To draw the I-V characteristic curve for a p-n junction in forward bias and reverse bias

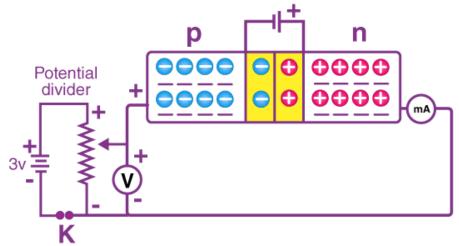
Aim

To draw the I-V characteristic curve of a p-n junction in forward bias and reverse bias.

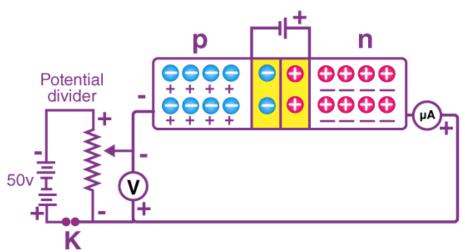
Materials Required

- 1. A p-n junction diode
- 2. A 3-volt battery
- 3. A 50-volt battery
- 4. A high resistance rheostat
- 5. One 0-3 volt voltmeter
- 6. One 0-50 volt voltmeter
- 7. One 0-100 mA ammeter
- 8. One 0-100 µA ammeter
- 9. One way key
- 10. Connecting wires
- 11. Piece of sandpaper

Theory


Forward bias characteristics

The junction is said to be forward biased when the p-section of the diode is connected to the positive terminal of the battery and the n-section of the diode is connected to the negative terminal of the battery. With an increase in the voltage, the current also increases. For Si diode, at 0.7 V the current increases suddenly.


Reverse bias characteristics

The junction is said to be reverse biased when the p-section of the diode is connected to the negative terminal of the battery and the n-section of the diode is connected to the positive terminal of the battery. With an increase in the voltage, there is a small change in the current but the reverse current increases to a higher value with an increase in the voltage.

Diagram

p-n Junction diode in forward biased

p-n Junction diode in reverse biased

Procedure

For forward-bias

- 1. The circuit connections should be as shown in the diagram.
- 2. All the connections should be neat, clean and tight.
- 3. For voltmeter (V) and milli-ammeter (mA), least count and zero error should be noted.
- 4. To get the zero reading from the voltmeter and milli-ammeter, rheostat should be brought near the negative end by inserting the key K.
- 5. To apply the forward bias voltage (V_F) of 0.1V, the contact should be moved towards the positive end. The current remains zero.
- 6. Keeping current zero, increase the forward bias voltage up to 0.3 V for Ge diode.

- 7. To record a small current using milli-ammeter, increase the V_F to 0.4 V.
- 8. Increase the V_F by 0.2 V and record the corresponding current. When the V_F becomes 0.7 V, the current will increase rapidly.
- 9. When $V_F = 0.72$ V, the current increases suddenly and this is known as forward breakdown stage.
- 10. Take out the key if forward current won't change as V_F increased beyond forward breakdown.
- 11. Record the observations.

For reverse bias

- 1. The circuit connections should be as shown in the diagram.
- 2. All the connections should be neat, clean and tight.
- 3. Note the least count and zero error of voltmeter (V) and micro-ammeter (µA).
- 4. To get zero reading from the voltmeter V and micro-ammeter μA , insert the key K and bring the rheostat near the positive end.
- 5. To apply reverse bias voltage (V_R) of 0.5 V, move the rheostat to the negative end so as to flow the reverse current.
- 6. Increase V_R by 0.2 V and record the corresponding current. When V_R becomes 20 V, the current will increase rapidly.
- 7. When $V_R = 25$ V, the current increases suddenly and this is known as reverse breakdown stage. Record the current reading and take off the key.
- 8. Record the observations.

Observations

For forward bias

Range of voltmeter =V
Least count of the voltmeter =V
Zero error of voltmeter =V
Range of milli-ammeter =mA
Least count of milli-ammeter =mA
Zero error of milli-ammeter =mA

Table for forward bias voltage and forward current

Sl.no	Forward bias voltage V _F in V	Forward current I _F in mA

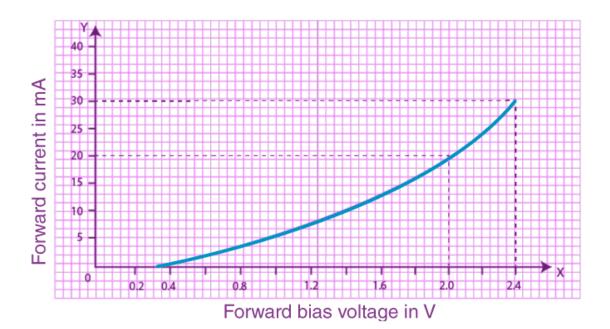
For reverse bias

Range of voltmeter =V
Least count of the voltmeter =V
Zero error of voltmeter =V

Range of micro-ammeter =µA

Least count of micro-ammeter =µA

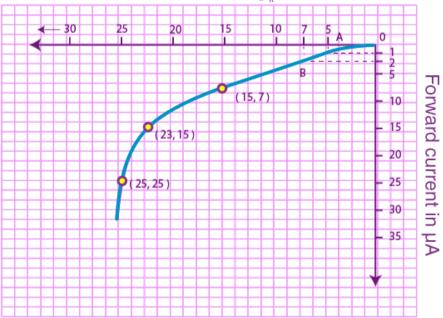
Zero error of micro-ammeter =µA


Table for reverse bias voltage and reverse current

Sl.no	Reverse bias voltage V _R in V	Reverse current I _R in μA

Calculations

For forward bias


Plot a graph between V_F and I_F taking V_F on the x-axis and I_F on the y-axis. The graph obtained is known as forward bias characteristic curve.

For reverse bias

Plot a graph between V_R and I_R taking V_R on the x-axis and I_R on the y-axis. The graph obtained is known as reverse bias characteristic curve.

Result

Junction resistance for forward bias = ohms

Junction resistance for reverse bias = ohms.

Precautions

- 1. The connections should be neat, clean and tight.
- 2. Key should be used when the circuit is being used.
- 3. Beyond breakdown, forward bias voltage should not be applied.
- 4. Beyond breakdown, reverse bias voltage should not be applied.

Sources Of Error

Faulty junction diode might be supplied.

Viva Questions

Q1. Define energy level in an atom.

Ans: Energy level in an atom is defined as the energy value of an electron in the subshell of an atom.

Q2. What are the different types of energy bands?

Ans: Following are the different types of energy bands:

- Conduction band (C)
- Valence band (V)
- Forbidden band (F)

Q3. What are the different types of substances?

Ans: Following are the different types of substances:

- Conductors
- Insulators
- Semiconductors

Q4. What is the SI unit of conductance?

Ans: SI unit of conductance is siemens (S).

Q5. Name the different types of biasing.

Ans: Following are the different types of biasing:

- Forward biasing
- Reverse biasing