightarrow I_{D} = k (V_{GS} - V_{T})^{2}$$
  

$$\therefore I_{D} \mu (V_{GS} - V_{T})^{2}$$
  

$$\frac{I_{D_{2}}}{I_{D_{1}}} = \frac{(V_{GS_{2}} - V_{Tn})^{2}}{(V_{GS_{1}} - V_{Tn})^{2}}$$
  

$$I_{D2} = \frac{(1.5 - 1.25)^{2}}{(3 - 1.25)^{2}} \times 1.5 \times 10^{-3} = 30.61 \,\mu\text{A}$$
  
Cho

27. BJT 
$$\rightarrow$$
 early effect  
LASER  $\Rightarrow$  coherent  
mos capacitor  $\Rightarrow$  flat band voltage  
photo diode  $\Rightarrow$  dark current Choice (D)  
28. Let  $D_1 \rightarrow \text{OFF}$   
 $D_2 \rightarrow \text{ON}$   
 $\therefore$  The equivalent circuit is  
 $25V \circ (-VV) \circ (-V) \circ (-$ 

bice (D) **33.** 
$$I = \frac{V}{R} = \frac{14 \times 10^{-3}}{208} = 67.3 \,\mu \,\text{Amp}$$
 Choice (C)

# 3.124 | Electronic Devices Test 1

**34.**  $C_{j_0}$  is the value of  $C_j$  obtained for zero applied voltage

$$\therefore C_{jo} = A \sqrt{\frac{\varepsilon_s \cdot q}{2}} \cdot \left[ \frac{N_A \cdot N_D}{N_A + N_D} \right] \times \frac{1}{V_o}$$
$$V_o = V_T \ln \left[ \frac{N_A \cdot N_D}{n_i^2} \right] \text{ volts}$$
$$= 0.0259 \ln \left[ \frac{10^{18} \times 10^{17}}{2.25 \times 10^{20}} \right] = 0.873 \text{ volts}$$
We know  $C_{jo} = \frac{\varepsilon_{s.A}}{W} \left[ \therefore V_R = OV \right]$ 

$$W = \sqrt{\frac{2\varepsilon_s}{q} \left[\frac{1}{N_A} + \frac{1}{N_D}\right] (V_o + V_R)}$$
$$= \sqrt{\frac{2 \times 11.9 \times 8.852 \times 10^{-14}}{1.6 \times 10^{-19}} \times \left[\frac{1}{10^{18}} + \frac{1}{10^{17}}\right] \times 0.873}$$
$$W = \sqrt{114.95 \times 10^5 \times 10^{-17} \times 1.1} = 11.244 \,\mu\text{cm}$$

$$\frac{C_j}{A} = \frac{\varepsilon_s}{W} = \frac{11.9 \times 8.852 \times 10^{-12}}{11.244 \times 10^{-8}} \frac{F}{m^2}$$
  
= 9.36 × 10<sup>-4</sup> F/m<sup>2</sup>  
= 9.36 × 10<sup>-4</sup> × 10<sup>-12</sup> F/(µm)<sup>2</sup> Choice (B)

**35.** We know general formula for junction capacitance at any  $V_{R}$ .

$$C_{j} = \frac{C_{jo}}{\left(1 + \frac{V_{R}}{V_{o}}\right)^{m}}$$
  
=  $\frac{9.36 \times 10^{-4} \left(\frac{F}{m^{2}}\right) \times 2500 \times 10^{-12} \text{ m}^{2}}{\left(1 + \frac{2}{0.873}\right)^{\frac{1}{2}}}$   
=  $\frac{2.34 \times 10^{-12}}{1.814}$   
=  $1.289 \times 10^{-12} \text{ F}$   
=  $1.29 \text{ pF}$  Choice (A)