2. ACIDS, BASES & SALTS

Acids

According to Arrhenius theory, "An acid is a substance which when dissolved in water, ionizes and releases hydrogen ions [H⁺(aq)] in solution".

Example,

Hydronium ion

• Hydrogen ion do not exist as H^+ ions in solution, they attach themselves to the polar water molecules to form hydronium ions (H_3O^+ or $H^+(aq)$) $H^+ + H_2O \rightarrow H_3O^+$.

Properties of acid

- On the basis of sources can be classified as organic or inorganic.
- On the basis of number of displaceable H^+ ions (basicity) per molecule, can be classified as monobasic, dibasic or tribasic. Eg. HCl, H_2SO_4 and H_3PO_4 respectively.
- On the basis of degree of ionisation, can be classified as strong or weak acid. Eg. HCl and CH₃COOH respectively.
- On the basis of concentration, can be classified as concentrated and dilute acids.

Bases

According to Arrhenius theory "Those substances which give hydroxide or hydroxyl ion (OH-) in their aqueous solution are called bases".

Examples,	(i)	NaOH(aq) \longrightarrow	Na+(aq) +	OH-(aq)
		Sodium hydroxide S	odium ion	Hydroxyl ion
	(ii)	KOH(aq) →	K+(aq) +	OH-(aq)
		Potassium hydroxide	Potassium io	n Hydroxyl ion

Properties of bases

- On the basis of number of hydroxyl ion (OH[¬]) produced (acidity), can be of classified as monoacidic, diacidic or triacidic bases. Eg. NaOH, Ca (OH)₂ & Al(OH)₃ respectively.
- On the basis of degree of ionization, can be classified as strong base and weak base. Eg. NaOH & NH₄OH respectively.
- On the basis of concentration, can be classified as concentrated or dilute bases.

Chemical properties of acids & bases

Indicators

China rose is a flower which has pink petals. The coloured solution extracted from it is light pink colour. When used as an indicator, its colour changes to green in basic solution and dark pink colour (magenta) in acidic solutions. In neutral solutions, there is no change in colour.

- Litmus solution is a purple dye, which is extracted from lichens. Its colour is purple in a neutral solution.
- Other natural materials like red cabbage leaves, turmeric, coloured petals of Hydrangea, Petunia and Geranium are also used as indicators.

Indicator	Change in acidic medium	Change in basic medium
Blue litmus paper	Blue to Red	Red to Blue
Methyl orange	Orange to red	Orange to yellow
Phenolphthalein	Remains colourless	Colourless to pink
Turmeric paper	No change in colour	Yellow to red brown

Reaction of Acids & Bases with Metals

Metal + Acid \longrightarrow Metal Salt + H₂(\uparrow)

 $Zn + 2HCl \longrightarrow ZnCl_2 + H_2$

Metal + Alkali $\xrightarrow{\text{warm}}$ Metal Salt + $H_2(\uparrow)$

 $Zn + 2NaOH \longrightarrow Na_2ZnO_2 + H_2(\uparrow)$

- ► Al, Sn, Pb, Zn form NaAlO₂, Na₂SnO₂, Na₂PbO₂ and Na₂ZnO₂, respectively with NaOH (alkali).
- Evolved H_2 gas is tested with a burning splinter. It burns with a pop sound.

Reaction of Acid with Metal Carbonates/Hydrogen Carbonates

Metal Carbonate/Metal hydrogen carbonate + Acid ----- Salt + Carbon dioxide + Water

 $Na_2CO_3 + 2HCl \longrightarrow 2NaCl + CO_2 + H_2O$

 $NaHCO_3 + HCl \longrightarrow NaCl + CO_2 + H_2O$

- Evolved CO_2 gas turns lime water milky. $Ca(OH)_2 + CO_2(g) \longrightarrow CaCO_3(s) + H_2O(\ell)$ lime water calcium carbonate (insoluble white ppt.)
- On passing excess CO₂, the solution becomes clear due to conversion of insoluble CaCO₃ into soluble calcium hydrogen carbonate.

 $\begin{array}{c} \text{CaCO}_3(\text{s}) + \text{H}_2\text{O}(\ell) + \text{CO}_2(\text{g}) & \longrightarrow \text{Ca}(\text{HCO}_3)_2(\text{aq}) \\ & \text{Calcium hydrogen carbonate} \end{array}$

(Soluble in water)

Reaction of Acids with Bases

Acid + Base \longrightarrow Salt + H₂O

(i) HCl + NaOH \longrightarrow NaCl + H₂O

(ii) \mathbf{CO}_{2} + Ca(OH)₂ \longrightarrow CaCO₃ + H₂O

(iii) $H_2SO_4 + MgO \longrightarrow MgSO_4 + H_2O$

- All reactions take place in aqueous solutions.
- Reaction (ii) and (iii) suggest that non-metallic oxides are generally acidic and metallic oxides are generally basic in nature.
- These reactions are generally exothermic.

All acids release H^+ ion in their aqueous solutions. H^+ ion released combines with H_2O and form hydronium ion (H_3O^+). The separation of H^+ ion from an acid molecule cannot occur in the absence of water. Hence, acids show acidic character only in presence of water.

- As acids and bases dissociate into ions they conduct electricity in their aqueous solution.
- As dilution of acids or bases occur, concentration of ions (H_3O^+/OH^-) per unit volume decreases.

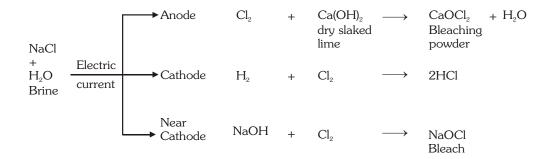
pH scale

- A scale for measuring hydrogen ion concentration in a solution, called pH scale has been developed. The p in pH stands for '*potenz*' in German, meaning power. On the pH scale we can measure pH from 0 (very acidic) to 14 (very alkaline). pH should be thought of simply as a number which indicates the acidic or basic nature of a solution. Higher the hydronium ion concentration, lower is the pH value. The pH of a neutral solution is 7. Values less than 7 on the pH scale represent an acidic solution. As the pH value increases from 7 to 14, it represents an increase in OH⁻ ion concentration in the solution, that is, increase in the strength of alkali. Generally paper impregnated with the universal indicator is used for measuring pH.
- ➤ The strength of acids and bases depends on the number of H⁺ ions and OH⁻ ions produced, respectively. If we take hydrochloric acid and acetic acid of the same concentration, say one molar, then these produce different amounts of hydrogen ions. Acids that give rise to more H⁺ ions are said to be strong acids, and acids that give less H⁺ ions are said to be weak acids.
- Solutions with pH = 0-3 are strongly acidic, with pH = 3-5 are moderately acidic while with pH = 5-7 are weakly acidic.
- Solution with pH = 7-9 are weakly basic, with pH = 9-12 are moderately basic while with pH = 12-14 are strongly basic.
- If pH = 7, then the solution is neutral. It is expressed as $pH = -\log_{10}[H^+]$.

Importance of pH in everyday life

- Plants and animals are pH sensitive: All living organisms are pH sensitive. e.g. human body works in a narrow pH range of 7.0 to 7.8. Aquatic life gets disturbed due to acid rain (pH below 5.6) when pH of water bodies falls.
- Soil pH and plants : Different plants prefer different pH range for their growth. Soil should be treated with suitable material (acidic/basic) accordingly to obtain required pH of the soil. Acidic soil can be treated with CaO, Ca(OH)₂ or CaCO₃ while basic soil can be treated with manure or compost.
- Importance of pH in our digestive system: The acid produced in our stomach kills the bacteria & germs. Excess of acid produced (due to overeating) causes acidity. Antacid such as Mg(OH)₂, NaHCO₃, etc., relieves us from such pains.
- pH change as the cause of tooth decay: pH of our mouth is > 7. Food, left in our mouth after eating; gets degraded by bacterial action. This results in lowering the pH to 5.5 (acidic). The acid so formed reacts with calcium phosphate and causes tooth enamel to corrode. Therefore, usage of toothpaste (base) neutralizes excess of acid and prevents tooth decay.
- Self defence by animals and plants through chemical warfare: Sting of honey bees containing formic acid can be neutralized by applying baking soda paste. Also, hair present on nettle leaves inject methanoic acid into the skin which can be neutralized by either applying baking soda or extract of dock plant leaves which grows beside nettle plant.

Salts


Salts are the ionic compounds consisting of two parts, one part carrying a positive charge called positive ion or **cation** and the other part carrying a negative charge called a negative ion or **anion**.

• The nature of acid and base produced when salt reacts with water, the salts can be classified into the following four types.

	Salt + Water	\longrightarrow	Acid	+	Base	Nature of salt
1.	NaCl + H₂O	\rightarrow	HCl <u>Strong</u> <u>acid</u>	+	NaOH <u>Strong</u> <u>base</u>	Both acids & base are strong. ∴, salt is neutral Hence, pH = 7
2.	$NH_4Cl + H_2O$	\longrightarrow	HCl <u>Strong</u> <u>acid</u>	+	NH₄OH Weak base	Acid is strong. ∴, salt is acidic. Hence, pH < 7
3.	Na ₂ CO ₃ + H ₂ O	\longrightarrow	H₂CO₃ Weak acid	+	NaOH <u>Strong</u> <u>base</u>	Base is strong. ∴, salt is basic. Hence, pH > 7
4.	CH ₃ COONH ₄ + H ₂ O	\rightarrow	CH3COOH <u>Weak</u> acid	+	NH₄OH <u>Weak</u> base	Both acid & base are weak. ∴, salt is neutral. Hence, pH ≈ 7

Chemicals from common salt (NaCl)

• NaOH - Chloralkali process

Uses of Bleaching powder

- (i) for bleaching cotton and linen in the textile industry, for bleaching of wood pulp in paper factories and for bleaching washed clothes in laundry;
- (ii) as an oxidising agent in many chemical industries; and
- (iii) for disinfecting drinking water to make it free of germs.

• Baking soda - NaHCO₃ & Washing soda - Na₂CO₃ - Solvay's process or ammonia - soda process.

<u>Step I</u>: CaCO₃ $\xrightarrow{\Delta}$ CaO + CO₂ (g) (CO₂ used in this process is prepared from CaCO₃) \downarrow

$$NaCl + H_2O + NH_3 + CO_2 \longrightarrow NH_4Cl(aq) + NaHCO_3(s)$$

- Uses of sodium hydrogencarbonate (NaHCO₃)
- (i) For making baking powder, which is a mixture of baking soda (sodium hydrogencarbonate) and a mild edible acid such as tartaric acid. When baking powder is heated or mixed in water, the following reaction takes place

NaHCO₃ + $H^+ \longrightarrow CO_2 + H_2O +$ Sodium salt of acid (From any acid)

Carbon dioxide produced during the reaction causes bread or cake to rise making them soft and spongy.

- (ii) Sodium hydrogencarbonate is also an ingredient in antacids. Being alkaline, it neutralises excess acid in the stomach and provides relief.
- (iii) It is also used in soda-acid fire extinguishers.

NaHCO₃ can be used to neutralize an acid because it is mild non-corrosive base due to the presence of HCO₃ ion.

NaHCO₃ produced in <u>Step I</u> is used in <u>Step II</u>.

Step II: $NaHCO_3 \longrightarrow Na_2CO_3 + H_2O + CO_2$ Anhydrous sodium carbonate (soda ash)

Step III: $Na_2CO_3(s) + H_2O(l) \longrightarrow Na_2CO_3(aq)$ <u>crystallization</u> $Na_2CO_3.10H_2O$

(Anhydrous	(Washing	(Sodium carbonate
sodium carbonate)	soda)	deca hydrate)

Uses of washing soda

- (a) Washing soda (or sodium carbonate) is used for washing clothes (laundry purposes).
- (b) Washing soda is used for softening hard water.
- (c) Sodium carbonate (soda ash) is used for the manufacture of detergents.
- (d) Sodium carbonate is used for the manufacture of many important compounds, such as borax (Na₂B₄O₇), hypo (Na₂S₂O₃ \cdot 5H₂O), etc.
- (e) Sodium carbonate is also used in paper, glass, soap and paint industries.

Are the crystals of salts really dry ?

Crystals of some salts contain certain amount of associated water. The water associated with the crystal (or molecule) of any salt is called water of crystallisation. The salt containing water of crystallisation are called **hydrated salts**. Water of crystallization is the fixed number of water molecules present in one formula unit of a crystalline salt. e.g., $CuSO_4$. $5H_2O$ (blue), $FeSO_4$. $7H_2O$ (green).

 Crystalline salts on heating loose their water of crystallization. This can be seen by observing the colour change in the compound on heating.

e.g.
$$CuSO_4$$
. $5H_2O _ \Delta$ $CuSO_4 + 5H_2O$
(Blue) (White)

Plaster of Paris (CaSO₄.1/2H₂O)
$$\frac{CaSO_4}{CaSO_4}$$
 H_2O

Calcium sulphate hemihydrate

 $\begin{array}{ccc} 2[\text{CaSO}_4.2\text{H}_2\text{O}] & \xrightarrow{373\text{K}} & (\text{CaSO}_4)_2.\text{H}_2\text{O} & + & 3\text{H}_2\text{O} \\ & & \text{Gypsum} & & \text{Plaster of Paris} \end{array}$

▶ Gypsum requires controlled heating at 373 K to avoid complete loss of water resulting into CaSO₄(anhydrous calcium sulphate) which does not set into a hard mass when water is mixed.

• Properties of Plaster of Paris

- (1) Plaster of Paris is a white, odourless powder.
- (2) At room temperature, Plaster of Paris absorbs water and a large amount of heat is liberated.
- (3) When mixed with a limited amount of water (50% by mass), it forms a plastic mass, evolves heat and quickly sets to a hard porous mass within minutes. This is called the **setting process**.

During setting, a slight expansion in volume occurs. It is due to this that it fills the mould completely and gives sharp impression. The reaction during process is

$$CaSO_4 \cdot \frac{1}{2}H_2O(s) + \frac{3}{2}H_2O(\ell) \rightarrow CaSO_4 \cdot 2H_2O(s)$$

Plaster of Paris Water Gypsum (Hard mass)

• Uses of Plaster of Paris

- (1) Plaster of Paris is used in making casts and patterns for moulds and statues.
- (2) Plaster of Paris is used as cement in ornamental casting and for making decorative materials.
- (3) Plaster of Paris is used as a fire proofing material and for making chalks.
- (4) Plaster of Paris is used in hospitals for immobilising the affected part in case of bone fracture or strain.
- (5) Plaster of Paris (POP) is used to fill small gaps on walls & roofs.

ACIDS, BASES & SALTS

1.	Which of the following	is a strong acid ?	11.	А
	(1) Lactic acid	(2) Ascorbic acid		(1
	(3) Sulphuric acid	(4) Formic acid	12.	V
2.	Which of the following	is a strong acid ?		(1
	(1) H_2CO_3	(2) CH ₃ COOH		(3
	(3) HCl	(4) HCOOH	13.	W
3.	Which of the following	is a dibasic acid ?		(1
	(1) HCl	(2) H ₃ PO ₄		(3
	(3) HNO ₃	(4) $H_2 SO_4$	14.	W
4.	Acetic acid is a weak a	cid because		a /1
	(1) its aqueous solution	is acidic		(1 (2
	(2) it is highly ionized			(2
	(3) it is weakly ionized			(C
	(4) it contains –COOH g	group	15.	A
5.	The incorrect statement	t about acids is		tł
	(1) they give H+ ion in v	water		C
	(2) they are sour in tast	e		(1
	(3) they turn blue litmus	s red		(2
	(4) they give pink colour	r with phenolphthalein		(3
6.	Choose an example of ir from the following	norganic acid (mineral acid)	16.	(4 P
	(1) Oxalic acid	(2) Acetic acid		(1
	(3) Nitric acid	(4) Formic acid		(2
7.	Slaked lime is prepared			(3
		(2) lime water		(4
	(3) milk of lime		17.	W
8.	Which of the following	-		zi
	(1) KOH	(2) ZnO		tł (1
	(3) Al(OH) ₃	(4) NaCl		(1 (2
9.	Which of the following	is not basic in nature ?		(2
	(1) KOH	(2) Ca(OH) ₂		(C
	(3) K ₂ SO ₄	(4) ZnO	18.	T
10.	Mark the correct statem	nent.	10.	fc
		lies are soluble in water.		(1
		water but all bases are not.		(2
		ecause it has OH group.		(3
		- 3 - F		(4

(4) Bases are soluble in water but alkalies are not.

	11.	Acidity of ammonium hy	droxide is											
		(1) 1 (2) 2	(3) 4 (4) 3											
	12.	Which of the following i	s the weakest base ?											
		(1) NaOH	(2) Ca(OH) ₂											
		(3) NH ₄ OH	(4) KOH											
	13.	Which one of the following	ng will turn red litmus blue?											
		(1) Vinegar	(2) Baking soda solution											
		(3) Lemon juice	(4) Soft drinks											
	14.	Which of the following st acids and bases ?	atements is true regarding											
		(1) Acid and bases don't	react with each other											
		(2) Acids mixed with bas	ses neutralise each other											
		(3) Acids mixed with bases make stronger acids(4) Acids mixed with bases make stronger bases												
		(4) Acids mixed with bases make stronger bases												
	15.	A blue litmus paper was first dipped in dil. HCl and then in dil. NaOH solution. It was observed that the colour of the litmus paper												
		(1) changed to red												
		(1) changed to red(2) changed first to red and then to blue(3) changed blue to colourless												
		(3) changed blue to colo	urless											
l)		(4) remained blue in bot	h the solutions											
	16.	Phenolphthalein is												
		(1) yellow in acidic medi	um, pink in basic medium											
		(2) pink in acidic medium	, colourless in basic medium											
		(2) pink in acidic medium, colourless in basic medium(3) colourless in acidic medium, pink in basic medium												
		(4) pink in acidic mediur	n, yellow in basic medium											
	17.		acid is added to granulated e, the observation made is											
		(1) the surface of the me	etal turns shining											
		(2) the reaction mixture	turns milky											
		(3) odour of chlorine is a	observed											
		(4) a colourless and odourle	ss gas is evolved with bubbles											
	18.	The reaction of metal formation of	with acid results in the											
		(1) only hydrogen gas												
		(2) only salt												
		(3) both salt and hydrog	en gas											
		(4) None of these												

(4) None of these

EXERCISE

19.	When zinc reacts with sodium hydroxide, the	29.		does not give H+ ions in
	products formed are		aqueous solution? (1) H ₂ CO ₃	
	(1) zinc hydroxide and sodium		$(3) CH_3COOH$	(2) $C_2 H_5 OH$ (4) $H_3 PO_4$
	(2) sodium zincate and water	30.		ing is a strong electrolyte?
	(3) sodium zincate and hydrogen gas	00.	(1) Carbon disulphide	
	(4) sodium zincate and oxygen		(2) Ammonium hydroxid	e
20.	Which of the following metals can displace hydrogen		(3) Sodium chloride	
20.	from the aqueous solution of sodium hydroxide ?		(4) Water	
	(1) Mg (2) Cu (3) Al (4) Ag	31.	When sodium chloride re	eacts with sulphuric acid, a
			gas is evolved which give	es dense white fumes with
21.	Which gas is evolved when acids react with metal		ammonia. Which gas is	evolved?
	carbonates ?		(1) HCl	(2) NH ₄ Cl
	(1) CO_2 (2) H_2 (3) NH_3 (4) O_2		(3) NH ₄ OH	(4) $(NH_4)_2 SO_4$
22.	Acetic acid was added to a solid X kept in a test	32.	For dilution of concentr	
	tube. A colourless and odourless gas was evolved.		(1) water into concentra	
	The gas was passed through lime water which turned		(2) concentrated acid int	
	milky. It was concluded that		(3) first water into acid a	
	(1) solid X is sodium hydroxide and the gas evolved	22	(4) Both (1) and (2) are	
	is CO ₂	33.	solution is probably	mus red. The pH of the
	(2) solid X is sodium bicarbonate and the gas		(1) 8 (2) 10	(3) 12 (4) 6
	evolved is CO_2	34.		e sting causes irritation due
	(3) solid X is sodium acetate and the gas evolved	54.	to the presence of	e sung causes innation due
	is CO ₂ (4) solid X is sodium chloride and the gas evolved		(1) a base in the sting	
	is CO ₂		(2) formic acid in the still	na
23.	When CO_2 is passed through lime water, it turns		(3) poisonous chemicals	
20.	milky. The milkiness is due to formation of		(4) Both (1) and (2)	
	(1) $CaCO_3$ (2) $Ca(OH)_2$	35.	Which of the following i	s incorrectly matched ?
	(3) H_2O (4) CO_2	00.	(1) Tomato – tartaric ac	
24.	A solution reacts with crushed egg-shells to give a		(2) Ant sting – citric acid	
	gas that turns lime-water milky. The solution contains		(3) Citrus fruit – citric ad	
	(1) NaCl (2) HCl		(4) Curd – lactic acid	
_	(3) LiCl (4) KCl	36.		ere found to have pH value
25.	$CuO + (X) \rightarrow CuSO_4 + H_2O$. Here (X) is			The inference which can
	(1) $CuSO_4$ (2) HCl		be drawn is that	The matched which call
07	(3) H_2SO_4 (4) HNO_3			ne solution B is higher than
26.	When an oxide of a non-metal reacts with water		that of A	
	which of the following is formed ? (1) Acid (2) Base		(2) A is an acid while E	3 is a base
	(3) Salt (4) None of these		(3) Both are acidic solut	
27.	Which of the following is 'quicklime' ?		(4) Both are basic soluti	
27.	(1) CaO (2) Ca(OH) $_2$	37.	pH + pOH equals	
	(3) $CaCO_3$ (4) $CaCl_2.6H_2O$		(1) zero	(2) fourteen
28 .	Which acids are highly corrosive in nature?		(3) a negative number	(4) infinity
	(1) Acetic acid and oxalic acid	38.	The acid used in making	-
	(2) Acetic acid and sulphuric acid		(1) formic acid	(2) acetic acid
	(3) Sulphuric acid and nitric acid		(3) sulphuric acid	(4) nitric acid
	(4) Carbonic acid and acetic acid		(o) suprare dela	
18		1		

39.	Antacids contain		46.	Soda-acid fire extingui	sher extinguishes the fire by
	(1) weak base	(2) weak acid		(1) cutting the supply	of air
	(3) strong base	(4) strong acid		(2) removing the comb	
40.	The equation between	an acid and a base is		(3) raising the ignition	
		$Y \rightarrow XY + H_2O$		(4) None of these	h
	-	g is the cation part of salt ?	47.	Plaster of Paris is obta	ainad
	(1) X (2) OH	(3) H (4) Y			
41.		we are advised to brush our		(1) by adding water to	-
	commonly used is	nature of the tooth paste			c acid to calcium hydroxide
	(1) acidic	(2) neutral		0.011	to a very high temperature
				(4) by cooling gypsum	
40	(3) basic	(4) corrosive	48 .		er molecules in gypsum and
42 .	litmus ?	g compounds is neutral to		Plaster of Paris is	(0) 0
	(1) NaNO ₃	(2) CuSO ₄ .5H ₂ O		(1) 5/2	(2) 2
	(3) NaHCO ₃	(4) Ca(OH) ₂		(3) 1/2	(4) 3/2
43.	0	solution, the products formed		(- 1)
10.	are	bialon, the products formed	49 .	Plaster of Paris CaSe	$O_4 \cdot \frac{1}{2} H_2 O \bigg)$ on mixing with
	(1) sodium and chloring	е			/
	(2) hydrogen, chlorine	and oxygen		water sets to form	
	(3) hydrogen, chlorine				$\sim c \sim 1^1 H_{\odot}$
	(4) sodium hydroxide,	chlorine and oxygen		(1) CaSO ₄ .H ₂ O	(2) CaSO ₄ .1 $\frac{1}{2}$ H ₂ O
44.	Bleaching powder gives	smell of chlorine because it -			
	(1) is unstable			(3) CaSO ₄ .2H ₂ O	(4) CaSO ₄ .2 $\frac{1}{2}$ H ₂ O
	-	exposure to atmosphere		$(0) CabO_4.211_2O$	(4) cub $0^{4.2}$ 2^{1120}
	(3) is a mixture of chl(4) contains excess of a		50.	Plaster of Paris harder	ns by
45.	Chemical formula of b			(1) giving off CO_2	-
45.	(1) $MgSO_4$	(2) Na_2CO_3		(2) changing into CaC	O ₃
	(3) NaHCO ₃	(4) MgCO ₃		(3) combining with wa	ter
	х <i>г</i> з			(4) giving out water	

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	3	4	3	4	3	4	4	3	2	1	3	2	2	2	3	4	3	3	3
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	1	2	1	2	3	1	1	3	2	3	1	2	4	2	2	2	2	2	1	1
Que.	41	42	43	44	45	46	47	48	49	50										
Ans.	3	1	3	2	3	1	3	4	3	3										

ANSWER KEY